

2009 CWE/SANS Top 25 Most Dangerous Programming
Errors

The MITRE CorporationCopyright © 2009

http://cwe.mitre.org/top25/archive/2009/2009_cwe_sans_top25.html

Document version: 1.4 Date: October 29, 2009
Project Coordinators:

Bob Martin (MITRE)
Mason Brown (SANS)
Alan Paller (SANS)

Document Editor:
Steve Christey (MITRE)

The 2009 CWE/SANS Top 25 Most Dangerous Programming Errors is a list of the most
significant programming errors that can lead to serious software vulnerabilities. They
occur frequently, are often easy to find, and easy to exploit. They are dangerous
because they will frequently allow attackers to completely take over the software, steal
data, or prevent the software from working at all.

The list is the result of collaboration between the SANS Institute, MITRE, and many top
software security experts in the US and Europe. It leverages experiences in the
development of the SANS Top 20 attack vectors (http://www.sans.org/top20/) and
MITRE's Common Weakness Enumeration (CWE) (http://cwe.mitre.org/). MITRE
maintains the CWE web site, with the support of the US Department of Homeland
Security's National Cyber Security Division, presenting detailed descriptions of the top
25 programming errors along with authoritative guidance for mitigating and avoiding
them. The CWE site also contains data on more than 700 additional programming
errors, design errors, and architecture errors that can lead to exploitable
vulnerabilities.

The main goal for the Top 25 list is to stop vulnerabilities at the source by educating
programmers on how to eliminate all-too-common mistakes before software is even
shipped. The list will be a tool for education and awareness that will help programmers
to prevent the kinds of vulnerabilities that plague the software industry. Software
consumers could use the same list to help them to ask for more secure software.
Finally, software managers and CIOs can use the Top 25 list as a measuring stick of
progress in their efforts to secure their software.

● Brief Listing of the Top 25
● Construction and Selection of the Top 25
● Organization of the Top 25

Introduction

Table of Contents

http://cwedev1.mitre.org/index.html

● Insecure Interaction Between Components
● Risky Resource Management
● Porous Defenses
● Appendix A: Selection Criteria and Supporting Fields
● Appendix B: Threat Model for the Skilled, Determined Attacker
● Appendix C: Other Resources for the Top 25

The Top 25 is organized into three high-level categories that contain multiple CWE
entries.

Insecure Interaction Between Components

These weaknesses are related to insecure ways in which data is sent and received
between separate components, modules, programs, processes, threads, or systems.

● CWE-20: Improper Input Validation
● CWE-116: Improper Encoding or Escaping of Output
● CWE-89: Failure to Preserve SQL Query Structure ('SQL Injection')
● CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')
● CWE-78: Improper Sanitization of Special Elements used in an OS Command

('OS Command Injection')
● CWE-319: Cleartext Transmission of Sensitive Information
● CWE-352: Cross-Site Request Forgery (CSRF)
● CWE-362: Race Condition
● CWE-209: Error Message Information Leak

Risky Resource Management

The weaknesses in this category are related to ways in which software does not
properly manage the creation, usage, transfer, or destruction of important system
resources.

● CWE-119: Failure to Constrain Operations within the Bounds of a Memory
Buffer

● CWE-642: External Control of Critical State Data
● CWE-73: External Control of File Name or Path
● CWE-426: Untrusted Search Path
● CWE-94: Failure to Control Generation of Code ('Code Injection')
● CWE-494: Download of Code Without Integrity Check
● CWE-404: Improper Resource Shutdown or Release
● CWE-665: Improper Initialization
● CWE-682: Incorrect Calculation

Porous Defenses

The weaknesses in this category are related to defensive techniques that are often
misused, abused, or just plain ignored.

Brief Listing of the Top 25

● CWE-285: Improper Access Control (Authorization)
● CWE-327: Use of a Broken or Risky Cryptographic Algorithm
● CWE-259: Hard-Coded Password
● CWE-732: Incorrect Permission Assignment for Critical Resource
● CWE-330: Use of Insufficiently Random Values
● CWE-250: Execution with Unnecessary Privileges
● CWE-602: Client-Side Enforcement of Server-Side Security

The Top 25 list was developed at the end of 2008. Approximately 40 software security
experts provided feedback, including software developers, scanning tool vendors,
security consultants, government representatives, and university professors.
Representation was international. Several intermediate versions were created and
resubmitted to the reviewers before the list was finalized. More details are provided in
the Top 25 Process page

To help characterize and prioritize entries on the Top 25, a threat model was
developed that identifies an attacker who has solid technical skills and is determined
enough to invest some time into attacking an organization. More details are provided
in Appendix B.

Weaknesses in the Top 25 were selected using two primary criteria:

● Weakness Prevalence: how often the weakness appears in software that was
not developed with security integrated into the software development life cycle
(SDLC).

● Consequences: the typical consequences of exploiting a weakness if it is
present, such as unexpected code execution, data loss, or denial of service.

Prevalence was determined based on estimates from multiple contributors to the Top
25 list, since appropriate statistics are not readily available.

With these criteria, future versions of the Top 25 will evolve to cover different
weaknesses.

See Appendix A for more details on the selection criteria.

For each individual weakness entry, additional information is provided. The primary
audience is intended to be software programmers and designers.

● CWE ID and name
● Supporting data fields: supplementary information about the weakness that

may be useful for decision-makers to further prioritize the entries.

Construction and Selection of the Top 25

Organization of the Top 25

http://cwe.mitre.org/top25/process.html
http://cwe.mitre.org/top25/changelog.html
http://cwe.mitre.org/top25/process.html

● Discussion: Short, informal discussion of the nature of the weakness and its
consequences.

● Prevention and Mitigations: steps that developers can take to mitigate or
eliminate the weakness. Developers may choose one or more of these
mitigations to fit their own needs. Note that the effectiveness of these
techniques vary, and multiple techniques may be combined for greater defense-
in-depth.

● Related CWEs: other CWE entries that are related to the Top 25 weakness.
Note: This list is illustrative, not comprehensive.

● Related Attack Patterns: CAPEC entries for attacks that may be successfully
conducted against the weakness. Note: the list is not necessarily complete.

Other Supporting Data Fields

Each Top 25 entry includes supporting data fields for weakness prevalence and
consequences. Each entry also includes the following data fields.

● Attack Frequency: how often the weakness occurs in vulnerabilities that are
exploited by an attacker.

● Ease of Detection: how easy it is for an attacker to find this weakness.
● Remediation Cost: the amount of effort required to fix the weakness.
● Attacker Awareness: the likelihood that an attacker is going to be aware of this

particular weakness, methods for detection, and methods for exploitation.

See Appendix A for more details.

Insecure Interaction Between Components

CWE-20: Improper Input Validation

Summary

Weakness Prevalence High

Consequences Code execution
Denial of service
Data loss

Remediation Cost Low Ease of Detection Easy to Difficult

Attack Frequency Often Attacker Awareness High

Discussion

It's the number one killer of healthy software, so you're just asking for trouble if you
don't ensure that your input conforms with expectations. For example, an identifier
that you expect to be numeric shouldn't ever contain letters. Nor should the price of a
new car be allowed to be a dollar, not even in today's economy. Applications often
have more complex validation requirements than these simple examples. Incorrect
input validation can lead to vulnerabilities when attackers can modify their inputs in
unexpected ways. Many of today's most common vulnerabilities can be eliminated, or
at least reduced, using proper input validation.

http://cwe.mitre.org/data/definitions/20.html

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Use an input validation framework such as Struts or the OWASP ESAPI Validation
API. If you use Struts, be mindful of weaknesses covered by the CWE-101
category.

Architecture and Design Understand all the potential areas where untrusted inputs can enter your software:
parameters or arguments, cookies, anything read from the network, environment
variables, request headers as well as content, URL components, e-mail, files,
databases, and any external systems that provide data to the application. Perform
input validation at well-defined interfaces.

Architecture and Design Assume all input is malicious. Use an "accept known good" input validation
strategy (i.e., use a whitelist). Reject any input that does not strictly conform to
specifications, or transform it into something that does. Use a blacklist to reject
any unexpected inputs and detect potential attacks.

Use a standard input validation mechanism to validate all input for length, type,
syntax, and business rules before accepting the input for further processing. As an
example of business rule logic, "boat" may be syntactically valid because it only
contains alphanumeric characters, but it is not valid if you are expecting colors
such as "red" or "blue."

Architecture and Design For any security checks that are performed on the client side, ensure that these
checks are duplicated on the server side, in order to avoid CWE-602. Attackers can
bypass the client-side checks by modifying values after the checks have been
performed, or by changing the client to remove the client-side checks entirely.
Then, these modified values would be submitted to the server.

Even though client-side checks provide minimal benefits with respect to server-
side security, they are still useful. First, they can support intrusion detection. If the
server receives input that should have been rejected by the client, then it may be
an indication of an attack. Second, client-side error-checking can provide helpful
feedback to the user about the expectations for valid input. Third, there may be a
reduction in server-side processing time for accidental input errors, although this is
typically a small savings.

Architecture and Design Do not rely exclusively on blacklist validation to detect malicious input or to encode
output (CWE-184). There are too many ways to encode the same character, so
you're likely to miss some variants.

Implementation When your application combines data from multiple sources, perform the validation
after the sources have been combined. The individual data elements may pass the
validation step but violate the intended restrictions after they have been combined.

Implementation Be especially careful to validate your input when you invoke code that crosses
language boundaries, such as from an interpreted language to native code. This
could create an unexpected interaction between the language boundaries. Ensure
that you are not violating any of the expectations of the language with which you
are interfacing. For example, even though Java may not be susceptible to buffer
overflows, providing a large argument in a call to native code might trigger an
overflow.

Implementation Directly convert your input type into the expected data type, such as using a
conversion function that translates a string into a number. After converting to the
expected data type, ensure that the input's values fall within the expected range of
allowable values and that multi-field consistencies are maintained.

Implementation Inputs should be decoded and canonicalized to the application's current internal
representation before being validated (CWE-180, CWE-181). Make sure that your
application does not inadvertently decode the same input twice (CWE-174). Such
errors could be used to bypass whitelist schemes by introducing dangerous inputs
after they have been checked. Use libraries such as the OWASP ESAPI
Canonicalization control.

http://cwe.mitre.org/data/definitions/20.html

Consider performing repeated canonicalization until your input does not change
any more. This will avoid double-decoding and similar scenarios, but it might
inadvertently modify inputs that are allowed to contain properly-encoded
dangerous content.

Implementation When exchanging data between components, ensure that both components are
using the same character encoding. Ensure that the proper encoding is applied at
each interface. Explicitly set the encoding you are using whenever the protocol
allows you to do so.

Testing Use automated static analysis tools that target this type of weakness. Many
modern techniques use data flow analysis to minimize the number of false
positives. This is not a perfect solution, since 100% accuracy and coverage are not
feasible.

Testing Use dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,
and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Related CWEs

CWE-184 Incomplete Blacklist

CWE-74 Injection

CWE-79 Cross-site Scripting (XSS)

CWE-89 SQL injection

CWE-95 Eval Injection

Related Attack Patterns

CAPEC-IDs: [view all]
3, 7, 8, 9, 10, 13, 14, 18, 22, 24, 28, 31, 32, 42, 43, 45, 46, 47, 52, 53, 63, 64, 66,
67, 71, 72, 73, 78, 79, 80, 81, 83, 85, 86, 88, 91, 99, 101, 104, 106, 108, 109, 110

CWE-116: Improper Encoding or Escaping of Output

Summary

Weakness Prevalence High Consequences Code execution
Data loss

Remediation Cost Low Ease of Detection Easy to Moderate

Attack Frequency Often Attacker Awareness High

Discussion

Computers have a strange habit of doing what you say, not what you mean.
Insufficient output encoding is the often-ignored sibling to poor input validation, but it
is at the root of most injection-based attacks, which are all the rage these days. An
attacker can modify the commands that you intend to send to other components,
possibly leading to a complete compromise of your application - not to mention
exposing the other components to exploits that the attacker would not be able to
launch directly. This turns "do what I mean" into "do what the attacker says." When

http://cwe.mitre.org/data/definitions/184.html
http://cwe.mitre.org/data/definitions/74.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/95.html
http://cwe.mitre.org/data/definitions/20.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/3.html
http://capec.mitre.org/data/definitions/7.html
http://capec.mitre.org/data/definitions/8.html
http://capec.mitre.org/data/definitions/9.html
http://capec.mitre.org/data/definitions/10.html
http://capec.mitre.org/data/definitions/13.html
http://capec.mitre.org/data/definitions/14.html
http://capec.mitre.org/data/definitions/18.html
http://capec.mitre.org/data/definitions/22.html
http://capec.mitre.org/data/definitions/24.html
http://capec.mitre.org/data/definitions/28.html
http://capec.mitre.org/data/definitions/31.html
http://capec.mitre.org/data/definitions/32.html
http://capec.mitre.org/data/definitions/42.html
http://capec.mitre.org/data/definitions/43.html
http://capec.mitre.org/data/definitions/45.html
http://capec.mitre.org/data/definitions/46.html
http://capec.mitre.org/data/definitions/47.html
http://capec.mitre.org/data/definitions/52.html
http://capec.mitre.org/data/definitions/53.html
http://capec.mitre.org/data/definitions/63.html
http://capec.mitre.org/data/definitions/64.html
http://capec.mitre.org/data/definitions/66.html
http://capec.mitre.org/data/definitions/67.html
http://capec.mitre.org/data/definitions/71.html
http://capec.mitre.org/data/definitions/72.html
http://capec.mitre.org/data/definitions/73.html
http://capec.mitre.org/data/definitions/78.html
http://capec.mitre.org/data/definitions/79.html
http://capec.mitre.org/data/definitions/80.html
http://capec.mitre.org/data/definitions/81.html
http://capec.mitre.org/data/definitions/83.html
http://capec.mitre.org/data/definitions/85.html
http://capec.mitre.org/data/definitions/86.html
http://capec.mitre.org/data/definitions/88.html
http://capec.mitre.org/data/definitions/91.html
http://capec.mitre.org/data/definitions/99.html
http://capec.mitre.org/data/definitions/101.html
http://capec.mitre.org/data/definitions/104.html
http://capec.mitre.org/data/definitions/106.html
http://capec.mitre.org/data/definitions/108.html
http://capec.mitre.org/data/definitions/109.html
http://capec.mitre.org/data/definitions/110.html
http://cwe.mitre.org/data/definitions/116.html

your program generates outputs to other components in the form of structured
messages such as queries or requests, it needs to separate control information and
metadata from the actual data. This is easy to forget, because many paradigms carry
data and commands bundled together in the same stream, with only a few special
characters enforcing the boundaries. An example is Web 2.0 and other frameworks
that work by blurring these lines. This further exposes them to attack.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Use languages, libraries, or frameworks that make it easier to generate properly
encoded output.

