The CLASP Application Security Process

Secure Software, Inc.

Copyright (c) 2005, Secure Software, Inc.

The CLASP Application Security Process

The CLASP Application Security Process

TABLE OF CONTENTS

CHAPTER 1 Introduction 1

CLASP Status 4

An Activity-Centric Approach 4

The CLASP Implementation Guide 5
The Root-Cause Database 6
Supporting Material 7

CHAPTER 2 Implementation Guide 9

The CLASP Activities 11
Institute security awareness program 11
Monitor security metrics 12
Soecify operational environment 13
Identify global security policy 14
Identify resources and trust boundaries 15
Identify user roles and resource capabilities 16
Document security-relevant requirements 17
Detail misuse cases 18
Identify attack surface 19
Apply security principlesto design 20
Research and assess security posture of technology solutions 21
Annotate class designs with security properties 22
Foecify database security configuration 23
Perform security analysis of system requirements and design
(threat modeling) 24
Integrate security analysis into source management process 25
Implement interface contracts 26
Implement and el abor ate resource policies and security
technologies 27
Address reported security issues 28
Perform source-level security review 29
Identify, implement and perform security tests 30

The CLASP Application Security Process

CHAPTER 3

CHAPTER 4

\erify security attributes of resources 31

Performcode signing 32

Build operational security guide 33

Manage security issue disclosure process 34
Developing a Process Engineering Plan 35

Business objectives 35

Process milestones 35

Process evaluation criteria 35
Form the Process Engineering Team 36
Sample Roadmaps 38

“ Green Field” Roadmap 39

Legacy Roadmap 40

Role-based Overviews 41

Project Manager 41
Requirements Specifier 42
Architect 43

Designer 43
Implementor 44

Test Analyst 45
Security Auditor 45

Activities 47

Institute security awareness program 47
Provide security training to all team members 47
Promote awareness of the local security setting 48
Institute accountability for security issues 48
Appoint a project security officer 49
Institute rewards for handling of security issues 50
Monitor security metrics 50
Identify metricsto collect 50
Identify how metricswill beused 53
Ingtitute data collection and reporting strategy 54
Periodically collect and evaluate metrics 55

Specify operational environment 55

The CLASP Application Security Process

Identify requirements and assumptions related to individual
hosts 56
Identify requirements and assumptions related to network
architecture 57

Identify global security policy 57
Build a global project security policy, if necessary 57
Determine suitability of global requirementsto project 58

I dentify resources and trust boundaries 59
Identify network-level design 59
Identify data resources 60

I dentify user roles and resource capabilities 61
Identify distinct capabilities 61
Map systemroles to capabilities 61
Identify the attacker profile (attacker roles and resources) 62

Document security-relevant requirements 63
Document explicit businessrequirements 64
Develop functional security requirements 64
Explicitly label requirements that denote dependencies 66
Determine risk mitigations (compensating controls) for each
resource 67
Resolve deficiencies and conflicts between requirement sets 68

Detail misusecases 69
Identify misuse cases 69
Describe misuse cases 70
Identify defense mechanisms for misuse cases 70
Evaluate results with stakeholders 70

Identify attack surface 71
Identify system entry points 71
Map rolesto entry points 72
Map resourcesto entry points 72
Apply security principlesto design 72
Refine existing application security profile 72
Determine implementation strategy for security services 73
Build hardened protocol specifications 74
Design hardened interfaces 75
Research and assess security posture of technology
solutions 75
Get structured technology assessment fromvendor 75
Perform security risk assessment 76

The CLASP Application Security Process i

Receive permission to perform security testing of software 76
Perform security testing 77

Annotate class designs with security properties 77
Map data el ements to resources and capabilities 77
Annotate fields with policy information 78
Annotate methods with policy data 78

Specify database security configuration 79
Identify candidate configuration 79
Validate configuration 79

Perform security analysis of system requirements and design
(threat modeling) 80

Develop an understanding of the system 80

Determine and validate security-relevant assumptions 80

Identify threats on assets/capabilities 82

Determinelevel of risk 83

I dentify compensating controls 85

Evaluatefindings 85

Integrate security analysis into source management
process 86
Select analysis technology or technologies 86
Determine analysisintegration point 86
Integrate analysistechnology 87

Implement interface contracts 88
Implement validation and error handling on function or method
inputs 88
Implement validation on function or method outputs 89

Implement and elaborate resource policies and security
technologies 89

Review specified behavior 89

Implement specification 89

Address reported security issues 90
Assign issueto investigator 90
Assess likely exposure and impact 90
Determine and execute remediation strategies 91
Validation of remediation 91
Perform source-level security review 92
Scope the engagement 92
Run automated analysistools 93
Evaluate tool results 93

The CLASP Application Security Process

Identify additional risks 93

Identify, implement and perform security tests 94
Identify security tests for individual requirements 94
Identify resource-driven security tests 95
Identify other relevant security tests 95
Implement test plan 95
Execute security tests 95

Verify security attributes of resources 96
Check permissions on all static resources 96
Profile resource usage in the operational context 96

Perform code signing 97
Obtain code signing credentials 97
Identify signing targets 97
Sgnidentified targets 97
Build operational security guide 98
Document pre-install configuration requirements 98
Document application activity 98
Document the security architecture 98
Document security configuration mechanisms 98
Document significant risks and known compensating controls 99

Manage security issue disclosure process 99
Provide means of communication for security issues 99
Acknowledge receipt of vulnerability disclosures 100
Addresstheissueinternally 101
Communicate relevant information to the researcher 101

Provide a security advisory and customer accessto
remediation 102

CHAPTER 5 Vulnerability Root-Causes 103

Preliminaries 105
Problemtypes 105
Consequences 106
Exposure period 106
Other recorded information 107
Range and type errors 108
Buffer overflow 108
“Write-what-where” condition 110
Sack overflow 113

The CLASP Application Security Process \"

Heap overflow 115

Buffer underwrite 117

Wrap-around error 118

Integer overflow 120

Integer coercion error 122

Truncation error 124

Sgn extension error 126

Sgned to unsigned conversion error 127

Unsigned to signed conversion error 130

Unchecked array indexing 132

Miscalculated null termination 133

Improper string length checking 135

Covert storage channel 138

Failure to account for default casein switch 139

Null-pointer dereference 141

Using freed memory 143

Doubly freeing memory 145

Invoking untrusted mobile code 147

Cross-sitescripting 148

Format string problem 149

Injection problem (‘data’ used as something else) 151

Command injection 153

L injection 155

Deserialization of untrusted data 158
Environmental problems 160

Reliance on data layout 160

Relative path library search 161

Relying on package-level scope 163

Insufficient entropy in PRNG 164

Failure of TRNG 165

Publicizing of private data when using inner classes 167

Trust of systemevent data 168

Resource exhaustion (file descriptor, disk space, sockets, ...) 169

Information leak through class cloning 172

Information leak through serialization 174

Overflow of static internal buffer 175

Synchronization and timing errors 176
Sate synchronization error 176
Covert timing channel 178
Symbolic name not mapping to correct object 180
Time of check, time of use race condition 181