Examples include the ESAPI Encoding control.

Alternately, use built-in functions, but consider using wrappers in case those
functions are discovered to have a vulnerability.

Architecture and Design If available, use structured mechanisms that automatically enforce the separation
between data and code. These mechanisms may be able to provide the relevant
quoting, encoding, and validation automatically, instead of relying on the
developer to provide this capability at every point where output is generated.

For example, stored procedures can enforce database query structure and reduce
the likelihood of SQL injection.

Architecture and Design Understand the context in which your data will be used and the encoding that will
be expected. This is especially important when transmitting data between different
components, or when generating outputs that can contain multiple encodings at
the same time, such as web pages or multi-part mail messages. Study all expected
communication protocols and data representations to determine the required
encoding strategies.

Architecture and Design In some cases, input validation may be an important strategy when output
encoding is not a complete solution. For example, you may be providing the same
output that will be processed by multiple consumers that use different encodings
or representations. In other cases, you may be required to allow user-supplied
input to contain control information, such as limited HTML tags that support
formatting in a wiki or bulletin board. When this type of requirement must be met,
use an extremely strict whitelist to limit which control sequences can be used.
Verify that the resulting syntactic structure is what you expect. Use your normal
encoding methods for the remainder of the input.

Architecture and Design Use input validation as a defense-in-depth measure to reduce the likelihood of
output encoding errors (see CWE-20).

Requirements Fully specify which encodings are required by components that will be
communicating with each other.

Implementation When exchanging data between components, ensure that both components are
using the same character encoding. Ensure that the proper encoding is applied at
each interface. Explicitly set the encoding you are using whenever the protocol
allows you to do so.

Testing Use automated static analysis tools that target this type of weakness. Many
modern techniques use data flow analysis to minimize the number of false
positives. This is not a perfect solution, since 100% accuracy and coverage are not
feasible.

Testing Use dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,
and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Related CWEs

http://cwe.mitre.org/data/definitions/116.html

CWE-74 Injection

CWE-78 OS command injection

CWE-79 Cross-site Scripting (XSS)

CWE-88 Argument Injection

CWE-89 SQL injection

CWE-93 CRLF Injection

Related Attack Patterns

CAPEC-IDs: [view all]
18, 63, 73, 81, 85, 86, 104

CWE-89: Improper Sanitization of Special Elements used in an SQL Command
('SQL Injection')

Summary

Weakness Prevalence High Consequences Data loss
Security bypass

Remediation Cost Low Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

These days, it seems as if software is all about the data: getting it into the database,
pulling it from the database, massaging it into information, and sending it elsewhere
for fun and profit. If attackers can influence the SQL that you use to communicate with
your database, then they can do nasty things where they get all the fun and profit. If
you use SQL queries in security controls such as authentication, attackers could alter
the logic of those queries to bypass security. They could modify the queries to steal,
corrupt, or otherwise change your underlying data. They'll even steal data one byte at
a time if they have to, and they have the patience and know-how to do so.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Use languages, libraries, or frameworks that make it easier to generate properly
encoded output.

For example, consider using persistence layers such as Hibernate or Enterprise
Java Beans, which can provide significant protection against SQL injection if used
properly.

Architecture and Design If available, use structured mechanisms that automatically enforce the separation
between data and code. These mechanisms may be able to provide the relevant
quoting, encoding, and validation automatically, instead of relying on the
developer to provide this capability at every point where output is generated.

http://cwe.mitre.org/data/definitions/74.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/88.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/93.html
http://cwe.mitre.org/data/definitions/116.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/18.html
http://capec.mitre.org/data/definitions/63.html
http://capec.mitre.org/data/definitions/73.html
http://capec.mitre.org/data/definitions/81.html
http://capec.mitre.org/data/definitions/85.html
http://capec.mitre.org/data/definitions/86.html
http://capec.mitre.org/data/definitions/104.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/89.html

Process SQL queries using prepared statements, parameterized queries, or stored
procedures. These features should accept parameters or variables and support
strong typing. Do not dynamically construct and execute query strings within these
features using "exec" or similar functionality, since you may re-introduce the
possibility of SQL injection.

Architecture and Design Follow the principle of least privilege when creating user accounts to a SQL
database. The database users should only have the minimum privileges necessary
to use their account. If the requirements of the system indicate that a user can
read and modify their own data, then limit their privileges so they cannot read/
write others' data. Use the strictest permissions possible on all database objects,
such as execute-only for stored procedures.

Architecture and Design For any security checks that are performed on the client side, ensure that these
checks are duplicated on the server side, in order to avoid CWE-602. Attackers can
bypass the client-side checks by modifying values after the checks have been
performed, or by changing the client to remove the client-side checks entirely.
Then, these modified values would be submitted to the server.

Implementation If you need to use dynamically-generated query strings in spite of the risk, use
proper encoding and escaping of inputs. Instead of building your own
implementation, such features may be available in the database or programming
language. For example, the Oracle DBMS_ASSERT package can check or enforce
that parameters have certain properties that make them less vulnerable to SQL
injection. For MySQL, the mysql_real_escape_string() API function is available in
both C and PHP.

Implementation Assume all input is malicious. Use an "accept known good" input validation
strategy (i.e., use a whitelist). Reject any input that does not strictly conform to
specifications, or transform it into something that does. Use a blacklist to reject
any unexpected inputs and detect potential attacks.

Use a standard input validation mechanism to validate all input for length, type,
syntax, and business rules before accepting the input for further processing. As an
example of business rule logic, "boat" may be syntactically valid because it only
contains alphanumeric characters, but it is not valid if you are expecting colors
such as "red" or "blue."

When constructing SQL query strings, use stringent whitelists that limit the
character set based on the expected value of the parameter in the request. This
will indirectly limit the scope of an attack, but this technique is less important than
proper output encoding and escaping.

Note that proper output encoding, escaping, and quoting is the most effective
solution for preventing SQL injection, although input validation may provide some
defense-in-depth. This is because it effectively limits what will appear in output.
Input validation will not always prevent SQL injection, especially if you are
required to support free-form text fields that could contain arbitrary characters.
For example, the name "O'Reilly" would likely pass the validation step, since it is a
common last name in the English language. However, it cannot be directly inserted
into the database because it contains the "'" apostrophe character, which would
need to be escaped or otherwise handled. In this case, stripping the apostrophe
might reduce the risk of SQL injection, but it would produce incorrect behavior
because the wrong name would be recorded.

When feasible, it may be safest to disallow meta-characters entirely, instead of
escaping them. This will provide some defense in depth. After the data is entered
into the database, later processes may neglect to escape meta-characters before
use, and you may not have control over those processes.

Testing Use automated static analysis tools that target this type of weakness. Many
modern techniques use data flow analysis to minimize the number of false
positives. This is not a perfect solution, since 100% accuracy and coverage are not
feasible.

Testing Use dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,
and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Operation Use an application firewall that can detect attacks against this weakness. This
might not catch all attacks, and it might require some effort for customization.
However, it can be beneficial in cases in which the code cannot be fixed (because it
is controlled by a third party), as an emergency prevention measure while more
comprehensive software assurance measures are applied, or to provide defense in
depth.

Related CWEs

CWE-564 SQL Injection: Hibernate

CWE-566 Access Control Bypass Through User-Controlled SQL Primary Key

CWE-619 Cursor Injection

CWE-90 LDAP Injection

Related Attack Patterns

CAPEC-IDs: [view all]
7, 66, 108, 109, 110

CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

Summary

Weakness Prevalence High Consequences Code execution
Security bypass

Remediation Cost Low Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

Cross-site scripting (XSS) is one of the most prevalent, obstinate, and dangerous
vulnerabilities in web applications. It's pretty much inevitable when you combine the
stateless nature of HTTP, the mixture of data and script in HTML, lots of data passing
between web sites, diverse encoding schemes, and feature-rich web browsers. If
you're not careful, attackers can inject Javascript or other browser-executable content
into a web page that your application generates. Your web page is then accessed by
other users, whose browsers execute that malicious script as if it came from you
(because, after all, it *did* come from you). Suddenly, your web site is serving code
that you didn't write. The attacker can use a variety of techniques to get the input
directly into your server, or use an unwitting victim as the middle man in a technical
version of the "why do you keep hitting yourself?" game.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Use languages, libraries, or frameworks that make it easier to generate properly
encoded output.

http://cwe.mitre.org/data/definitions/564.html
http://cwe.mitre.org/data/definitions/566.html
http://cwe.mitre.org/data/definitions/619.html
http://cwe.mitre.org/data/definitions/90.html
http://cwe.mitre.org/data/definitions/89.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/7.html
http://capec.mitre.org/data/definitions/66.html
http://capec.mitre.org/data/definitions/108.html
http://capec.mitre.org/data/definitions/109.html
http://capec.mitre.org/data/definitions/110.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/79.html

Examples include Microsoft's Anti-XSS library, the OWASP ESAPI Encoding module,
and Apache Wicket.

Architecture and Design For any security checks that are performed on the client side, ensure that these
checks are duplicated on the server side, in order to avoid CWE-602. Attackers can
bypass the client-side checks by modifying values after the checks have been
performed, or by changing the client to remove the client-side checks entirely.
Then, these modified values would be submitted to the server.

Implementation Understand the context in which your data will be used and the encoding that will
be expected. This is especially important when transmitting data between different
components, or when generating outputs that can contain multiple encodings at
the same time, such as web pages or multi-part mail messages. Study all expected
communication protocols and data representations to determine the required
encoding strategies.

For any data that will be output to another web page, especially any data that was
received from external inputs, use the appropriate encoding on all non-
alphanumeric characters. This encoding will vary depending on whether the output
is part of the HTML body, element attributes, URIs, JavaScript sections, Cascading
Style Sheets, etc. Note that HTML Entity Encoding is only appropriate for the HTML
body.

Implementation Use and specify a strong character encoding such as ISO-8859-1 or UTF-8. When
an encoding is not specified, the web browser may choose a different encoding by
guessing which encoding is actually being used by the web page. This can open
you up to subtle XSS attacks related to that encoding. See CWE-116 for more
mitigations related to encoding/escaping.

Implementation With Struts, you should write all data from form beans with the bean's filter
attribute set to true.

Implementation To help mitigate XSS attacks against the user's session cookie, set the session
cookie to be HttpOnly. In browsers that support the HttpOnly feature (such as
more recent versions of Internet Explorer and Firefox), this attribute can prevent
the user's session cookie from being accessible to malicious client-side scripts that
use document.cookie. This is not a complete solution, since HttpOnly is not
supported by all browsers. More importantly, XMLHTTPRequest and other powerful
browser technologies provide read access to HTTP headers, including the Set-
Cookie header in which the HttpOnly flag is set.

Implementation Assume all input is malicious. Use an "accept known good" input validation
strategy (i.e., use a whitelist). Reject any input that does not strictly conform to
specifications, or transform it into something that does. Use a blacklist to reject
any unexpected inputs and detect potential attacks.

Use a standard input validation mechanism to validate all input for length, type,
syntax, and business rules before accepting the input for further processing. As an
example of business rule logic, "boat" may be syntactically valid because it only
contains alphanumeric characters, but it is not valid if you are expecting colors
such as "red" or "blue."

When dynamically constructing web pages, use stringent whitelists that limit the
character set based on the expected value of the parameter in the request. All
input should be validated and cleansed, not just parameters that the user is
supposed to specify, but all data in the request, including hidden fields, cookies,
headers, the URL itself, and so forth. A common mistake that leads to continuing
XSS vulnerabilities is to validate only fields that are expected to be redisplayed by
the site. It is common to see data from the request that is reflected by the
application server or the application that the development team did not anticipate.
Also, a field that is not currently reflected may be used by a future developer.
Therefore, validating ALL parts of the HTTP request is recommended.

Note that proper output encoding, escaping, and quoting is the most effective
solution for preventing XSS, although input validation may provide some defense-
in-depth. This is because it effectively limits what will appear in output. Input
validation will not always prevent XSS, especially if you are required to support
free-form text fields that could contain arbitrary characters. For example, in a chat
application, the heart emoticon ("<3") would likely pass the validation step, since
it is commonly used. However, it cannot be directly inserted into the web page
because it contains the "<" character, which would need to be escaped or
otherwise handled. In this case, stripping the "<" might reduce the risk of XSS, but
it would produce incorrect behavior because the emoticon would not be recorded.
This might seem to be a minor inconvenience, but it would be more important in a
mathematical forum that wants to represent inequalities.

Even if you make a mistake in your validation (such as forgetting one out of 100
input fields), appropriate encoding is still likely to protect you from injection-based
attacks. As long as it is not done in isolation, input validation is still a useful
technique, since it may significantly reduce your attack surface, allow you to detect
some attacks, and provide other security benefits that proper encoding does not
address.

Ensure that you perform input validation at well-defined interfaces within the
application. This will help protect the application even if a component is reused or
moved elsewhere.

Testing Use automated static analysis tools that target this type of weakness. Many
modern techniques use data flow analysis to minimize the number of false
positives. This is not a perfect solution, since 100% accuracy and coverage are not
feasible.

Testing Use dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,
and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Testing Use the XSS Cheat Sheet (see references) to launch a wide variety of attacks
against your web application. The Cheat Sheet contains many subtle XSS
variations that are specifically targeted against weak XSS defenses.

Operation Use an application firewall that can detect attacks against this weakness. This
might not catch all attacks, and it might require some effort for customization.
However, it can be beneficial in cases in which the code cannot be fixed (because it
is controlled by a third party), as an emergency prevention measure while more
comprehensive software assurance measures are applied, or to provide defense in
depth.

Related CWEs

CWE-692 Incomplete Blacklist to Cross-Site Scripting

CWE-82 Failure to Sanitize Script in Attributes of IMG Tags in a Web Page

CWE-85 Doubled Character XSS Manipulations

CWE-87 Failure to Sanitize Alternate XSS Syntax

Related Attack Patterns

CAPEC-IDs: [view all]
19, 32, 85, 86, 91

CWE-78: Improper Sanitization of Special Elements used in an OS Command
('OS Command Injection')

http://cwe.mitre.org/data/definitions/692.html
http://cwe.mitre.org/data/definitions/82.html
http://cwe.mitre.org/data/definitions/85.html
http://cwe.mitre.org/data/definitions/87.html
http://cwe.mitre.org/data/definitions/79.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/19.html
http://capec.mitre.org/data/definitions/32.html
http://capec.mitre.org/data/definitions/85.html
http://capec.mitre.org/data/definitions/86.html
http://capec.mitre.org/data/definitions/91.html
http://cwe.mitre.org/data/definitions/78.html

Summary

Weakness Prevalence Medium Consequences Code execution

Remediation Cost Medium Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

Your software is often the bridge between an outsider on the network and the internals
of your operating system. When you invoke another program on the operating system,
but you allow untrusted inputs to be fed into the command string that you generate
for executing that program, then you are inviting attackers to cross that bridge into a
land of riches by executing their own commands instead of yours.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design If at all possible, use library calls rather than external processes to recreate the
desired functionality.

Architecture and Design Run your code in a "jail" or similar sandbox environment that enforces strict
boundaries between the process and the operating system. This may effectively
restrict which commands can be executed by your software.

Examples include the Unix chroot jail and AppArmor. In general, managed code
may provide some protection.

This may not be a feasible solution, and it only limits the impact to the operating
system; the rest of your application may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.

Architecture and Design For any data that will be used to generate a command to be executed, keep as
much of that data out of external control as possible. For example, in web
applications, this may require storing the command locally in the session's state
instead of sending it out to the client in a hidden form field.

Architecture and Design Use languages, libraries, or frameworks that make it easier to generate properly
encoded output.

Examples include the ESAPI Encoding control.

Implementation Properly quote arguments and escape any special characters within those
arguments. If some special characters are still needed, wrap the arguments in
quotes, and escape all other characters that do not pass a strict whitelist. Be
careful of argument injection (CWE-88).

Implementation If the program to be executed allows arguments to be specified within an input file
or from standard input, then consider using that mode to pass arguments instead
of the command line.

Implementation If available, use structured mechanisms that automatically enforce the separation
between data and code. These mechanisms may be able to provide the relevant
quoting, encoding, and validation automatically, instead of relying on the
developer to provide this capability at every point where output is generated.

http://cwe.mitre.org/data/definitions/78.html

Some languages offer multiple functions that can be used to invoke commands.
Where possible, identify any function that invokes a command shell using a single
string, and replace it with a function that requires individual arguments. These
functions typically perform appropriate quoting and filtering of arguments. For
example, in C, the system() function accepts a string that contains the entire
command to be executed, whereas execl(), execve(), and others require an array
of strings, one for each argument. In Windows, CreateProcess() only accepts one
command at a time. In Perl, if system() is provided with an array of arguments,
then it will quote each of the arguments.

Implementation Assume all input is malicious. Use an "accept known good" input validation
strategy (i.e., use a whitelist). Reject any input that does not strictly conform to
specifications, or transform it into something that does. Use a blacklist to reject
any unexpected inputs and detect potential attacks.

Use a standard input validation mechanism to validate all input for length, type,
syntax, and business rules before accepting the input for further processing. As an
example of business rule logic, "boat" may be syntactically valid because it only
contains alphanumeric characters, but it is not valid if you are expecting colors
such as "red" or "blue."

When constructing OS command strings, use stringent whitelists that limit the
character set based on the expected value of the parameter in the request. This
will indirectly limit the scope of an attack, but this technique is less important than
proper output encoding and escaping.

Note that proper output encoding, escaping, and quoting is the most effective
solution for preventing OS command injection, although input validation may
provide some defense-in-depth. This is because it effectively limits what will
appear in output. Input validation will not always prevent OS command injection,
especially if you are required to support free-form text fields that could contain
arbitrary characters. For example, when invoking a mail program, you might need
to allow the subject field to contain otherwise-dangerous inputs like ";" and ">"
characters, which would need to be escaped or otherwise handled. In this case,
stripping the character might reduce the risk of OS command injection, but it
would produce incorrect behavior because the subject field would not be recorded
as the user intended. This might seem to be a minor inconvenience, but it could be
more important when the program relies on well-structured subject lines in order
to pass messages to other components.

Even if you make a mistake in your validation (such as forgetting one out of 100
input fields), appropriate encoding is still likely to protect you from injection-based
attacks. As long as it is not done in isolation, input validation is still a useful
technique, since it may significantly reduce your attack surface, allow you to detect
some attacks, and provide other security benefits that proper encoding does not
address.

Testing Use automated static analysis tools that target this type of weakness. Many
modern techniques use data flow analysis to minimize the number of false
positives. This is not a perfect solution, since 100% accuracy and coverage are not
feasible.

Testing Use dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,
and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Operation Run the code in an environment that performs automatic taint propagation and
prevents any command execution that uses tainted variables, such as Perl's "-T"
switch. This will force you to perform validation steps that remove the taint,
although you must be careful to correctly validate your inputs so that you do not
accidentally mark dangerous inputs as untainted (see CWE-183 and CWE-184).

Operation Use runtime policy enforcement to create a whitelist of allowable commands, then
prevent use of any command that does not appear in the whitelist. Technologies
such as AppArmor are available to do this.

System Configuration Assign permissions to the software system that prevent the user from accessing/
opening privileged files. Run the application with the lowest privileges possible
(CWE-250).

Related CWEs

CWE-88 Argument Injection

Related Attack Patterns

CAPEC-IDs: [view all]
6, 15, 43, 88, 108

CWE-319: Cleartext Transmission of Sensitive Information

Summary

Weakness Prevalence Medium Consequences Data loss

Remediation Cost Medium Ease of Detection Easy

Attack Frequency Sometimes Attacker Awareness High

Discussion

If your software sends sensitive information across a network, such as private data or
authentication credentials, that information crosses many different nodes in transit to
its final destination. Attackers can sniff this data right off the wire, and it doesn't
require a lot of effort. All they need to do is control one node along the path to the
final destination, control any node within the same networks of those transit nodes, or
plug into an available interface. Trying to obfuscate traffic using schemes like Base64
and URL encoding doesn't offer any protection, either; those encodings are for
normalizing communications, not scrambling data to make it unreadable.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Encrypt the data with a reliable encryption scheme before transmitting.

Implementation When using web applications with SSL, use SSL for the entire session from login to
logout, not just for the initial login page.

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

Testing Use monitoring tools that examine the software's process as it interacts with the
operating system and the network. This technique is useful in cases when source
code is unavailable, if the software was not developed by you, or if you want to
verify that the build phase did not introduce any new weaknesses. Examples
include debuggers that directly attach to the running process; system-call tracing
utilities such as truss (Solaris) and strace (Linux); system activity monitors such as
FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.

http://cwe.mitre.org/data/definitions/88.html
http://cwe.mitre.org/data/definitions/78.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/6.html
http://capec.mitre.org/data/definitions/15.html
http://capec.mitre.org/data/definitions/43.html
http://capec.mitre.org/data/definitions/88.html
http://capec.mitre.org/data/definitions/108.html
http://cwe.mitre.org/data/definitions/319.html
http://cwe.mitre.org/data/definitions/319.html

Attach the monitor to the process, trigger the feature that sends the data, and look
for the presence or absence of common cryptographic functions in the call tree.
Monitor the network and determine if the data packets contain readable
commands. Tools exist for detecting if certain encodings are in use. If the traffic
contains high entropy, this might indicate the usage of encryption.

Operation Configure servers to use encrypted channels for communication, which may
include SSL or other secure protocols.

Related CWEs

CWE-312 Plaintext Storage of Sensitive Information

CWE-614 Sensitive Cookie in HTTPS Session Without "Secure" Attribute

Related Attack Patterns

CAPEC-IDs: [view all]
65, 102

CWE-352: Cross-Site Request Forgery (CSRF)

Summary

Weakness Prevalence High Consequences Data loss
Code execution

Remediation Cost High Ease of Detection Moderate

Attack Frequency Often Attacker Awareness Medium

Discussion

You know better than to accept a package from a stranger at the airport. It could
contain dangerous contents. Plus, if anything goes wrong, then it's going to look as if
you did it, because you're the one with the package when you board the plane. Cross-
site request forgery is like that strange package, except the attacker tricks a user into
activating a request that goes to your site. Thanks to scripting and the way the web
works in general, the user might not even be aware that the request is being sent. But
once the request gets to your server, it looks as if it came from the user, not the
attacker. This might not seem like a big deal, but the attacker has essentially
masqueraded as a legitimate user and gained all the potential access that the user
has. This is especially handy when the user has administrator privileges, resulting in a
complete compromise of your application's functionality. When combined with XSS, the
result can be extensive and devastating. If you've heard about XSS worms that
stampede through very large web sites in a matter of minutes, there's usually CSRF
feeding them.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Use anti-CSRF packages such as the OWASP CSRFGuard.

http://cwe.mitre.org/data/definitions/312.html
http://cwe.mitre.org/data/definitions/614.html
http://cwe.mitre.org/data/definitions/319.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/65.html
http://capec.mitre.org/data/definitions/102.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/352.html

Implementation Ensure that your application is free of cross-site scripting issues (CWE-79),
because most CSRF defenses can be bypassed using attacker-controlled script.

Architecture and Design Generate a unique nonce for each form, place the nonce into the form, and verify
the nonce upon receipt of the form. Be sure that the nonce is not predictable (CWE-
330).

Note that this can be bypassed using XSS (CWE-79).

Architecture and Design Identify especially dangerous operations. When the user performs a dangerous
operation, send a separate confirmation request to ensure that the user intended
to perform that operation.

Note that this can be bypassed using XSS (CWE-79).

Architecture and Design Use the "double-submitted cookie" method as described by Felten and Zeller.

Note that this can probably be bypassed using XSS (CWE-79).

Architecture and Design Use the ESAPI Session Management control.

This control includes a component for CSRF.

Architecture and Design Do not use the GET method for any request that triggers a state change.

Implementation Check the HTTP Referer header to see if the request originated from an expected
page. This could break legitimate functionality, because users or proxies may have
disabled sending the Referer for privacy reasons.

Note that this can be bypassed using XSS (CWE-79). An attacker could use XSS to
generate a spoofed Referer, or to generate a malicious request from a page whose
Referer would be allowed.

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

Use OWASP CSRFTester to identify potential issues.