Vi

The CLASP Application Security Process

Comparing classesby name 183

Race condition in switch 184

Race condition in signal handler 186

Unsafe function call froma signal handler 188

Failure to drop privileges when reasonable 190

Race condition in checking for certificate revocation 192

Mutable objects passed by reference 193

Passing mutable objects to an untrusted method 195

Accidental |eaking of sensitive information through
error messages 196

Accidental leaking of sensitive information through sent

data 198

Accidental |eaking of sensitive information through data

queries 199

Race condition within athread 200

Reflection attack in an auth protocol 202

Capture-replay 204

Protocol errors 206
Failure to follow chain of trust in certificate validation 206
Key exchange without entity authentication 208
Failure to validate host-specific certificate data 209
Failure to validate certificate expiration 211
Failure to check for certificate revocation 212
Failureto encrypt data 213
Failure to add integrity check value 215
Failure to check integrity check value 217
Use of hard-coded password 219
Use of hard-coded cryptographic key 221
Soring passwordsin a recoverable format 223
Trusting self-reported IP address 225
Trusting self-reported DNShame 226
Using referrer field for authentication 228
Using a broken or risky cryptographic algorithm 230
Using password systems 232
Using single-factor authentication 234
Not allowing password aging 235
Allowing password aging 237
Reusing a nonce, key pair in encryption 238
Using a key past its expiration date 240
Not using a random IV with CBC mode 241
Failure to protect stored data from modification 243

The CLASP Application Security Process Vil

Failure to provide confidentiality for stored data 245

General logic errors 246
Ignored function return value 246
Missing parameter 247
Misinterpreted function return value 249
Uninitialized variable 250
Duplicate key in associative list (alist) 252
Deletion of data-structure sentinel 253
Addition of data-structure sentinel 255
Use of sizeof() on a pointer type 257
Unintentional pointer scaling 258
Improper pointer subtraction 259
Using the wrong operator 260
Assigning instead of comparing 261
Comparing instead of assigning 263
Incorrect block delimitation 264
Omitted break statement 265
Improper cleanup on thrown exception 267
Improper cleanup on thrown exception 268
Uncaught exception 269
Improper error handling 271
Improper temp file opening 273
Guessed or visibletemporary file 275
Failureto deallocate data 277
Non-cryptographic PRNG 278
Failure to check whether privileges were dropped
successfully 280

APPENDIX A Principles (Key Security Concepts) 283

Insider Threats astheWeak Link 283
Ethicsin Secure-Software Development 284

Fundamental Security Goals — Core Security Services 284
Authorization (access control) 285
Authentication 286
Confidentiality 289
Data Integrity 290
Availability 290
Accountability 291
Non-repudiation 291

vili The CLASP Application Security Process

APPENDIX B

APPENDIX C

Input Validation 291
Where to performinput validation 292
Ways in which data can beinvalid 292
How to determine input validity 293
Actionsto perform when invalid data isfound 294

Assume the Network is Compromised 294
Minimize Attack Surface 295

Secure by Default 296

Defense-in-Depth 297

Principlesfor Reducing Exposure 297
The Insecure Bootstrapping Principle 298

Templates and Worksheets 301

Sample Coding Guidelines 302
Instructions to manager 302
Instructionsto developer 302
System Assessment Worksheets 310
Development Process and Organization 314
System Resources 319
Network Resource Detail 321
File System Usage Detail 322
Registry Usage (Microsoft Windows Environment) 324

Glossary of Terms 327

The CLASP Application Security Process

The CLASP Application Security Process

CHAPTER 1

|ntroduction

Application security is an important emerging requirement in software develop-
ment. Beyond the potential for severe brand damage, potential financial loss
and privacy issues, risk-aware customers such as financial institutions and gov-
ernmental organizations are looking for ways to assess the security posture of
products they build or purchase. In addition, these customers plan to ultimately
hold vendors accountable for security problemsin their software. This problem
is further exacerbated by perceived security risks associated with the growing
adoption of outsourced development and free/open source software.

The largest independent software vendors (ISV's) have begun taking this prob-
lem very serioudly. In 2002, Microsoft launched an ongoing effort to improve
security throughout its devel opment process, which involves training and pro-
cessimprovements. For the first two months of this effort, their entire devel op-
ment staff was forbidden from making changes to any product unless the
specific purpose of the changes was to improve the security. Many other ven-
dors, such as Oracle, have had similarly serious reactions to the issue.

Addressing the applications security problem effectively is difficult because tra-
ditional software development lifecycles do not deal with these concerns well.
Thisislargely dueto alack of structured guidance, since the few books on the
topic are relatively new and document only collections of best practices.

The CLASP Application Security Process 1

In addition, security is not afeature that demonstrates well. Development orga-
nizations generally prefer to focus on core functionality features and then
address security in an ad-hoc manner during development — focusing on pro-
viding aminimal set of services and driven by the limited security expertise of
developers. Thisusually resultsin over-reliance on poorly understood security
technologies.

For example, SSL isthe most popular means of providing data confidentiality
and integrity services for datatraversing a network. Yet most SSL deployments
are susceptible to network-based attacks because the technology is widely mis-
understood by those who apply it. Particularly, people tend to treat it as a drop-
in for traditional sockets, but when used in this way necessary server authenti-
cation steps are skipped. Performing proper authentication is usually a highly
complex process.

Organizations that deploy technologies such as SSL and Java are often suscepti-
bleto afalse sense of security. For example, Secure Software, Inc., conducted
an informal study of Java programs which showed that a significant security
risk appeared, on average, once per thousand lines of code— an extremely high
number.

The result of the traditional shoestring approach to software security is that
organizationswill crosstheir fingers, hoping that security problems do not man-
ifest and deferring most security issues to the time when they do — which is
often well after the software is deployed. Thisis the so-called “penetrate-and-
patch” model.

Bolting on a security solution after a problemisfound is, of course, just as non-
sensical as adding on areliability module to fix robustness problems after soft-
wareis developed. In fact, an IBM study on the cost of addressing security
issues at various points during the SDL C argues that the cost of deferring secu-
rity issues from design into deployment is greater than the cost associated with
traditional reliability bugs.Thisislargely due to the tremendous overhead asso-
ciated with vulnerability disclosure and actual security breaches.