Related CWEs

CWE-346 Origin Validation Error

CWE-441 Unintended Proxy/Intermediary

Related Attack Patterns

CAPEC-IDs: [view all]
62, 111

CWE-362: Race Condition

Summary

Weakness Prevalence Medium

Consequences Denial of service
Code execution
Data loss

Remediation Cost Medium to High Ease of Detection Moderate

Attack Frequency Sometimes Attacker Awareness High

http://cwe.mitre.org/data/definitions/346.html
http://cwe.mitre.org/data/definitions/441.html
http://cwe.mitre.org/data/definitions/352.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/62.html
http://capec.mitre.org/data/definitions/111.html
http://cwe.mitre.org/data/definitions/362.html

Discussion

Traffic accidents occur when two vehicles attempt to use the exact same resource at
almost exactly the same time, i.e., the same part of the road. Race conditions in your
software aren't much different, except an attacker is consciously looking to exploit
them to cause chaos or get your application to cough up something valuable. In many
cases, a race condition can involve multiple processes in which the attacker has full
control over one process. Even when the race condition occurs between multiple
threads, the attacker may be able to influence when some of those threads execute.
Your only comfort with race conditions is that data corruption and denial of service are
the norm. Reliable techniques for code execution haven't been developed - yet. At
least not for some kinds of race conditions. Small comfort indeed. The impact can be
local or global, depending on what the race condition affects - such as state variables
or security logic - and whether it occurs within multiple threads, processes, or
systems.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design In languages that support it, use synchronization primitives. Only wrap these
around critical code to minimize the impact on performance.

Architecture and Design Use thread-safe capabilities such as the data access abstraction in Spring.

Architecture and Design Minimize the usage of shared resources in order to remove as much complexity as
possible from the control flow and to reduce the likelihood of unexpected
conditions occurring.

Additionally, this will minimize the amount of synchronization necessary and may
even help to reduce the likelihood of a denial of service where an attacker may be
able to repeatedly trigger a critical section (CWE-400).

Implementation When using multi-threading, only use thread-safe functions on shared variables.

Implementation Use atomic operations on shared variables. Be wary of innocent-looking constructs
like "x++". This is actually non-atomic, since it involves a read followed by a write.

Implementation Use a mutex if available, but be sure to avoid related weaknesses such as CWE-
412.

Implementation Avoid double-checked locking (CWE-609) and other implementation errors that
arise when trying to avoid the overhead of synchronization.

Implementation Disable interrupts or signals over critical parts of the code, but also make sure that
the code does not go into a large or infinite loop.

Implementation Use the volatile type modifier for critical variables to avoid unexpected compiler
optimization or reordering. This does not necessarily solve the synchronization
problem, but it can help.

Testing Stress-test the software by calling it simultaneously from a large number of
threads or processes, and look for evidence of any unexpected behavior. The
software's operation may slow down, but it should not become unstable, crash, or
generate incorrect results.

Insert breakpoints or delays in between relevant code statements to artificially
expand the race window so that it will be easier to detect.

http://cwe.mitre.org/data/definitions/362.html

Testing Identify error conditions that are not likely to occur during normal usage and
trigger them. For example, run the program under low memory conditions, run
with insufficient privileges or permissions, interrupt a transaction before it is
completed, or disable connectivity to basic network services such as DNS. Monitor
the software for any unexpected behavior. If you trigger an unhandled exception
or similar error that was discovered and handled by the application's environment,
it may still indicate unexpected conditions that were not handled by the application
itself.

Related CWEs

CWE-364 Signal Handler Race Condition

CWE-366 Race Condition within a Thread

CWE-367 Time-of-check Time-of-use (TOCTOU) Race Condition

CWE-370 Race Condition in Checking for Certificate Revocation

CWE-421 Race Condition During Access to Alternate Channel

Related Attack Patterns

CAPEC-IDs: [view all]
26, 29

CWE-209: Error Message Information Leak

Summary

Weakness Prevalence High Consequences Data loss

Remediation Cost Low Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

If you use chatty error messages, then they could disclose secrets to any attacker who
dares to misuse your software. The secrets could cover a wide range of valuable data,
including personally identifiable information (PII), authentication credentials, and
server configuration. Sometimes, they might seem like harmless secrets that are
convenient for your users and admins, such as the full installation path of your
software. Even these little secrets can greatly simplify a more concerted attack that
yields much bigger rewards, which is done in real-world attacks all the time. This is a
concern whether you send temporary error messages back to the user or if you
permanently record them in a log file.

...View Full Technical Details

Prevention and Mitigations

http://cwe.mitre.org/data/definitions/364.html
http://cwe.mitre.org/data/definitions/366.html
http://cwe.mitre.org/data/definitions/367.html
http://cwe.mitre.org/data/definitions/370.html
http://cwe.mitre.org/data/definitions/421.html
http://cwe.mitre.org/data/definitions/362.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/26.html
http://capec.mitre.org/data/definitions/29.html
http://cwe.mitre.org/data/definitions/209.html
http://cwe.mitre.org/data/definitions/209.html

Implementation Ensure that error messages only contain minimal information that are useful to their
intended audience, and nobody else. The messages need to strike the balance
between being too cryptic and not being cryptic enough. They should not necessarily
reveal the methods that were used to determine the error. Such detailed information
can help an attacker craft another attack that now will pass through the validation
filters.

If errors must be tracked in some detail, capture them in log messages - but
consider what could occur if the log messages can be viewed by attackers. Avoid
recording highly sensitive information such as passwords in any form. Avoid
inconsistent messaging that might accidentally tip off an attacker about internal
state, such as whether a username is valid or not.

Implementation Handle exceptions internally and do not display errors containing potentially sensitive
information to a user.

Build and Compilation Debugging information should not make its way into a production release.

Testing Identify error conditions that are not likely to occur during normal usage and trigger
them. For example, run the program under low memory conditions, run with
insufficient privileges or permissions, interrupt a transaction before it is completed,
or disable connectivity to basic network services such as DNS. Monitor the software
for any unexpected behavior. If you trigger an unhandled exception or similar error
that was discovered and handled by the application's environment, it may still
indicate unexpected conditions that were not handled by the application itself.

Testing Stress-test the software by calling it simultaneously from a large number of threads
or processes, and look for evidence of any unexpected behavior. The software's
operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

System Configuration Where available, configure the environment to use less verbose error messages. For
example, in PHP, disable the display_errors setting during configuration, or at
runtime using the error_reporting() function.

System Configuration Create default error pages or messages that do not leak any information.

Related CWEs

CWE-204 Response Discrepancy Information Leak

CWE-210 Product-Generated Error Message Information Leak

CWE-538 File and Directory Information Leaks

Related Attack Patterns

CAPEC-IDs: [view all]
7, 54

Risky Resource Management

CWE-119: Failure to Constrain Operations within the Bounds of a Memory
Buffer

Summary

Weakness Prevalence High

Consequences Code execution
Denial of service
Data loss

http://cwe.mitre.org/data/definitions/204.html
http://cwe.mitre.org/data/definitions/210.html
http://cwe.mitre.org/data/definitions/538.html
http://cwe.mitre.org/data/definitions/209.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/7.html
http://capec.mitre.org/data/definitions/54.html
http://cwe.mitre.org/data/definitions/119.html

Remediation Cost Low Ease of Detection Easy to Moderate

Attack Frequency Often Attacker Awareness High

Discussion

Buffer overflows are Mother Nature's little reminder of that law of physics that says: if
you try to put more stuff into a container than it can hold, you're going to make a
mess. The scourge of C applications for decades, buffer overflows have been
remarkably resistant to elimination. One reason is that they aren't just about using
strcpy() incorrectly, or improperly checking the length of your inputs. Attack and
detection techniques continue to improve, and today's buffer overflow variants aren't
always obvious at first or even second glance. You may think that you're completely
immune to buffer overflows because you write your code in higher-level languages
instead of C. But what is your favorite "safe" language's interpreter written in? What
about the native code you call? What languages are the operating system API's written
in? How about the software that runs Internet infrastructure? Thought so.

...View Full Technical Details

Prevention and Mitigations

Requirements Use a language with features that can automatically mitigate or eliminate buffer
overflows.

For example, many languages that perform their own memory management, such
as Java and Perl, are not subject to buffer overflows. Other languages, such as Ada
and C#, typically provide overflow protection, but the protection can be disabled
by the programmer.

Be wary that a language's interface to native code may still be subject to
overflows, even if the language itself is theoretically safe.

Architecture and Design Use languages, libraries, or frameworks that make it easier to manage buffers
without exceeding their boundaries.

Examples include the Safe C String Library (SafeStr) by Messier and Viega, and the
Strsafe.h library from Microsoft. These libraries provide safer versions of overflow-
prone string-handling functions. This is not a complete solution, since many buffer
overflows are not related to strings.

Build and Compilation Run or compile your software using features or extensions that automatically
provide a protection mechanism that mitigates or eliminates buffer overflows.

For example, certain compilers and extensions provide automatic buffer overflow
detection mechanisms that are built into the compiled code. Examples include the
Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag,
StackGuard, and ProPolice.

This is not necessarily a complete solution, since these mechanisms can only
detect certain types of overflows. In addition, a buffer overflow attack can still
cause a denial of service, since the typical response is to exit the application.

Implementation Programmers should adhere to the following rules when allocating and managing
their application's memory:

Double check that your buffer is as large as you specify.

When using functions that accept a number of bytes to copy, such as strncpy(), be
aware that if the destination buffer size is equal to the source buffer size, it may
not NULL-terminate the string.

http://cwe.mitre.org/data/definitions/119.html

Check buffer boundaries if calling this function in a loop and make sure you are not
in danger of writing past the allocated space.

If necessary, truncate all input strings to a reasonable length before passing them
to the copy and concatenation functions.

Testing Use automated static analysis tools that target this type of weakness. Many
modern techniques use data flow analysis to minimize the number of false
positives. This is not a perfect solution, since 100% accuracy and coverage are not
feasible.

Testing Use dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,
and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Operation Use a feature like Address Space Layout Randomization (ASLR). This is not a
complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution.

Operation Use a CPU and operating system that offers Data Execution Protection (NX) or its
equivalent. This is not a complete solution, since buffer overflows could be used to
overwrite nearby variables to modify the software's state in dangerous ways. In
addition, it cannot be used in cases in which self-modifying code is required.

Related CWEs

CWE-120 Classic Buffer Overflow

CWE-129 Unchecked Array Indexing

CWE-130 Failure to Handle Length Parameter Inconsistency

CWE-131 Incorrect Calculation of Buffer Size

CWE-415 Double Free

CWE-416 Use After Free

Related Attack Patterns

CAPEC-IDs: [view all]
8, 9, 10, 14, 24, 42, 44, 45, 46, 47, 100

CWE-642: External Control of Critical State Data

Summary

Weakness Prevalence High

Consequences Security bypass
Data loss
Code execution

Remediation Cost Medium Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

There are many ways to store user state data without the overhead of a database.
Unfortunately, if you store that data in a place where an attacker can modify it, this

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/130.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/119.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/8.html
http://capec.mitre.org/data/definitions/9.html
http://capec.mitre.org/data/definitions/10.html
http://capec.mitre.org/data/definitions/14.html
http://capec.mitre.org/data/definitions/24.html
http://capec.mitre.org/data/definitions/42.html
http://capec.mitre.org/data/definitions/44.html
http://capec.mitre.org/data/definitions/45.html
http://capec.mitre.org/data/definitions/46.html
http://capec.mitre.org/data/definitions/47.html
http://capec.mitre.org/data/definitions/100.html
http://cwe.mitre.org/data/definitions/642.html

also reduces the overhead for a successful compromise. For example, the data could
be stored in configuration files, profiles, cookies, hidden form fields, environment
variables, registry keys, or other locations, all of which can be modified by an attacker.
In stateless protocols such as HTTP, some form of user state information must be
captured in each request, so it is exposed to an attacker out of necessity. If you
perform any security-critical operations based on this data (such as stating that the
user is an administrator), then you can bet that somebody will modify the data in
order to trick your application into doing something you didn't intend.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Understand all the potential locations that are accessible to attackers. For
example, some programmers assume that cookies and hidden form fields cannot
be modified by an attacker, or they may not consider that environment variables
can be modified before a privileged program is invoked.

Architecture and Design Do not keep state information on the client without using encryption and integrity
checking, or otherwise having a mechanism on the server side to catch state
tampering. Use a message authentication code (MAC) algorithm, such as Hash
Message Authentication Code (HMAC). Apply this against the state data that you
have to expose, which can guarantee the integrity of the data - i.e., that the data
has not been modified. Ensure that you use an algorithm with a strong hash
function (CWE-328).

Architecture and Design Store state information on the server side only. Ensure that the system definitively
and unambiguously keeps track of its own state and user state and has rules
defined for legitimate state transitions. Do not allow any application user to affect
state directly in any way other than through legitimate actions leading to state
transitions.

Architecture and Design With a stateless protocol such as HTTP, use a framework that maintains the state
for you.

Examples include ASP.NET View State and the OWASP ESAPI Session Management
feature.

Be careful of language features that provide state support, since these might be
provided as a convenience to the programmer and may not be considering
security.

Architecture and Design For any security checks that are performed on the client side, ensure that these
checks are duplicated on the server side, in order to avoid CWE-602. Attackers can
bypass the client-side checks by modifying values after the checks have been
performed, or by changing the client to remove the client-side checks entirely.
Then, these modified values would be submitted to the server.

Operation If you are using PHP, configure your application so that it does not use
register_globals. During implementation, develop your application so that it does
not rely on this feature, but be wary of implementing a register_globals emulation
that is subject to weaknesses such as CWE-95, CWE-621, and similar issues.

Testing Use automated static analysis tools that target this type of weakness. Many
modern techniques use data flow analysis to minimize the number of false
positives. This is not a perfect solution, since 100% accuracy and coverage are not
feasible.

Testing Use dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,
and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

http://cwe.mitre.org/data/definitions/642.html

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

Related CWEs

CWE-472 External Control of Assumed-Immutable Web Parameter

CWE-565 Use of Cookies in Security Decision

Related Attack Patterns

CAPEC-IDs: [view all]
21, 31, 167

CWE-73: External Control of File Name or Path

Summary

Weakness Prevalence High Consequences Code execution
Data loss

Remediation Cost Medium Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

While data is often exchanged using files, sometimes you don't intend to expose every
file on your system while doing so. When you use an outsider's input while
constructing a filename, the resulting path could point outside of the intended
directory. An attacker could combine multiple ".." or similar sequences to cause the
operating system to navigate out of the restricted directory. Other file-related attacks
are simplified by external control of a filename, such as symbolic link following, which
causes your application to read or modify files that the attacker can't access directly.
The same applies if your program is running with raised privileges and it accepts
filenames as input. And if you allow an outsider to specify an arbitrary URL from which
you'll download code and execute it, you're just asking for worms.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design When the set of filenames is limited or known, create a mapping from a set of
fixed input values (such as numeric IDs) to the actual filenames, and reject all
other inputs. For example, ID 1 could map to "inbox.txt" and ID 2 could map to
"profile.txt". Features such as the ESAPI AccessReferenceMap provide this
capability.

Architecture and Design Run your code in a "jail" or similar sandbox environment that enforces strict
boundaries between the process and the operating system. This may effectively
restrict all access to files within a particular directory.

http://cwe.mitre.org/data/definitions/472.html
http://cwe.mitre.org/data/definitions/565.html
http://cwe.mitre.org/data/definitions/642.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/21.html
http://capec.mitre.org/data/definitions/31.html
http://capec.mitre.org/data/definitions/167.html
http://cwe.mitre.org/data/definitions/73.html
http://cwe.mitre.org/data/definitions/73.html

Examples include the Unix chroot jail and AppArmor. In general, managed code
may provide some protection.

This may not be a feasible solution, and it only limits the impact to the operating
system; the rest of your application may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.

Architecture and Design For any security checks that are performed on the client side, ensure that these
checks are duplicated on the server side, in order to avoid CWE-602. Attackers can
bypass the client-side checks by modifying values after the checks have been
performed, or by changing the client to remove the client-side checks entirely.
Then, these modified values would be submitted to the server.

Implementation Assume all input is malicious. Use an "accept known good" input validation
strategy (i.e., use a whitelist). Reject any input that does not strictly conform to
specifications, or transform it into something that does. Use a blacklist to reject
any unexpected inputs and detect potential attacks.

For filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such
as CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a
whitelist of allowable file extensions, which will help to avoid CWE-434.

Implementation Use a built-in path canonicalization function (such as realpath() in C) that produces
the canonical version of the pathname, which effectively removes ".." sequences
and symbolic links (CWE-23, CWE-59).

Installation Use OS-level permissions and run as a low-privileged user to limit the scope of any
successful attack.

Operation If you are using PHP, configure your application so that it does not use
register_globals. During implementation, develop your application so that it does
not rely on this feature, but be wary of implementing a register_globals emulation
that is subject to weaknesses such as CWE-95, CWE-621, and similar issues.

Testing Use automated static analysis tools that target this type of weakness. Many
modern techniques use data flow analysis to minimize the number of false
positives. This is not a perfect solution, since 100% accuracy and coverage are not
feasible.

Testing Use dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,
and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

Related CWEs

CWE-22 Path Traversal

CWE-434 Unrestricted File Upload

CWE-59 Link Following

CWE-98 Remote File Inclusion

Related Attack Patterns

CAPEC-IDs: [view all]
13, 64, 72, 76, 78, 79, 80

http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/434.html
http://cwe.mitre.org/data/definitions/59.html
http://cwe.mitre.org/data/definitions/98.html
http://cwe.mitre.org/data/definitions/73.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/13.html
http://capec.mitre.org/data/definitions/64.html
http://capec.mitre.org/data/definitions/72.html
http://capec.mitre.org/data/definitions/76.html
http://capec.mitre.org/data/definitions/78.html
http://capec.mitre.org/data/definitions/79.html
http://capec.mitre.org/data/definitions/80.html

CWE-426: Untrusted Search Path

Summary

Weakness Prevalence Low Consequences Code execution

Remediation Cost Medium Ease of Detection Easy

Attack Frequency Rarely Attacker Awareness High

Discussion

Your software depends on you, or its environment, to provide a search path so that it
knows where it can find critical resources such as code libraries or configuration files.
If the search path is under attacker control, then the attacker can modify it to point to
resources of the attacker's choosing. This causes the software to access the wrong
resource at the wrong time. The same risk exists if a single search path element could
be under attacker control, such as the current working directory.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Hard-code your search path to a set of known-safe values, or allow them to be
specified by the administrator in a configuration file. Do not allow these settings to
be modified by an external party. Be careful to avoid related weaknesses such as
CWE-427 and CWE-428.

Implementation When invoking other programs, specify those programs using fully-qualified
pathnames.

Implementation Sanitize your environment before invoking other programs. This includes the PATH
environment variable, LD_LIBRARY_PATH and other settings that identify the
location of code libraries, and any application-specific search paths.

Implementation Check your search path before use and remove any elements that are likely to be
unsafe, such as the current working directory or a temporary files directory.

Implementation Use other functions that require explicit paths. Making use of any of the other
readily available functions that require explicit paths is a safe way to avoid this
problem. For example, system() in C does not require a full path since the shell
can take care of it, while execl() and execv() require a full path.

Testing Use automated static analysis tools that target this type of weakness. Many
modern techniques use data flow analysis to minimize the number of false
positives. This is not a perfect solution, since 100% accuracy and coverage are not
feasible.

Testing Use dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,
and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

http://cwe.mitre.org/data/definitions/426.html
http://cwe.mitre.org/data/definitions/426.html

Testing Use monitoring tools that examine the software's process as it interacts with the
operating system and the network. This technique is useful in cases when source
code is unavailable, if the software was not developed by you, or if you want to
verify that the build phase did not introduce any new weaknesses. Examples
include debuggers that directly attach to the running process; system-call tracing
utilities such as truss (Solaris) and strace (Linux); system activity monitors such as
FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.

Attach the monitor to the process and look for library functions and system calls
that suggest when a search path is being used. One pattern is when the program
performs multiple accesses of the same file but in different directories, with
repeated failures until the proper filename is found. Library calls such as getenv()
or their equivalent can be checked to see if any path-related variables are being
accessed.

Related CWEs

CWE-427 Uncontrolled Search Path Element

CWE-428 Unquoted Search Path or Element

Related Attack Patterns

CAPEC-IDs: [view all]
38

CWE-94: Failure to Control Generation of Code ('Code Injection')

Summary

Weakness Prevalence Medium Consequences Code execution

Remediation Cost High Ease of Detection Moderate

Attack Frequency Sometimes Attacker Awareness Medium

Discussion

For ease of development, sometimes you can't beat using a couple lines of code to
employ lots of functionality. It's even cooler when you manage the code dynamically.
While it's tough to deny the sexiness of dynamically-generated code, attackers find it
equally appealing. It becomes a serious vulnerability when your code is directly
callable by unauthorized parties, if external inputs can affect which code gets
executed, or (horror of horrors) if those inputs are fed directly into the code itself. The
implications are obvious: all your code are belong to them.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Refactor your program so that you do not have to dynamically generate code.

Architecture and Design Run your code in a "jail" or similar sandbox environment that enforces strict
boundaries between the process and the operating system. This may effectively
restrict which code can be executed by your software.

http://cwe.mitre.org/data/definitions/427.html
http://cwe.mitre.org/data/definitions/428.html
http://cwe.mitre.org/data/definitions/426.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/38.html
http://cwe.mitre.org/data/definitions/94.html
http://cwe.mitre.org/data/definitions/94.html

Examples include the Unix chroot jail and AppArmor. In general, managed code
may provide some protection.

This may not be a feasible solution, and it only limits the impact to the operating
system; the rest of your application may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.

Implementation Assume all input is malicious. Use an "accept known good" input validation
strategy (i.e., use a whitelist). Reject any input that does not strictly conform to
specifications, or transform it into something that does. Use a blacklist to reject
any unexpected inputs and detect potential attacks.

To reduce the likelihood of code injection, use stringent whitelists that limit which
constructs are allowed. If you are dynamically constructing code that invokes a
function, then verifying that the input is alphanumeric might be insufficient. An
attacker might still be able to reference a dangerous function that you did not
intend to allow, such as system(), exec(), or exit().

Testing Use automated static analysis tools that target this type of weakness. Many
modern techniques use data flow analysis to minimize the number of false
positives. This is not a perfect solution, since 100% accuracy and coverage are not
feasible.

Testing Use dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,
and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Operation Run the code in an environment that performs automatic taint propagation and
prevents any command execution that uses tainted variables, such as Perl's "-T"
switch. This will force you to perform validation steps that remove the taint,
although you must be careful to correctly validate your inputs so that you do not
accidentally mark dangerous inputs as untainted (see CWE-183 and CWE-184).

Related CWEs

CWE-470 Unsafe Reflection

CWE-95 Eval Injection

CWE-96 Static Code Injection

CWE-98 Remote File Inclusion

Related Attack Patterns

CAPEC-IDs: [view all]
35, 77

CWE-494: Download of Code Without Integrity Check

Summary

Weakness Prevalence Medium Consequences Code execution

Remediation Cost Medium to High Ease of Detection Moderate

Attack Frequency Rarely Attacker Awareness Low

Discussion

http://cwe.mitre.org/data/definitions/470.html
http://cwe.mitre.org/data/definitions/95.html
http://cwe.mitre.org/data/definitions/96.html
http://cwe.mitre.org/data/definitions/98.html
http://cwe.mitre.org/data/definitions/94.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/35.html
http://capec.mitre.org/data/definitions/77.html
http://cwe.mitre.org/data/definitions/494.html

You don't need to be a guru to realize that if you download code and execute it, you're
trusting that the source of that code isn't malicious. Maybe you only access a
download site that you trust, but attackers can perform all sorts of tricks to modify
that code before it reaches you. They can hack the download site, impersonate it with
DNS spoofing or cache poisoning, convince the system to redirect to a different site, or
even modify the code in transit as it crosses the network. This scenario even applies to
cases in which your own product downloads and installs its own updates. When this
happens, your software will wind up running code that it doesn't expect, which is bad
for you but great for attackers.

...View Full Technical Details

Prevention and Mitigations

Implementation Perform proper forward and reverse DNS lookups to detect DNS spoofing. This is
only a partial solution since it will not prevent your code from being modified on
the hosting site or in transit.

Architecture and Design Encrypt the code with a reliable encryption scheme before transmitting.

This will only be a partial solution, since it will not detect DNS spoofing and it will
not prevent your code from being modified on the hosting site.

Architecture and Design Use integrity checking on the transmitted code.

If you are providing the code that is to be downloaded, such as for automatic
updates of your software, then use cryptographic signatures for your code and
modify your download clients to verify the signatures. Ensure that your
implementation does not contain CWE-295, CWE-320, CWE-347, and related
weaknesses.

Use code signing technologies such as Authenticode. See references.

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

Testing Use monitoring tools that examine the software's process as it interacts with the
operating system and the network. This technique is useful in cases when source
code is unavailable, if the software was not developed by you, or if you want to
verify that the build phase did not introduce any new weaknesses. Examples
include debuggers that directly attach to the running process; system-call tracing
utilities such as truss (Solaris) and strace (Linux); system activity monitors such as
FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.

Attach the monitor to the process and also sniff the network connection. Trigger
features related to product updates or plugin installation, which is likely to force a
code download. Monitor when files are downloaded and separately executed, or if
they are otherwise read back into the process. Look for evidence of cryptographic
library calls that use integrity checking.