CLASP — Comprehensive, Lightweight Application Security Process — pro-
vides awell-organized and structured approach for locating security concerns
into the early stages of the software development lifecycle, whenever possible.
CLASPisareflection of six years of work with devel opment teams to address
security issues and incorporates the best practi ces documented in various books,
including Building Secure Software and the Secure Programming Cookbook.

The CLASP Application Security Process

CLASPisaset of process pieces that can be integrated into any software devel-
opment process. CLASP is designed to be both easy-to-adopt and effective. It
takes a prescriptive approach, documenting activities that organizations should
be performing. CLASP also provides an extensive set of security resources that
make implementing activities reasonable, particularly when also introducing
tools to help automate process pieces.

The CLASP method consists of several parts:

Chapter 2 is an Implementation Guide that is meant to help organizations
integrate CL A SP process pieces into a devel opment process, based on the
needs of the organization. The Implementation Guide gives an overview

of each CLASP activity.

Chapter 3 contains role-based introductions to CLASP. This chapter
explains to project managers at a high level how they should approach
security in their job and also introduces the basic responsibilities they
have. These are meant to be concise introductionsthat are a starting point
for employees when they first need to address software security.

The CLASP activities are detailed in Chapter 4.

Chapter 5 consists of a“root-cause” database. It is a collection of prob-
lemsin code, including discussions about how they can lead to vulnera-
bilitiesin software. There is aso advice on avoidance and remediation.

In Appendix A, we provide introductions to the most important concepts
that underlie this process. These concepts are referenced from the role-
based overviews and are relied upon throughout the rest of the process.
For example, the third concept in Appendix A discusses the basi ¢ security
services (authorization, authenticating, confidentiality, integrity, avail-
ahility, accountability, and non-repudiation). Even if the reader has expo-
sure to these services, it is good to examine the CLASP discussion since
these concepts are relied upon heavily, particularly in requirements defi-
nition and analysis.

Appendix B provides templates and worksheets for some of the CLASP
activities. For example, we provide an example set of organizational
reguirements, which can also be used as the foundation for a set of prod-
uct security requirements.

Appendix C provides a glossary of terms relevant to application security.

The CLASP Application Security Process

11

CLASP Status

1.2

CLASPisafreely available process. This document details CLASP v1.0. This
version was authored primarily by John Viega and Secure Software, Inc., with
contributions from IBM and webM ethods (Jeremy Epstein). It has also been
influenced heavily by organizations that evaluated early access versions — par-
ticularly the Depository Trust and Clearing Corporation.

We areinterested in feedback aswell additional contributorsfor future versions.
Please contact us at clasp@securesoftware.com.

An Activity-Centric Approach

At the core of the CLASP are twenty four new security-related activities that
can be integrated into a software devel opment process.

Theinitia activities belong to the project manager. While his duties do not rep-
resent a significant time commitment, they do reflect the CLA SP philosophy
that effective security practices require organizational buy-in. For example,
introducing a security awareness program should be about more than ssimply
training developersthat will be dealing with security functionality directly.
Everyone that has exposure into the development lifecycle should receive basic
awareness training that will allow them to understand the macro-level issues
that can impact a business. Particularly, people need to understand the immedi-
ate costs associated with security-related activities as well as the long-term ben-
efits of an improved security posture. Otherwise, when a project begins to slip,
security activitieswill risk being the first to be deferred if they do not have a
concrete impact on the core feature set.

The primary security duty of a requirements specifier isto identify at ahigh
level the core security model for the application. For example, the requirements
specifier determines which resources might be at risk, the roles and responsibil-
ities of usersthat may access those resources, and the potential consequences if
these resources are compromised. Not only do these activities provide a context
for making choices about how to deal with particular security issues throughout
the development lifecycle; these activities also define a framework for account-
ability that a project manager can apply if security problems are ultimately
found in system design.

The CLASP Application Security Process

1.3

Most of the security activities traditionally assignd to implementors are actu-
aly best handled by the software architects and designers. Most software secu-
rity issues can be addressed at architecture and design time, which is far more
cost effective. This also allows an organization to concentrate security expertise
among avery few of the most trusted members of the devel opment organiza-
tion.

Several key tasks are owned by a security auditor, which isanew role that
CLASP introduces into the software development lifecycle. The invention of
this role emphasizes the fact that development teams can easily get too closeto
its own systems to analyze them effectively. Independent third-party security
assessments are currently commonly accepted as a best practice. These assess-
ments are also one of the simplest and most cost-effective measures that an
organization can take to improve the security posture of its development efforts
— whether the independent third party is a firm dedicated to security assess-
ments or simply consists of members from another product team within the
same organization.

CLASP aso has an impact on several key traditional software engineering
activities, such as requirements specification. CLASP does not materialy
change the steps within such activities. Instead, it recommends extensions to
common artifacts and provides implementation guidance for security-specific
content.

The CLASP Implementation Guide

For organizationsthat have never before formally dealt with security issues, the
twenty four CLASP-defined activities are quite formidable. But, thereisno
need for organizations to implement all of the activities that CL A SP defines.

To make CLASP even more manageable, it provides an Implementation Guide
(Chapter 2) that helps the project manager or process engineer determine
whether to adopt particular activities by providing the following information for
each activity:

* Activity applicability. For example, several activities are only applicable
when common government certifications are being pursued or when
building applications that will use a back-end database.

» A discussion of the risks associated with not performing the activity. This
includes arating of the overall impact of the activity, relative to other
CLASP activities. High-impact activities provide the most value, whereas

The CLASP Application Security Process 5

1.4

low-impact activities probably will not be implemented within most orga-
nizations.

* Anindication of implementation cost expressed in frequency of activity,
calendar time, and man-hours per iteration.

* A discussion, where appropriate, on various considerations— e.g.,
dependencies between the various process pieces.

To help the user navigate through the activities even more efficiently, CLASP
contains two example roadmaps that focus on common organizational require-
ments. For example, thereisa“legacy” roadmap for organizations|ooking for a
minimal impact on their existing developmental processes. Thereisalso a
“green field” roadmap for those organizationsthat are starting anew project and
want to introduce those activities that yield the highest value for the level of
effort invested.

The Root-Cause Database

CLASP's comprehensive documentation of activities can give organizations a
robust framework to address issues that they previously addressed in an ad-hoc
manner, if at all. However, performing activities effectively requires awealth of
security expertise that most people lack.

CLASP aso provides athorough knowledge base containing detailed informa-
tion about dozens of classes of vulnerabilities. Thisis much different from atra-
ditional “vulnerability database” that documents known bugs in off-the-shelf
software. Instead, thisisa*root-cause” database, providing detailed informa-
tion on the underlying problems that are repeatedly behind security risks.

The CLASP root-cause database gives comprehensive background information
on each kind of problem, shows code samplesillustrating the problem and also
gives detailed information on avoiding, detecting and fixing the problem.
CLASPwill be updated periodically to reflect any new classes of vulnerabilities
that researchers may discover.

The root-cause database provides a strong foundation for the rest of the process.
There are numerous checklists and templates that support various activities that
CLASP defines, and those checklists extensively draw on the root-cause data-
base. For instance, CL ASP provides an example set of secure-coding guidelines
for developers. The individual guidelines refer back to the root-cause database

The CLASP Application Security Process

15

for those needing detailed information, thereby keeping the actual guidelines
crisp.

Supporting Material

CLASP provides many resources that support the core process. Thisincludesan
extensive glossary (Appendix C) and more detailed descriptions of many
important principles relevant to the space. There are also sample worksheets
that you can use directly in your organization, or modify to suit your needs.

For example, CLA SP contains a detailed code inspection worksheet, which can
hel p make such inspections far more repeatable and reliable. The worksheet not
only provides security auditors with a structured framework for recording criti-
cal data about an application; it also provides a checklist that guides the auditor
through the entire process. While the root-cause database provides detailed
guidance for finding particular vulnerabilities, the code inspection worksheet
hel ps the auditor determine which root-causes need to be considered, and in
which order.

Other artifacts CLASP provides include:

* A detailed list of common security requirements that requirement specifi-
ers can incorporate directly into their work and can use as a checklist of
security concerns to consider when building new requirements.

* An application-security posture questionnaire — i.e., a detailed work-
sheet that helps extract key information about the security posture of off-
the-shelf software. Thisisauseful tool both for assessing technologies as
well as for determining how to integrate them securely, extracting key
information about the design, architecture, and devel opment practices
that often are not immediately visible through the shrink-wrap.

This questionnaire can also be used as a pre-audit worksheet, gathering
key information about a code base to properly scope and organize a
source code security inspection.

* A coding standards checklist that can be used as a quick reference for
developers and can also be used to measure developer conformance to
secure programming best practices.

e The CLASP plug-into RUP aso contains a set of tool mentors providing
tutorials on available tool s that can automate parts of the CLASP process.
The focus is on open-source technologies, but there are also mentors for

The CLASP Application Security Process 7

Secure Software's CodeA ssure product line for automated security analy-
sis of software.

The supporting artifacts that accompany the CLASP process provide arich
body of material to document and evaluate the security properties of software as
it progresses through the devel opment lifecycle — asignificant step forward
compared to traditional ad-hoc approaches to software security.

The CLASP Application Security Process

CHAPTER 2 |mplementation Guide

For organi zations that have never formally dealt with software-security issues,
the numerous activities defined in CLASP may look quite formidable. Yet there
isno need for an organization to implement all of the activities defined by
CLASRP It is perfectly reasonable to add activities one at atime, focusing on
ones that are the most appropriate and have the most benefit-for-cost.

The purpose of this Implementation Guide is to lessen the burden on a project
manager and his process engineering team by giving guidance to help assessthe
appropriateness of CLASP activities. We do this by providing the following
information for each activity:

* Information on activity applicability. For example, some activities are only
applicable when building applications that will use a back-end database.
Other activities are not appropriate for maintaining legacy software that
wasn't designed with security in mind.

* Adiscussion of risks associated with omitting the activity. Thisincludes a
rating of the overall impact of the activity, relative to other CLASP activities.

¢ Anindication of implementation cost — in terms of both the frequency of the
activity and the man-hours per iteration. Currently, the man-hour estimates
are only rough approximations based on limited experience deploying
CLASP and similar activities. Where appropriate, we discuss the avail ability

The CLASP Application Security Process 9

of automation technologies for activities that would otherwise be performed
manually.

After reviewing each of the CLASP activities, we give guidance on devel oping
a process engineering plan, as well as putting together a process engineering
team that can help select activities to use within your organization.

To help you navigate the CLASP activities even more efficiently, thisimple-
mentation guide also contains example roadmaps which focus on common
organizational requirements. In particular, thereisa*“Legacy” application road-
map aimed at organizations looking for a minimal impact on their ongoing
development projects, which introduces only those activities with the highest
relative impact on security. We also provide a*“ Green Field” roadmap that has
been developed for organizations that are looking for a more holistic approach
to application-security development practices.

10

The CLASP Application Security Process

2.1 The CLASP Activities

2.1.1 Institute security awareness program

Purpose:

Owner:

Key contributors:
Applicability:
Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Ensure project members consider security to be an important
project goal through training and accountability.

* Ensure project members have enough exposure to security to
deal with it effectively.

Project Manager

All projects
Very high

* Other activities promoting more secure software are less
likely to be applied effectively.

* Accountability for mistakes is not reasonable.
Ongoing

e 160 hoursfor instituting programs.

* 4 hours up-front per person.

* 1 hour per month per person for maintenance.

The CLASP Application Security Process 11

2.1.2 Monitor security metrics

Purpose:

Owner:

Key contributors:
Applicability:
Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Gauge thelikely security posture of the ongoing develop-
ment effort.

* Enforce accountability for inadequate security.
Project Manager

All projects

High

* No concrete basis for measuring the effectiveness of security
efforts.

Weekly or monthly.

* 160 hoursfor instituting programs.

e 2to 4 hours per iteration for manual collection.

e 1 with automating tools.

12

The CLASP Application Security Process

2.1.3 Specify operational environment

Purpose:

Owner:

Key contributors:
Applicability:
Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Document assumptions and requirements about the operating
environment so that the impact on security can be assessed.

Requirements Specifier
Architect

All projects

Medium

* Risks specific to the deployment environment may be over-
looked in design.

* May not properly communicate to users the design decisions
with security impact.

Generally, once per iteration.
* 20 man hoursin the first iteration.
e <4 hours per iteration in maintenance.

The CLASP Application Security Process 13

2.1.4 Identify global security policy

Purpose:

Owner:
Key contributors:
Applicability:

Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Provide default baseline product-security business require-

ments.

* Provide ameans of comparing the security posture of differ-

ent products across an organization.
Requirements Specifier

Most appropriate for larger organizations with many devel op-
mental efforts that are to be held to the same standard but can eas-
ily be effective in any organization devel oping software.

Low

e Wider organizational security requirements may not be under-
stood — such as compliance to standards.

* Difficult to make meaningful comparisonsin security posture
among projects.

Generally, once per project.
e 120 man hoursto identify organizational requirements.
* 40 hours per project to incorporate requirements.

14

The CLASP Application Security Process

2.15 Identify resources and trust boundaries

Purpose:

Owner:

Key contributors:
Applicability:
Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Provideastructured foundation for understanding the security
reguirements of a system.

Architect

Requirements Specifier

All projects

High

* Design process will consider these items intuitively, and over-

look important resources. That is, the design process becomes
much more ad hoc.