Related CWEs

CWE-247 Reliance on DNS Lookups in a Security Decision

CWE-292 Trusting Self-reported DNS Name

CWE-346 Origin Validation Error

CWE-350 Improperly Trusted Reverse DNS

Related Attack Patterns

http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/247.html
http://cwe.mitre.org/data/definitions/292.html
http://cwe.mitre.org/data/definitions/346.html
http://cwe.mitre.org/data/definitions/350.html

CAPEC-IDs: [view all]
184, 185, 186, 187

CWE-404: Improper Resource Shutdown or Release

Summary

Weakness Prevalence Medium Consequences Denial of service
Code execution

Remediation Cost Medium Ease of Detection Easy to Moderate

Attack Frequency Rarely Attacker Awareness Low

Discussion

When your precious system resources have reached their end-of-life, you need to
dispose of them correctly. Otherwise, your environment will become heavily congested
or contaminated. This applies to memory, files, cookies, data structures, sessions,
communication pipes, and so on. Attackers can exploit improper shutdown to maintain
control over those resources well after you thought you got rid of them. This can lead
to significant resource consumption because nothing actually gets released back to the
system. If you don't wash your garbage before you dispose of it, attackers may sift
through it, looking for gems in the form of sensitive data that should have been wiped.
They could also reuse the resources, which may seem like the right thing to do in a
"Green" world, except in the virtual world, those resources may still have significant
value.

...View Full Technical Details

Prevention and Mitigations

Requirements Use a language with features that can automatically mitigate or eliminate resource-
shutdown weaknesses.

For example, languages such as Java, Ruby, and Lisp perform automatic garbage collection
that releases memory for objects that have been deallocated.

Implementation It is good practice to be responsible for freeing all resources you allocate and to be
consistent with how and where you free memory in a function. If you allocate memory that
you intend to free upon completion of the function, you must be sure to free the memory
at all exit points for that function including error conditions.

Implementation Memory should be allocated/freed using matching functions such as malloc/free, new/
delete, and new[]/delete[].

Implementation When releasing a complex object or structure, ensure that you properly dispose of all of its
member components, not just the object itself.

Testing Use dynamic tools and techniques that interact with the software using large test suites
with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault
injection. The software's operation may slow down, but it should not become unstable,
crash, or generate incorrect results.

http://cwe.mitre.org/data/definitions/494.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/184.html
http://capec.mitre.org/data/definitions/185.html
http://capec.mitre.org/data/definitions/186.html
http://capec.mitre.org/data/definitions/187.html
http://cwe.mitre.org/data/definitions/404.html
http://cwe.mitre.org/data/definitions/404.html

Testing Stress-test the software by calling it simultaneously from a large number of threads or
processes, and look for evidence of any unexpected behavior. The software's operation
may slow down, but it should not become unstable, crash, or generate incorrect results.

Testing Identify error conditions that are not likely to occur during normal usage and trigger them.
For example, run the program under low memory conditions, run with insufficient
privileges or permissions, interrupt a transaction before it is completed, or disable
connectivity to basic network services such as DNS. Monitor the software for any
unexpected behavior. If you trigger an unhandled exception or similar error that was
discovered and handled by the application's environment, it may still indicate unexpected
conditions that were not handled by the application itself.

Related CWEs

CWE-14 Compiler Removal of Code to Clear Buffers

CWE-226 Sensitive Information Uncleared Before Release

CWE-262 Not Using Password Aging

CWE-299 Failure to Check for Certificate Revocation

CWE-401 Memory Leak

CWE-415 Double Free

CWE-416 Use After Free

CWE-568 finalize() Method Without super.finalize()

CWE-590 Free of Invalid Pointer Not on the Heap

Related Attack Patterns

CAPEC-IDs: [view all]
118, 119, 125, 130, 131

CWE-665: Improper Initialization

Summary

Weakness Prevalence Medium Consequences Code execution
Data loss

Remediation Cost Low Ease of Detection Easy

Attack Frequency Sometimes Attacker Awareness Low

Discussion

Just as you should start your day with a healthy breakfast, proper initialization helps
to ensure that your software will run without fainting in the middle of an important
event. If you don't properly initialize your data and variables, an attacker might be
able to do the initialization for you, or extract sensitive information that remains from
previous sessions. When those variables are used in security-critical operations, such
as making an authentication decision, then they could be modified to bypass your
security. Incorrect initialization can occur anywhere, but it is probably most prevalent
in rarely-encountered conditions that cause your code to inadvertently skip

http://cwe.mitre.org/data/definitions/14.html
http://cwe.mitre.org/data/definitions/226.html
http://cwe.mitre.org/data/definitions/262.html
http://cwe.mitre.org/data/definitions/299.html
http://cwe.mitre.org/data/definitions/401.html
http://cwe.mitre.org/data/definitions/415.html
http://cwe.mitre.org/data/definitions/416.html
http://cwe.mitre.org/data/definitions/568.html
http://cwe.mitre.org/data/definitions/590.html
http://cwe.mitre.org/data/definitions/404.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/118.html
http://capec.mitre.org/data/definitions/119.html
http://capec.mitre.org/data/definitions/125.html
http://capec.mitre.org/data/definitions/130.html
http://capec.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/665.html

initialization, such as obscure errors.

...View Full Technical Details

Prevention and Mitigations

Requirements Use a language with features that can automatically mitigate or eliminate
weaknesses related to initialization.

For example, in Java, if the programmer does not explicitly initialize a variable,
then the code could produce a compile-time error (if the variable is local) or
automatically initialize the variable to the default value for the variable's type. In
Perl, if explicit initialization is not performed, then a default value of undef is
assigned, which is interpreted as 0, false, or an equivalent value depending on the
context in which the variable is accessed.

Architecture and Design Identify all variables and data stores that receive information from external
sources, and apply input validation to make sure that they are only initialized to
expected values.

Implementation Explicitly initialize all your variables and other data stores, either during
declaration or just before the first usage.

Implementation Pay close attention to complex conditionals that affect initialization, since some
conditions might not perform the initialization.

Implementation Avoid race conditions (CWE-362) during initialization routines.

Build and Compilation Run or compile your software with settings that generate warnings about
uninitialized variables or data.

Testing Use automated static analysis tools that target this type of weakness. Many
modern techniques use data flow analysis to minimize the number of false
positives. This is not a perfect solution, since 100% accuracy and coverage are not
feasible.

Testing Use dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,
and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Testing Stress-test the software by calling it simultaneously from a large number of
threads or processes, and look for evidence of any unexpected behavior. The
software's operation may slow down, but it should not become unstable, crash, or
generate incorrect results.

Testing Identify error conditions that are not likely to occur during normal usage and
trigger them. For example, run the program under low memory conditions, run
with insufficient privileges or permissions, interrupt a transaction before it is
completed, or disable connectivity to basic network services such as DNS. Monitor
the software for any unexpected behavior. If you trigger an unhandled exception
or similar error that was discovered and handled by the application's environment,
it may still indicate unexpected conditions that were not handled by the application
itself.

Related CWEs

CWE-453 Insecure Default Variable Initialization

CWE-454 External Initialization of Trusted Variables

CWE-456 Missing Initialization

Related Attack Patterns

CAPEC-IDs: [view all]
26, 29, 172

http://cwe.mitre.org/data/definitions/665.html
http://cwe.mitre.org/data/definitions/453.html
http://cwe.mitre.org/data/definitions/454.html
http://cwe.mitre.org/data/definitions/456.html
http://cwe.mitre.org/data/definitions/665.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/26.html
http://capec.mitre.org/data/definitions/29.html
http://capec.mitre.org/data/definitions/172.html

CWE-682: Incorrect Calculation

Summary

Weakness Prevalence High

Consequences Denial of service
Data loss
Code execution

Remediation Cost Low Ease of Detection Easy to Difficult

Attack Frequency Often Attacker Awareness Medium

Discussion

Computers can perform calculations whose results don't seem to make mathematical
sense. For example, if you are multiplying two large, positive numbers, the result
might be a much smaller number due to an integer overflow. In other cases, the
calculation might be impossible for the program to perform, such as a divide-by-zero.
When attackers have some control over the inputs that are used in numeric
calculations, this weakness can actually have security consequences. It could cause
you to make incorrect security decisions. It might cause you to allocate far more
resources than you intended - or maybe far fewer, as in the case of integer overflows
that trigger buffer overflows due to insufficient memory allocation. It could violate
business logic, such as a calculation that produces a negative price. Finally, denial of
service is also possible, such as a divide-by-zero that triggers a program crash.

...View Full Technical Details

Prevention and Mitigations

Implementation Understand your programming language's underlying representation and how it interacts
with numeric calculation. Pay close attention to byte size discrepancies, precision, signed/
unsigned distinctions, truncation, conversion and casting between types, "not-a-number"
calculations, and how your language handles numbers that are too large or too small for its
underlying representation.

Implementation Perform input validation on any numeric inputs by ensuring that they are within the
expected range.

Implementation Use the appropriate type for the desired action. For example, in C/C++, only use unsigned
types for values that could never be negative, such as height, width, or other numbers
related to quantity.

Implementation Use languages, libraries, or frameworks that make it easier to handle numbers without
unexpected consequences.

Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C
or C++).

Testing Use automated static analysis tools that target this type of weakness. Many modern
techniques use data flow analysis to minimize the number of false positives. This is not a
perfect solution, since 100% accuracy and coverage are not feasible.

Testing Use dynamic tools and techniques that interact with the software using large test suites
with many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault
injection. The software's operation may slow down, but it should not become unstable,
crash, or generate incorrect results.

http://cwe.mitre.org/data/definitions/682.html
http://cwe.mitre.org/data/definitions/682.html

Related CWEs

CWE-131 Incorrect Calculation of Buffer Size

CWE-135 Incorrect Calculation of Multi-Byte String Length

CWE-190 Integer Overflow or Wraparound

CWE-193 Off-by-one Error

CWE-369 Divide By Zero

CWE-467 Use of sizeof() on a Pointer Type

CWE-681 Incorrect Conversion between Numeric Types

Related Attack Patterns

CAPEC-IDs: [view all]
124, 128, 129

Porous Defenses

CWE-285: Improper Access Control (Authorization)

Summary

Weakness Prevalence High Consequences Security bypass

Remediation Cost Low to Medium Ease of Detection Moderate

Attack Frequency Often Attacker Awareness High

Discussion

Suppose you're hosting a house party for a few close friends and their guests. You
invite everyone into your living room, but while you're catching up with one of your
friends, one of the guests raids your fridge, peeks into your medicine cabinet, and
ponders what you've hidden in the nightstand next to your bed. Software faces similar
authorization problems that could lead to more dire consequences. If you don't ensure
that your software's users are only doing what they're allowed to, then attackers will
try to exploit your improper authorization and exercise unauthorized functionality that
you only intended for restricted users.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Divide your application into anonymous, normal, privileged, and administrative
areas. Reduce the attack surface by carefully mapping roles with data and
functionality. Use role-based access control (RBAC) to enforce the roles at the
appropriate boundaries.

http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/135.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/193.html
http://cwe.mitre.org/data/definitions/369.html
http://cwe.mitre.org/data/definitions/467.html
http://cwe.mitre.org/data/definitions/681.html
http://cwe.mitre.org/data/definitions/682.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/124.html
http://capec.mitre.org/data/definitions/128.html
http://capec.mitre.org/data/definitions/129.html
http://cwe.mitre.org/data/definitions/285.html
http://cwe.mitre.org/data/definitions/285.html

Note that this approach may not protect against horizontal authorization, i.e., it
will not protect a user from attacking others with the same role.

Architecture and Design Ensure that you perform access control checks related to your business logic.
These may be different than the access control checks that you apply to the
resources that support your business logic.

Architecture and Design Use authorization frameworks such as the JAAS Authorization Framework and the
OWASP ESAPI Access Control feature.

Architecture and Design For web applications, make sure that the access control mechanism is enforced
correctly at the server side on every page. Users should not be able to access any
unauthorized functionality or information by simply requesting direct access to that
page.

One way to do this is to ensure that all pages containing sensitive information are
not cached, and that all such pages restrict access to requests that are
accompanied by an active and authenticated session token associated with a user
who has the required permissions to access that page.

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

System Configuration Use the access control capabilities of your operating system and server
environment and define your access control lists accordingly. Use a "default deny"
policy when defining these ACLs.

Related CWEs

CWE-425 Direct Request ('Forced Browsing')

CWE-749 Insecure Exposed Methods

Related Attack Patterns

CAPEC-IDs: [view all]
1, 13, 17, 39, 45, 51, 59, 60, 76, 77, 87, 104

CWE-327: Use of a Broken or Risky Cryptographic Algorithm

Summary

Weakness Prevalence High Consequences Data loss
Security bypass

Remediation Cost Medium to High Ease of Detection Moderate

Attack Frequency Rarely Attacker Awareness Medium

Discussion

If you are handling sensitive data or you need to protect a communication channel,
you may be using cryptography to prevent attackers from reading it. You may be
tempted to develop your own encryption scheme in the hopes of making it difficult for
attackers to crack. This kind of grow-your-own cryptography is a welcome sight to
attackers. Cryptography is just plain hard. If brilliant mathematicians and computer

http://cwe.mitre.org/data/definitions/425.html
http://cwe.mitre.org/data/definitions/749.html
http://cwe.mitre.org/data/definitions/285.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/1.html
http://capec.mitre.org/data/definitions/13.html
http://capec.mitre.org/data/definitions/17.html
http://capec.mitre.org/data/definitions/39.html
http://capec.mitre.org/data/definitions/45.html
http://capec.mitre.org/data/definitions/51.html
http://capec.mitre.org/data/definitions/59.html
http://capec.mitre.org/data/definitions/60.html
http://capec.mitre.org/data/definitions/76.html
http://capec.mitre.org/data/definitions/77.html
http://capec.mitre.org/data/definitions/87.html
http://capec.mitre.org/data/definitions/104.html
http://cwe.mitre.org/data/definitions/327.html

scientists worldwide can't get it right (and they're always breaking their own stuff),
then neither can you. You might think you created a brand-new algorithm that nobody
will figure out, but it's more likely that you're reinventing a wheel that falls off just
before the parade is about to start.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Do not develop your own cryptographic algorithms. They will likely be exposed to
attacks that are well-understood by cryptographers. Reverse engineering
techniques are mature. If your algorithm can be compromised if attackers find out
how it works, then it is especially weak.