* Intuitive consideration is still an application of this activity,
without the benefit of structure or documentation. Not per-
forming the activity at all leadsto inability to perform other
CLASP design activities, thereby pushing the cost of initial
security assurance to more expensive parts of the lifecycle.

Generally, once per iteration.
e Usually 8 hoursin thefirst iteration.
e < 3hoursin subseguent iterations.

The CLASP Application Security Process 15

2.1.6 Identify user roles and resource capabilities

Purpose:

Owner:

Key contributors:
Applicability:
Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Define system roles and the capabilities/resources that therole
can access.

Architect

Requirements Specifier

All projects

Medium

* Access control mechanisms are more likely to be underspeci-
fied.

* Identified protection mechanisms on resources may not ade-
quately protect all capabilities.

Usually, once per iteration.

Dependent on the number of resources, but generally less than 80
hoursin theinitial iteration; then proportional based on signifi-
cant changes and additions in each iteration — usually less than
10 hours.

16

The CLASP Application Security Process

2.1.7 Document security-relevant requirements

Purpose:

Owner:
Key contributors:
Applicability:

Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Document business-level and functional requirements for
security.

Requirements Specifier

Architect

All projects, particularly new application development but also

legacy systems.

Very High

e Security servicesfor system resources are extremely likely to

be addressed in an ad-hoc manner and have significant gaps
asaresult.

As needed, at least once per iteration.
* If using capabilities, generally up to 120 man hours, depend-
ing on the number of capabilities.

* If using resources, up to 80 man hours, depending on the level
of detail of requirement specification.

The CLASP Application Security Process 17

2.1.8 Detail misuse cases

Purpose:

Owner:
Key contributors:
Applicability:

Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

e Communicate potential risks to stakeholder.

e Communicate rationale for security-relevant decisionsto
stakehol der.

Requirements Specifier
Stakeholder

Best suited only to organizations that already apply use cases

extensively.

Low

e Customerswill not understand the system security risks and
reguirements of the project adequately through design and

implementation, which can potentially lead to increased secu-
rity exposure.

Asrequired, typically occurring multiple times per iteration and
most frequently in Inception and Elaboration iterations.

Generally, one hour per misuse case that is changed per iteration.

18

The CLASP Application Security Process

2.1.9 Identify attack surface

Purpose:

Owner:
Key contributors:
Applicability:

Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

» Specify all entry pointsto aprogram in a structured way to
facilitate analysis.

Designer

When exposure metrics are desirable and whenever using struc-
tured security analysis such as threat-modeling or source-code
review.

High

* Thisisanother activity that is often performed implicitly.
Failure to document will generally result in an ad-hoc treat-
ment or duplication of work in other activities where the data

is needed and can result in afailure to consider important
entry points.

As needed; usually once after design, and ongoing during elabo-
ration.

* Usually 5to 20 man-hoursin theinitial iteration for small-to-
medium sized software systems.

e Upto 120 man-hours for complex systems containing many
off-the-shelf components.

The CLASP Application Security Process 19

2.1.10 Apply security principles to design

Purpose:

Owner:

Key contributors:
Applicability:
Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Harden application design by applying security-design princi-
ples.

* Determine implementation strategies for security services.
* Design secure protocols and APIs.
Designer

All applications

High

* Unanticipated security problemsintroduced early in design —
even if using an extensive set of security requirements.

Usually oncein theinitial iteration, with incremental changes as
needed in subsequent iterations.

* Intheinitia iteration, approximately 40 to 60 man hoursfor a
small project, 80 to 120 for amedium project, and 200 to 300
for alarge project.

* Generaly, no more than 15% of the cost in subsequent itera-
tions.

20

The CLASP Application Security Process

2.1.11 Research and assess security posture of technology solutions

Purpose:

Owner:
Key contributors:
Applicability:

Relative impact:
Risks in omission:

Activity frequency:

Approximate man
hours:

* Assess security risksin third-party components.

* Determine how effectively atechnology islikely to alleviate
risks.

e Identify lingering security risksin chosen security technolo-
gies.

Designer
Component Vendor

Any time third-party software is integrated into system develop-
ment.

High
* Security risksin third-party software can potentially compro-

mise system resources, where compensating controls could
have been identified or alternate technol ogies chosen.

e Security flaws not introduced by your development organiza-
tion can still lead to damage to your brand.

As necessary.
Vendor-dependent; from 2 to 40 hours per acquired technol ogy.

The CLASP Application Security Process 21

2.1.12 Annotate class designs with security properties

Purpose:

Owner:

Key contributors:
Applicability:

Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Elaborate security policiesfor individual datafields.
Designer

Particularly useful in environments using mandatory access con-
trol enforcement technologies; is aso useful for shops using
UML class diagrams.

Low
* Implementor error in implementing access control policy.

Generally just once; then in iterations where the underlying data
design of a class changes.

Generally < 1 man-hour per classinitially, with minimal as-
needed maintenance.

22

The CLASP Application Security Process

2.1.13 Specify database security configuration

Purpose:

Owner:
Key contributors:
Applicability:

Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Define a secure default configuration for database resources
that are deployed as part of an implementation.

* Identify arecommended configuration for database resources
for databases that are deployed by athird party.

Database Designer

Whenever a system can make use of a stand-alone relational data-
base, but particularly when the system is to be deployed or man-
aged internal to the developing organization.

Medium to High

* Operational security errorsin database configuration. Thisisa
Very common occurrence.

As necessary, generally once per iteration.
* 40 to 80 man-hours depending on the database.
* There are existing tools to assist with automating this task.

The CLASP Application Security Process 23

2.1.14 Perform security analysis of system requirements and design
(threat modeling)

Purpose:

Owner:
Key contributors:
Applicability:

Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Assesslikely system riskstimely and cost-effectively by ana-
lyzing the requirements and design.

* Identify high-level system threats that are not documented in
reguirements or supplemental documentation.

* ldentify inadequate or improper security requirements.

* Assessthe security impact of non-security requirements.
Security Auditor

Architect; Designer

Most applicable before software isimplemented, but some sort of
architectural analysisis a prerequisite to any effective security
analysis.

Very High

* No ability to assess likely level of security risk.

* No ability to assess success of secure design efforts.

Generally, once after initial design and a significant revisit after
implementation, with incremental modifications at regular check-
pointsin devel opment.

* 120 hoursfor theinitia model, with approximately 5 man
hours per iteration of maintenance.

e 40 man-hours for a significant revisit.
* Automating technologies exist to support this task.

24

The CLASP Application Security Process

2.1.15 Integrate security analysis into source management process

Purpose:

Owner:
Key contributors:
Applicability:

Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Automate implementation-level security analysis and metrics
collection.

Integrator

Whenever using a source-control system and a programming
environment supported by automating tools that can act as stand-
alones. Automating tools are usually dependent on source lan-
guages and OS platform.

Medium
* Regular metrics datawill not be collected as specified.

* Implementation reviews are more likely to be overlooked or
deferred.

* Manual labor can have a negative impact on project schedul-
ing.

Once per project.

Dependent on the automating technology and the process. Gener-

ally, 20 man hours total.

The CLASP Application Security Process 25

2.1.16 Implement interface contracts

Purpose:

Owner:
Key contributors:
Applicability:

Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Provide unit-level semantic input validation.

* Identify reliability errorsin astructured way at the earliest
opportunity

I mplementor

Performabl e on any well-defined programmer interface. Existing

technologies provide slight automation for some OO languages

(including Java).

High

* Incomplete input validation, particularly for security-critical
data.

Ongoing throughout implementation.

Generally, 5 minutes per parameter (per function or method),
whenever a parameter is changed.

26

The CLASP Application Security Process

2.1.17 Implement and elaborate resource policies and security
technologies

Purpose:

Owner:

Key contributors:
Applicability:
Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Implement security functionality to specification.
I mplementor

All software

Very high

e Arbitrary risk exposure.

Ongoing, as necessary.

Widely variable, based on policy and technology.

The CLASP Application Security Process

27

2.1.18 Address reported security issues

Purpose:

Owner:

Key contributors:
Applicability:
Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Ensurethat identified security risksin an implementation are
properly considered.

Designer

Fault Reporter

All software

High

* Lack of process behind addressing reported problems often

|eads to incompl ete fixes or introduction of additional security
risks.

Any time an unanticipated risk isidentified in the system.

Generally, 8-16 hours in investigation, plusiteration time on other
activities for remediation.

28

The CLASP Application Security Process

2.1.19 Perform source-level security review

Purpose:

Owner:

Key contributors:
Applicability:
Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Find security vulnerabilities introduced into implementation.
Security Auditor

Implementor; Designer

All software

Very High

e Security risksintroduced in implementation or those missed
in design review will not be identified prior to deployment.

* Health of secure software development effort can not be mea-
sured adequately, thereby leading to alack of individual
accountability.

Either on aregular (weekly or monthly) basis or on candidate-
release builds.

e Per man-hour, an auditor can generally review 100 to 400
lines of code.

* Automating technologies exist that can reduce the cost to
about one man-hour per 10,000 lines of code.

The CLASP Application Security Process 29

2.1.20 Identify, implement and perform security tests

Purpose:

Owner:

Key contributors:
Applicability:
Relative impact:

Risksin omission:

Activity frequency:

Approximate man
hours:

* Find security problems not detected by implementation
review.

* Find security risksintroduced by the operational environment.

* Act as adefense-in-depth mechanism, catching failuresin
design, specification, or implementation.

Test Analyst

All development efforts.

Medium for full-lifecycle CLASP implementation; high for other
development.

* Security risks that would have been identified during testing
will instead be identified by others during deployment. Some
risks might possibly manifest as actual exploitations during
deployment.

Generally, once per testabl e requirement, plus ongoing regression
testing.

* 1to 2 man-hours per requirement for test identification.

* 2to5 man-hours per test identified for implementation.

* Thereafter, ongoing costs associated with running the test.
* Tools exist to automate parts of this activity.

30

The CLASP Application Security Process

2.1.21 Verify security attributes of resources

Purpose:

Owner:

Key contributors:
Applicability:
Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Confirm that software conforms to previously defined secu-
rity policies.
Tester

All software
Medium

* Configuration of the software’s operational environment may
|eave unanticipated security risks, particularly to attackers
with direct access to underlying resources that the software
also uses directly — i.e., underlying machine or the network.

Once per candidate build.
* 2-4 man hoursfor small and medium projects.
e 10-20 man hours for large projects.

The CLASP Application Security Process 31

2.1.22 Perform code signing

Purpose:

Owner:
Key contributors:
Applicability:

Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Provide the stakeholder with ameans of validating the origin
and integrity of the software.

Integrator

Particularly when software is being distributed via an untrusted
medium — such asHTTP.

Low

* Customers receive adistribution of software that isillegitimate
and includes malware.

Once per release build.
* 4 man hoursfor credential acquisition.
e 1 man hour per use.

32

The CLASP Application Security Process

2.1.23 Build operational security guide

Purpose:

Owner:

Key contributors:
Applicability:
Relative impact:
Risksin omission:

Activity frequency:

Approximate man
hours:

* Provide stakeholder with documentation on operational secu-
rity measures that can better secure the product.

* Provide documentation for the use of security functionality
within the product.

Integrator

Designer; Architect; Implementor
All software

Medium

* Usersmay fail toinstall assumed or required compensating
control for a known risk.

* Userscould accidently misconfigure software in away that
thwarts their security goals.

* Users may not be exposed to security risks that they should
understand, perhaps by right.

Ongoing, particularly during design and in preparation for

deployment.

40 man hours — in addition to documentation activities driven by

other activities.

The CLASP Application Security Process 33

2.1.24 Manage security issue disclosure process

Purpose: * Communicate effectively with outside security researchers
when security issues are identified in released software, facili-
tating more effective prevention technologies.

e Communicate effectively with customers when security issues
areidentified in released software.

Owner: Project Manager

Key contributors: Designer

Applicability: All software with external exposure.
Relative impact: Low

Risksinomission: e Security researchers finding problemsin your software may
damage your brand without adequate warning.

Activity frequency: Asnecessary.

Approximate man Generally, 4 man-hours aweek through the life of response.
hours:

The CLASP Application Security Process

2.2

Developing a Process Engineering Plan

22.1

2.2.2

2.2.3

To ensure an efficient ongoing process, it is important to carefully plan the pro-
cess engineering effort. A good process engineering plan should include — at a
minimum — the following elements:

* Business objectives that the processis being developed to mest;
* Project milestones and checkpoints; and

» Pasg/fail criteriafor each milestone and checkpoint — e.g., necessary
approvals, evaluation criteria, and stakeholder involvement.

Business objectives

While your team is documenting business objectives for an impending process
engineering effort, bring into consideration any global application software
development security policiesthat may already exist for the project or the orga-
nization. This should include any existing certification requirements.

Another objective at this point should be to agree on the set of security metrics
that will be collected and monitored externally to the project throughout the
process deployment phases in order to measure overall security posture. For
example, security posture can be determined based on:

* Internal security metrics collected;

* Independent assessment (which can be performed using CLASP activities as
well);

* Or — less desirably — through externally reported incidents involving the
effort.

Process milestones

Your team should construct a draft process engineering plan, which identifies
the key project milestones to be met for the project. The focus should be on
when activities should be introduced, who should perform them, and how long
they should take to perform.

Process evaluation criteria

Asafinal step in your planning efforts for process engineering, you should
decide upon the criteria for measuring the success of your team, as well as the
process engineering and deployment effort.