Architecture and Design Use a well-vetted algorithm that is currently considered to be strong by experts in
the field, and select well-tested implementations.

For example, US government systems require FIPS 140-2 certification.

As with all cryptographic mechanisms, the source code should be available for
analysis.

Periodically ensure that you aren't using obsolete cryptography. Some older
algorithms, once thought to require a billion years of computing time, can now be
broken in days or hours. This includes MD4, MD5, SHA1, DES, and other
algorithms which were once regarded as strong.

Architecture and Design Design your software so that you can replace one cryptographic algorithm with
another. This will make it easier to upgrade to stronger algorithms.

Architecture and Design Carefully manage and protect cryptographic keys (see CWE-320). If the keys can
be guessed or stolen, then the strength of the cryptography itself is irrelevant.

Architecture and Design Use languages, libraries, or frameworks that make it easier to use strong
cryptography.

Industry-standard implementations will save you development time and may be
more likely to avoid errors that can occur during implementation of cryptographic
algorithms. Consider the ESAPI Encryption feature.

Implementation When you use industry-approved techniques, you need to use them correctly.
Don't cut corners by skipping resource-intensive steps (CWE-325). These steps are
often essential for preventing common attacks.

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

Related CWEs

CWE-320 Key Management Errors

CWE-329 Not Using a Random IV with CBC Mode

CWE-331 Insufficient Entropy

CWE-338 Use of Cryptographically Weak PRNG

Related Attack Patterns

CAPEC-IDs: [view all]
97

http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/320.html
http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/331.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/327.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/97.html

CWE-259: Hard-Coded Password

Summary

Weakness Prevalence Medium Consequences Security bypass

Remediation Cost High Ease of Detection Moderate

Attack Frequency Rarely Attacker Awareness High

Discussion

Hard-coding a secret account and password into your software's authentication module
is extremely convenient - for skilled reverse engineers. While it might shrink your
testing and support budgets, it can reduce the security of your customers to dust. If
the password is the same across all your software, then every customer becomes
vulnerable if (rather, when) your password becomes known. Because it's hard-coded,
it's usually a huge pain for sysadmins to fix. And you know how much they love
inconvenience at 2 AM when their network's being hacked - about as much as you'll
love responding to hordes of angry customers and reams of bad press if your little
secret should get out. Most of the CWE Top 25 can be explained away as an honest
mistake; for this issue, though, customers won't see it that way.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design For outbound authentication: store passwords outside of the code in a strongly-
protected, encrypted configuration file or database that is protected from access by
all outsiders, including other local users on the same system. Properly protect the
key (CWE-320). If you cannot use encryption to protect the file, then make sure
that the permissions are as restrictive as possible.

Architecture and Design For inbound authentication: Rather than hard-code a default username and
password for first time logins, utilize a "first login" mode that requires the user to
enter a unique strong password.

Architecture and Design Perform access control checks and limit which entities can access the feature that
requires the hard-coded password. For example, a feature might only be enabled
through the system console instead of through a network connection.

Architecture and Design For inbound authentication: apply strong one-way hashes to your passwords and
store those hashes in a configuration file or database with appropriate access
control. That way, theft of the file/database still requires the attacker to try to
crack the password. When handling an incoming password during authentication,
take the hash of the password and compare it to the hash that you have saved.

Use randomly assigned salts for each separate hash that you generate. This
increases the amount of computation that an attacker needs to conduct a brute-
force attack, possibly limiting the effectiveness of the rainbow table method.

Architecture and Design For front-end to back-end connections: Three solutions are possible, although none
are complete.

The first suggestion involves the use of generated passwords which are changed
automatically and must be entered at given time intervals by a system
administrator. These passwords will be held in memory and only be valid for the
time intervals.

http://cwe.mitre.org/data/definitions/259.html
http://cwe.mitre.org/data/definitions/259.html

Next, the passwords used should be limited at the back end to only performing
actions valid for the front end, as opposed to having full access.

Finally, the messages sent should be tagged and checksummed with time sensitive
values so as to prevent replay style attacks.

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

Testing Use monitoring tools that examine the software's process as it interacts with the
operating system and the network. This technique is useful in cases when source
code is unavailable, if the software was not developed by you, or if you want to
verify that the build phase did not introduce any new weaknesses. Examples
include debuggers that directly attach to the running process; system-call tracing
utilities such as truss (Solaris) and strace (Linux); system activity monitors such as
FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.

Attach the monitor to the process and perform a login. Using disassembled code,
look at the associated instructions and see if any of them appear to be comparing
the input to a fixed string or value.

Related CWEs

CWE-256 Plaintext Storage of a Password

CWE-257 Storing Passwords in a Recoverable Format

CWE-260 Password in Configuration File

CWE-321 Use of Hard-coded Cryptographic Key

Related Attack Patterns

CAPEC-IDs: [view all]
188, 189, 190, 191, 192, 205

CWE-732: Incorrect Permission Assignment for Critical Resource

Summary

Weakness Prevalence Medium Consequences Data loss
Code execution

Remediation Cost Low to High Ease of Detection Easy

Attack Frequency Often Attacker Awareness High

Discussion

It's rude to take something without asking permission first, but impolite users (i.e.,
attackers) are willing to spend a little time to see what they can get away with. If you
have critical programs, data stores, or configuration files with permissions that make
your resources readable or writable by the world - well, that's just what they'll
become. While this issue might not be considered during implementation or design,
sometimes that's where the solution needs to be applied. Leaving it up to a harried

http://cwe.mitre.org/data/definitions/256.html
http://cwe.mitre.org/data/definitions/257.html
http://cwe.mitre.org/data/definitions/260.html
http://cwe.mitre.org/data/definitions/321.html
http://cwe.mitre.org/data/definitions/259.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/188.html
http://capec.mitre.org/data/definitions/189.html
http://capec.mitre.org/data/definitions/190.html
http://capec.mitre.org/data/definitions/191.html
http://capec.mitre.org/data/definitions/192.html
http://capec.mitre.org/data/definitions/205.html
http://cwe.mitre.org/data/definitions/732.html

sysadmin to notice and make the appropriate changes is far from optimal, and
sometimes impossible.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design When using a critical resource such as a configuration file, check to see if the
resource has insecure permissions (such as being modifiable by any regular user),
and generate an error or even exit the software if there is a possibility that the
resource could have been modified by an unauthorized party.

Architecture and Design Divide your application into anonymous, normal, privileged, and administrative
areas. Reduce the attack surface by carefully defining distinct user groups,
privileges, and/or roles. Map these against data, functionality, and the related
resources. Then set the permissions accordingly. This will allow you to maintain
more fine-grained control over your resources.

Implementation During program startup, explicitly set the default permissions or umask to the
most restrictive setting possible. Also set the appropriate permissions during
program installation. This will prevent you from inheriting insecure permissions
from any user who installs or runs the program.

System Configuration For all configuration files, executables, and libraries, make sure that they are only
readable and writable by the software's administrator.

Documentation Do not suggest insecure configuration changes in your documentation, especially if
those configurations can extend to resources and other software that are outside
the scope of your own software.

Installation Do not assume that the system administrator will manually change the
configuration to the settings that you recommend in the manual.

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

Testing Use monitoring tools that examine the software's process as it interacts with the
operating system and the network. This technique is useful in cases when source
code is unavailable, if the software was not developed by you, or if you want to
verify that the build phase did not introduce any new weaknesses. Examples
include debuggers that directly attach to the running process; system-call tracing
utilities such as truss (Solaris) and strace (Linux); system activity monitors such as
FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.

Attach the monitor to the process and watch for library functions or system calls
on OS resources such as files, directories, and shared memory. Examine the
arguments to these calls to infer which permissions are being used.

Note that this technique is only useful for permissions issues related to system
resources. It is not likely to detect application-level business rules that are related
to permissions, such as if a user of a blog system marks a post as "private," but
the blog system inadvertently marks it as "public."

Testing Ensure that your software runs properly under the Federal Desktop Core
Configuration (FDCC) or an equivalent hardening configuration guide, which many
organizations use to limit the attack surface and potential risk of deployed
software.

Related CWEs

CWE-276 Insecure Default Permissions

CWE-277 Insecure Inherited Permissions

http://cwe.mitre.org/data/definitions/732.html
http://cwe.mitre.org/data/definitions/276.html
http://cwe.mitre.org/data/definitions/277.html

CWE-279 Insecure Execution-assigned Permissions

Related Attack Patterns

CAPEC-IDs: [view all]
60, 61, 62

CWE-330: Use of Insufficiently Random Values

Summary

Weakness Prevalence Medium Consequences Security bypass
Data loss

Remediation Cost Medium Ease of Detection Easy to Difficult

Attack Frequency Rarely Attacker Awareness Medium

Discussion

Imagine how quickly a Las Vegas casino would go out of business if gamblers could
predict the next roll of the dice, spin of the wheel, or turn of the card. If you use
security features that require good randomness, but you don't provide it, then you'll
have attackers laughing all the way to the bank. You may depend on randomness
without even knowing it, such as when generating session IDs or temporary filenames.
Pseudo-Random Number Generators (PRNG) are commonly used, but a variety of
things can go wrong. Once an attacker can determine which algorithm is being used,
he or she can guess the next random number often enough to launch a successful
attack after a relatively small number of tries. After all, if you were in Vegas and you
figured out that a game with 1000-to-1 odds could be knocked down to 10-1 odds
after you paid close attention for a couple games, wouldn't it be worthwhile to keep
playing until you hit the jackpot?

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Use a well-vetted algorithm that is currently considered to be strong by experts in
the field, and select well-tested implementations with adequate length seeds.

In general, if a pseudo-random number generator is not advertised as being
cryptographically secure, then it is probably a statistical PRNG and should not be
used in security-sensitive contexts.

Pseudo-random number generators can produce predictable numbers if the
generator is known and the seed can be guessed. A 256-bit seed is a good starting
point for producing a "random enough" number.

Implementation Consider a PRNG that re-seeds itself as needed from high quality pseudo-random
output sources, such as hardware devices.

Testing Use automated static analysis tools that target this type of weakness. Many
modern techniques use data flow analysis to minimize the number of false
positives. This is not a perfect solution, since 100% accuracy and coverage are not
feasible.

http://cwe.mitre.org/data/definitions/279.html
http://cwe.mitre.org/data/definitions/732.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/60.html
http://capec.mitre.org/data/definitions/61.html
http://capec.mitre.org/data/definitions/62.html
http://cwe.mitre.org/data/definitions/330.html
http://cwe.mitre.org/data/definitions/330.html

Testing Perform FIPS 140-2 tests on data to catch obvious entropy problems.

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

Testing Use monitoring tools that examine the software's process as it interacts with the
operating system and the network. This technique is useful in cases when source
code is unavailable, if the software was not developed by you, or if you want to
verify that the build phase did not introduce any new weaknesses. Examples
include debuggers that directly attach to the running process; system-call tracing
utilities such as truss (Solaris) and strace (Linux); system activity monitors such as
FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.

Attach the monitor to the process and look for library functions that indicate when
randomness is being used. Run the process multiple times to see if the seed
changes. Look for accesses of devices or equivalent resources that are commonly
used for strong (or weak) randomness, such as /dev/urandom on Linux. Look for
library or system calls that access predictable information such as process IDs and
system time.

Related CWEs

CWE-329 Not Using a Random IV with CBC Mode

CWE-331 Insufficient Entropy

CWE-334 Small Space of Random Values

CWE-336 Same Seed in PRNG

CWE-337 Predictable Seed in PRNG

CWE-338 Use of Cryptographically Weak PRNG

CWE-341 Predictable from Observable State

Related Attack Patterns

CAPEC-IDs: [view all]
59, 112

CWE-250: Execution with Unnecessary Privileges

Summary

Weakness Prevalence Medium Consequences Code execution

Remediation Cost Medium Ease of Detection Moderate

Attack Frequency Sometimes Attacker Awareness High

Discussion

Spider Man, the well-known comic superhero, lives by the motto "With great power
comes great responsibility." Your software may need special privileges to perform

http://cwe.mitre.org/data/definitions/329.html
http://cwe.mitre.org/data/definitions/331.html
http://cwe.mitre.org/data/definitions/334.html
http://cwe.mitre.org/data/definitions/336.html
http://cwe.mitre.org/data/definitions/337.html
http://cwe.mitre.org/data/definitions/338.html
http://cwe.mitre.org/data/definitions/341.html
http://cwe.mitre.org/data/definitions/330.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/59.html
http://capec.mitre.org/data/definitions/112.html
http://cwe.mitre.org/data/definitions/250.html

certain operations, but wielding those privileges longer than necessary can be
extremely risky. When running with extra privileges, your application has access to
resources that the application's user can't directly reach. For example, you might
intentionally launch a separate program, and that program allows its user to specify a
file to open; this feature is frequently present in help utilities or editors. The user can
access unauthorized files through the launched program, thanks to those extra
privileges. Command execution can happen in a similar fashion. Even if you don't
launch other programs, additional vulnerabilities in your software could have more
serious consequences than if it were running at a lower privilege level.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design Identify the functionality that requires additional privileges, such as access to
privileged operating system resources. Wrap and centralize this functionality if
possible, and isolate the privileged code as much as possible from other code.
Raise your privileges as late as possible, and drop them as soon as possible. Avoid
weaknesses such as CWE-288 and CWE-420 by protecting all possible
communication channels that could interact with your privileged code, such as a
secondary socket that you only intend to be accessed by administrators.