The CLASP Application Security Process 35

2.3

Success might be measured in one or more of many different methods, such as:

e Comparing the rate of deployment across projects;

* Comparing the percentage of security faultsidentified in development versus
those found in production; or

* Monitoring the timeliness, accuracy, and thoroughness of key development
artifacts.

Be specific, but be redlistic in identifying success metrics. Remember that this
process will evolve to meet your ever-changing and demanding business needs.
Small successes early on will be more rewarding for the team than big failures,
so consider a slow roll-out of new processes, with an accompanying incremen-
tal rollout of metrics.

Form the Process Engineering Team

Development organizations should be bought into the process which they use
for development. The most effective way to do that isto build a process engi-
neering team from members of the development team so that they can have
ownership in creating the process.

We recommend taking the following steps:

* Build a process engineering mission statement.
Document the objectives of the process team. It is reasonable to have the
entire development team sign off on the mission, so that those people who
are not on the team still experience buy-in and inclusion.

* |dentify a process owner.
The process team should have a clearly identified process “champion,”
whose foremost job isto set a direction and then evangelize that direction.
Make it clear that this team will be held accountable for al aspects of the
engineering and deployment activities associated with early adoption of this
new security process framework.

* |dentify additional contributors.

As with the process owner, people who make good evangelists should be
valued as well as people who will be the most worthy contributors.

* Document roles and responsibilities.
Clearly document the roles and responsibilities of each member of this team.

36

The CLASP Application Security Process

* Document the CLASP process roadmap.

It istime to make the classic “ build-versus-buy” decision for a process
framework. Can one of the process roadmaps packaged as part of CLASP be
used as-is? Can the team simply extend one of the packaged roadmaps to
meet either organizations software development needs? Does the team really
need to step back and opportunistically chose discrete activities — thereby
building a unique process framework that provides a“best fit” for their orga-
nization? This decision and the resulting process roadmap must be docu-
mented and approved before moving into the deployment phase. See the
following section for sample roadmaps.

Review and approve pre-deployment

Institute a checkpoint before deployment, in which aformal walk-through of
the process is conducted. The objective at this point isto solicit early feed-
back on whether or not the documented framework will indeed meet the pro-
cess objectives set forth at the beginning of this effort. The team should not
proceed to the deployment phase of this project until organizational approval
isformally issued.

Document any issues.

Issues that come up during the formation of the process engineering team
should be carefully documented. These issues will need to be added to the
process engineering or process deployment plans — as appropriate to man-
aging risk accordingly.

The CLASP Application Security Process 37

2.4

Sample Roadmaps

This section presents two recommended roadmaps for the implementation of
the CLASP process:

e The“Green Field” roadmap — recommended for new software devel op-
ment, using a spiral or iterative methodol ogy.

e The“Legacy” roadmap — recommended for existing software in the mainte-
nance phase.

38

The CLASP Application Security Process

241

“Green Field” Roadmap

Activity Comments

Institute security awareness program
Monitor security metrics

Specify operational environment

I dentify global security policy

| dentify resources and trust boundaries
Identify user roles and resource capa-
bilities

Document security-relevant require-
ments

Identify attack surface

Apply security principlesto design

Research and assess security posture of
technology solutions

Specify database security configuration

Perform security analysis of system
requirements and design (threat model -
ing)

Integrate security analysisinto source
management process

Implement and elaborate resource poli-
cies and security technologies

Address reported security issues
Perform source-level security review

| dentify, implement and perform secu-
rity tests

Verify security attributes of resources
Build operational security guide

Manage security issue disclosure pro-
cess

The CLASP Application Security Process

39

24.2

Legacy Roadmap

Activity

Institute security awareness program

Specify operational environment
I dentify resources and trust boundaries

Document security-relevant require-
ments

Identify attack surface

Perform security analysis of system
requirements and design (threat model -

ing)
Address reported security issues
Perform source-level security review

| dentify, implement and perform secu-
rity tests

Verify security attributes of resources
Build operational security guide

Manage security issue disclosure pro-
cess

Comments

This step isimportant as afoundation for
security analysis.

This step is also important as afounda-
tion for security analysis.

Some attempt should be made to address
resource-driven requirements from the
system — both implicit and explicit —
even if not to the level of depth aswould
be performed for Green Field develop-
ment.

This step is also important as afounda-
tion for security analysis.

40

The CLASP Application Security Process

CHAPTER 3

Role-based Overviews

3.1

Project Manager

Software security efforts are rarely successful without buy-in from the project
manager. |n most organizations, security will not be a concern to individual
project membersif |eft to their own devices. Part of the reason is because the
skills required to be effective at secure development do not overlap much with
traditional development skills. Another reason is because most development is
feature-driven, whereas — beyond basic integration of technologies such as
SSL — security rarely shows up as a feature.

The project manager generally has several key responsibilitiesin this space:

* First among them is promoting awareness. Usually all team members will
need to have basic exposure to the application security strategy, and often
several team members will need significant training, as few people have the
necessary skillsin their toolbox.

* Additionally, the project manager should promote awareness outside his
team. Therest of the organization needs to understand the impact of applica-
tion security on the business, such as schedul e trade-offs and security risks
that the team may not address.

The CLASP Application Security Process 41

* Another primary responsibility of the project manager is monitoring the
health of the organization. Generally, thisinvolves defining a set of basic
business matrices and applying them on aregular basis.

Project managers are encouraged to read the following key conceptsin Appen-

dix A: Ethicsin Software Development and Fundamental Security Goals (the
Core Security Services).

Requirements Specifier

The requirements specifier has these major tasks:

* Heisfirst responsible for detailing business requirements that are security
relevant, particularly those things that will need to be considered by an archi-
tect. In most organizations, these two roles will work closely on security con-
cerns and will generally iterate frequently.

» After the team hasidentified a candidate architecture, the requirements spec-
ifier should look at the resources present in that architecture and determine
what the protection reguirements for those resources are. CLASP promotes a
structured approach to deriving these requirements, categorizing resources
into protection levels, and addressing each core security service for each pro-
tection level.

Particularly when using a protection-level abstraction, it is possible to reuse
security requirements across projects. This not only saves a tremendous
amount of time for requirements specifiers; it also prompts organizations to
compare the relative security of multiple projects.

* Inorganizations that develop use cases, a requirements specifier can also
specify misuse cases, which demonstrate to the stakeholder the major secu-
rity considerations that manifest themselves in the system design. For exam-
ple, they may document mitigation technol ogies and how they impact the
user, aswell asrisks that may still be present in a system, thereby allowing
the stakeholder to develop compensating controls at an operational level.