Implementation Perform extensive input validation for any privileged code that must be exposed to
the user and reject anything that does not fit your strict requirements.

Implementation Ensure that you drop privileges as soon as possible (CWE-271), and make sure
that you check to ensure that privileges have been dropped successfully (CWE-
273).

Implementation If circumstances force you to run with extra privileges, then determine the
minimum access level necessary. First identify the different permissions that the
software and its users will need to perform their actions, such as file read and
write permissions, network socket permissions, and so forth. Then explicitly allow
those actions while denying all else. Perform extensive input validation and
canonicalization to minimize the chances of introducing a separate vulnerability.
This mitigation is much more prone to error than dropping the privileges in the
first place.

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

Testing Use monitoring tools that examine the software's process as it interacts with the
operating system and the network. This technique is useful in cases when source
code is unavailable, if the software was not developed by you, or if you want to
verify that the build phase did not introduce any new weaknesses. Examples
include debuggers that directly attach to the running process; system-call tracing
utilities such as truss (Solaris) and strace (Linux); system activity monitors such as
FileMon, RegMon, Process Monitor, and other Sysinternals utilities (Windows); and
sniffers and protocol analyzers that monitor network traffic.

Attach the monitor to the process and perform a login. Look for library functions
and system calls that indicate when privileges are being raised or dropped. Look
for accesses of resources that are restricted to normal users.

Note that this technique is only useful for privilege issues related to system
resources. It is not likely to detect application-level business rules that are related
to privileges, such as if a blog system allows a user to delete a blog entry without
first checking that the user has administrator privileges.

Testing Ensure that your software runs properly under the Federal Desktop Core
Configuration (FDCC) or an equivalent hardening configuration guide, which many
organizations use to limit the attack surface and potential risk of deployed
software.

http://cwe.mitre.org/data/definitions/250.html

Related CWEs

CWE-272 Least Privilege Violation

CWE-273 Failure to Check Whether Privileges Were Dropped Successfully

CWE-653 Insufficient Compartmentalization

Related Attack Patterns

CAPEC-IDs: [view all]
69, 104

CWE-602: Client-Side Enforcement of Server-Side Security

Summary

Weakness Prevalence Medium Consequences Security bypass

Remediation Cost High Ease of Detection Moderate

Attack Frequency Sometimes Attacker Awareness High

Discussion

Rich clients can make attackers richer, and customers poorer, if you trust the clients to
perform security checks on behalf of your server. Remember that underneath that
fancy GUI, it's just code. Attackers can reverse engineer your client and write their
own custom clients that leave out certain inconvenient features like all those pesky
security controls. The consequences will vary depending on what your security checks
are protecting, but some of the more common targets are authentication,
authorization, and input validation. If you've implemented security in your servers,
then you need to make sure that you're not solely relying on the clients to enforce it.

...View Full Technical Details

Prevention and Mitigations

Architecture and Design For any security checks that are performed on the client side, ensure that these
checks are duplicated on the server side. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing
the client to remove the client-side checks entirely. Then, these modified values
would be submitted to the server.

Even though client-side checks provide minimal benefits with respect to server-
side security, they are still useful. First, they can support intrusion detection. If the
server receives input that should have been rejected by the client, then it may be
an indication of an attack. Second, client-side error-checking can provide helpful
feedback to the user about the expectations for valid input. Third, there may be a
reduction in server-side processing time for accidental input errors, although this is
typically a small savings.

http://cwe.mitre.org/data/definitions/272.html
http://cwe.mitre.org/data/definitions/273.html
http://cwe.mitre.org/data/definitions/653.html
http://cwe.mitre.org/data/definitions/250.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/69.html
http://capec.mitre.org/data/definitions/104.html
http://cwe.mitre.org/data/definitions/602.html
http://cwe.mitre.org/data/definitions/602.html

Architecture and Design If some degree of trust is required between the two entities, then use integrity
checking and strong authentication to ensure that the inputs are coming from a
trusted source. Design the product so that this trust is managed in a centralized
fashion, especially if there are complex or numerous communication channels, in
order to reduce the risks that the implementer will mistakenly omit a check in a
single code path.

Testing Use dynamic tools and techniques that interact with the software using large test
suites with many diverse inputs, such as fuzz testing (fuzzing), robustness testing,
and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Testing Use tools and techniques that require manual (human) analysis, such as
penetration testing, threat modeling, and interactive tools that allow the tester to
record and modify an active session. These may be more effective than strictly
automated techniques. This is especially the case with weaknesses that are related
to design and business rules.

Related CWEs

CWE-20 Insufficient Input Validation

CWE-642 External Control of Critical State Data

Related Attack Patterns

CAPEC-IDs: [view all]
21, 31, 122, 162, 202, 207, 208

Entries on the CWE Top 25 were selected using two primary criteria: weakness
prevalence and severity. The severity is reflected in the common consequences of the
weakness.

Weakness Prevalence

How often this weakness appears in software that was not developed with security
integrated into the software development life cycle (SDLC). The prevalence only
applies to applications that are potentially susceptible. For example, the prevalence of
SQL injection is only evaluated with respect to applications that use a database.

The prevalence value is determined based on estimates from multiple contributors to
the Top 25 list, including CVE vulnerability trend data. Top 25 contributors advocated
using more precise statistics, but such statistics are not readily available, in terms of
depth and coverage. Most vulnerability tracking efforts work at high levels of
abstraction. For example, CVE trend data can track buffer overflows, but public
vulnerability reports rarely mention the specific bug that led to the overflow. Some
software vendors may track weaknesses at low levels, but they may be reluctant to
share such information.

● High: the weakness is likely to occur at least once in over 50% of potentially
affected software.

● Medium: the weakness is likely to occur at least once in 10% to 50% of
potentially affected software.

Appendix A: Selection Criteria and Supporting Fields

http://cwe.mitre.org/data/definitions/20.html
http://cwe.mitre.org/data/definitions/642.html
http://cwe.mitre.org/data/definitions/602.html#Related_Attack_Patterns
http://capec.mitre.org/data/definitions/21.html
http://capec.mitre.org/data/definitions/31.html
http://capec.mitre.org/data/definitions/122.html
http://capec.mitre.org/data/definitions/162.html
http://capec.mitre.org/data/definitions/202.html
http://capec.mitre.org/data/definitions/207.html
http://capec.mitre.org/data/definitions/208.html

● Low: the weakness is likely to occur in less than 10% of potentially affected
software.

Consequences

When this weakness occurs in software to form a vulnerability, what are the typical
consequences of exploiting it?

● Code execution: an attacker can execute code or commands
● Data loss: an attacker can steal, modify, or corrupt sensitive data
● Denial of service: an attacker can cause the software to fail or slow down,

preventing legitimate users from being able to use it
● Security bypass: an attacker can bypass a security protection mechanism; the

consequences vary depending on what the mechanism is intended to protect

Attack Frequency

How often does this weakness occur in vulnerabilities that are targeted by the skilled,
determined attacker?

Consider an "exposed host" which is either: an Internet-facing server, an Internet-
using client, a multi-user system with untrusted users, or a multi-tiered system that
crosses organizational or trust boundaries. Also consider that a skilled, determined
attacker can combine attacks on multiple systems in order to reach a target host.

● Often: an exposed host is likely to see this attack on a daily basis.
● Sometimes: an exposed host is likely to see this attack more than once a

month.
● Rarely: an exposed host is likely to see this attack less often than once a

month.

Ease of Detection

How easy is it for the skilled, determined attacker to find this weakness, whether using
black-box or white-box methods, manual or automated?

● Easy: automated tools or techniques exist for detecting this weakness, or it can
be found quickly using simple manipulations (such as typing "<script>" into
form fields).

● Moderate: only partial support using automated tools or techniques; might
require some understanding of the program logic; might only exist in rare
situations that might not be under direct attacker control (such as low memory
conditions).

● Difficult: requires time-consuming, manual methods or intelligent semi-
automated support, along with attacker expertise.

Remediation Cost

How resource-intensive is it to fix this weakness when it occurs? This cannot be
quantified in a general way, since each developer is different. For the purposes of this
list, the cost is defined as:

● Low: code change in a single block or function

● Medium: code or algorithmic change, probably local to a single file or
component

● High: requires significant change in design or architecture, or the vulnerable
behavior is required by downstream consumers, e.g. a design problem in a
library function

This selection does not take into account other cost factors, such as procedural fixes,
training, patch deployment, QA, etc.

Attacker Awareness

The likelihood that a skilled, determined attacker is going to be aware of this particular
weakness, methods for detection, and methods for exploitation. This assumes that the
attacker knows which configuration or environment is used.

● High: the attacker is capable of detecting this type of weakness and writing
reliable exploits for popular platforms or configurations.

● Medium: the attacker is aware of the weakness through regular monitoring of
security mailing lists or databases, but has not necessarily explored it closely,
and automated exploit frameworks or techniques are not necessarily available.

● Low: the attacker either is not aware of the issue, does not pay close attention
to it, or the weakness requires special technical expertise that the attacker does
not necessarily have (but could potentially acquire).

Related CWEs

Some CWE entries that are related to the given entry. This includes lower-level
variants, or CWEs that can occur when the given entry is also present.

The list of Related CWEs is illustrative, not complete.

Selection for the CWE Top 25 assumes that the user wants to make it difficult and
time-consuming for a skilled, determined attacker to break into the software.

Though many kinds of attackers exist, it is assumed that the attacker has most of the
following characteristics.

Skill:

● Has a solid technical understanding of well-documented vulnerabilities;
● Can detect and exploit those vulnerabilities with some success, using black box

and white box methods;
● Can learn new vulnerabilities and attack techniques without significant effort;

and
● Can combine attacks on multiple systems to gain deeper access into the

targeted organization.

Appendix B: Threat Model for the Skilled, Determined Attacker

Determination:

● Seeks to steal confidential data or take over an entire software package for its
computing capability, independent of the motive (financial, military, political, or
other);

● Is not necessarily part of a large or well-funded group, but may collaborate with
a small number of other individuals; and

● Is willing to invest at least 20 hours to attack a single software package.

Informally, the attacker's skills and determination exceed that of a "script kiddie" but
are less than that of a nation-state or criminal organization.

Note that the model does not consider denial of service to be a primary motivation for
the attacker. This is contrary to the model that may be followed in some areas, such
as critical infrastructure protection and e-commerce, in which system downtime may
have catastrophic consequences.

Also note that this model was developed late in the review period for the Top 25, so it
did not influence the selection of the Top 25 items significantly. However, it is included
here to give some context for how the values for other supporting fields were derived.
Authors of future "top N" lists should consider making their threat model more explicit,
which can ensure that the prioritization is appropriate for the desired environments.

While this is the primary document, other supporting documents are available:

● SANS Announcement for the Top 25
● Supporting quotes for the Top 25
● List of contributors
● On the Cusp - list of weaknesses that almost made it
● CWE View for the Top 25
● Frequently Asked Questions (FAQ)
● Description of the process for creating the Top 25
● Change log for earlier draft versions
● Top 25 Documents & Podcasts

CWE is a Software Assurance strategic initiative sponsored by the National Cyber Security Division of the U.S. Department of
Homeland Security.

This Web site is hosted by The MITRE Corporation.
Copyright 2010, The MITRE Corporation. CWE and the CWE logo are trademarks of The MITRE Corporation.

Contact cwe@mitre.org for more information.

Privacy policy
Terms of use
Contact us

Appendix C: Other Resources for the Top 25

http://www.sans.org/top25errors
http://cwe.mitre.org/top25/quotes.html
http://cwe.mitre.org/top25/contributors.html
http://cwe.mitre.org/top25/cusp.html
http://cwe.mitre.org/data/definitions/750.html
http://cwe.mitre.org/top25/faq.html
http://cwe.mitre.org/top25/process.html
http://cwe.mitre.org/top25/changelog.html
http://cwe.mitre.org/top25/documents.html
https://buildsecurityin.us-cert.gov/swa/
http://www.us-cert.gov/
http://www.dhs.gov/
http://www.dhs.gov/
http://www.mitre.org/
mailto:cwe@mitre.org
http://cwe.mitre.org/about/privacy_policy.html
http://cwe.mitre.org/about/termsofuse.html
mailto:cwe@mitre.org