Requirements specifierstraditionally do not have the breadth of security exper-
tise necessary to build highly effective security requirements. For that reason,
we recommend reading Appendix A thoroughly.

The CLASP Application Security Process

3.3

Architect

3.4

In anideal world, the architect simply figures out how — at an architectural
level — necessary security technologies integrate into the overall system. This
includes network security requirements, such asfirewalls, VPNs etc. For this
reason, the architect should explicitly document trust assumptionsin each part
of the system — usually by drawing trust boundaries (e.g., network traffic from
outside the firewall is untrusted, but local traffic is trusted). Of course, these
boundaries must be areflection of business requirements. For instance, high-
security applications should not be willing to trust any unencrypted shared net-
work media.

Security requirements should come from the requirements specifier. To facili-
tate better security requirements, the architect should:

¢ Only need to understand the security implications of technologies well
enough that he does not introduce any overt security errors.

e Enumerate all resourcesin use by a system — preferably to the deepest level
of detail possible.

* Further supporting the building of security requirements, he should identify
therolesin the system that will use each resource.

* He should identify the basic operations on each resource.

* Thearchitect should also be prepared to help people understand how
resources interact with each other through the lifetime of the system.

Designer

The primary responsibility of the designer is to keep security risks out of the
application, whenever possible. This responsibility has many facets:

* First, he must figure out what technologies will satisfy security requirements
and research them well enough to determine how to use those technol ogies
properly.

* Second, if asecurity flaw isfound in the application, it is usually up to the
designer to assess the consegquences and determine how to best address the
problem.

* Finally, the designer needs to help support measuring the quality of applica-
tion security efforts. Generally, thisinvolves providing data that can be used
as metrics or as afoundation for an application security review.

The CLASP Application Security Process 43

3.5

For example, the designer should explicitly document the “ attack surface” of an
application — which is roughly equal to the entry points to an application that
may be visible to an attacker. This data can be used in a metric roughly akin to
traditional software complexity metrics; it is also an excellent starting point for
those who are looking to determine whether there are exploitable risksin soft-
ware.

Designers have the most security-relevant work of al the traditional develop-
ment roles:

* They should push back on requirements that may have unrecognized security
risks.

* They need to give implementors aroadmap in order to minimize the risk of
errors requiring an expensive fix.

* They also need to understand the security risks of integrating third-party soft-
ware.

* Inaddition, they are generally the point person for responding to security
risks identified in the software.

Thus, designers should maintain a high level of security awareness; we recom-
mend reading Appendix A thoroughly.

Implementor

Traditionally, application development is handled in an ad-hoc manner, and it is
the implementor who must carry the bulk of the security expertise. Ultimately,
thisis because — in ad-hoc devel opment — devel opers double as designers.

In ahighly structured development environment, most implementors should be
building to specification and conferring with designers when there are undocu-

mented considerations. I n such an environment, the security responsibilities of a
developer are fairly minimal — primarily following coding standards and docu-
menting the system well enough to make it easier for third partiesto determine

whether the software is as secure asit should be. Sometimes the documentation
will be aimed at the end-users, helping to ensure that they know how to use the
product securely.

The CLASP Application Security Process

For developers who perform any design tasks, we strongly recommend under-
standing designer activities by reading Appendix A and reviewing the root-
causes database (Chapter 5).

3.6 Test Analyst
In a structured devel opment organization, security should not have a great
impact on the overall processes used. The test organization should still be test-
ing to requirements, implementing regression suites, and so on.
In practice, thiswill generally require new testing tools that are specifically
geared toward security because traditional tools are not good at ferreting out
security risks.
Ultimately, beyond tool training and learning about risks well enough to be able
to check for them, testing groups do not need to be security experts.

3.7 Security Auditor

The basic role of a security auditor isto examine the current state of a project
and try to assure the security of the current state of the project:

* When examining requirements, the auditor will attempt to determine whether
the requirements are adequate and compl ete.

* When looking at a design, the auditor will generally attempt to determine
whether there are any implications that could lead to vulnerabilities.

* Inaddition, when looking at an implementation, the auditor will generally
attempt to find overt security problems, which should be mappable to devia-
tions from a specification.

Rarely is being a project security auditor afull time job. Often, developers with
aparticular interest or skill in security perform auditing. Sometimes, organiza-
tions have an audit organization focused on other regulatory compliance, and
these people will perform security review.

It isusually better to avoid reviewing one’s own designs or one’s own code
since it can be difficult to see the forest for the trees.

The CLASP Application Security Process 45

46

The CLASP Application Security Process

CHAPTER 4 ACtI\/ItI%

4.1 Institute security awareness program

Purpose: * Ensure project members consider security to be an important project
goal through training and accountability.
* Ensure project members have enough exposure to security to deal with
it effectively.

Role: Project Manager
Frequency: Ongoing

411 Provide security training to all team members
Before team members can reasonably be held accountable for security issues,
you must ensure they have had adequate exposure to those issues. Additionally,
even those members of the team that do not directly deal with security issues
should be aware of the project’s security practices.

Thisisbest done with atraining program. Everyone on the team should receive
training introducing them to basic security concepts and secure devel opment
process that is used within the organization.

The CLASP Application Security Process 47

41.2

4.1.3

Additionally, people within the organization should receive training targeted to
their role. For example, Developers should receive detailed training on common
root causes and mitigation techniques, particularly as they relate to the devel op-
ment and deployment environment. Additionally, both developers and testers
should receive training for automation tool s that they should use in the course of
doing their jobs.

Promote awareness of the local security setting

Everyone on a devel opment project should be familiar with the security require-
ments of the system, including the basic threat model. When such documents
are produced, they should be distributed and presented to team members, and
you should solicit and encourage feedback from all parties on the team.

When other security-relevant documentation is produced — e.g., as code analy-
sis results — that documentation should be made available to the team, even if
not every member isrequired to review it.

Additionally, you should ensure that security implications are considered when-
ever anew requirement emerges. It isabest practice to explicitly address at the
end of any technical meeting whether there are security ramifications.

Finally, we recommend promoting a culture where your team is externally secu-
rity aware. Watch security news sources and/or article aggregators for security-
relevant news that is related to your project at the end of any technical meeting
— or appoint a designee to do this. Forward to your team anything that seems
relevant to your project. Thisincludes not only flaws in products you use on
your project, but aso interesting news, flaws, or other results that you feel will
maintain awareness and/or further educate your team.

Institute accountability for security issues

Traditional accountability within development organizations is based primarily
on schedule and quality. Security should be treated in much the same way as
any other quality consideration.

First, the team should be given security goals. It is reasonable to expect that a
team member will not be responsible for introducing “standard” risks into the
system, without documenting and escal ating those risks before introducing
them. This recognizes that security is not a“black-and-white” issue —i.e.,
there will always be some security risk in the system. It also helps ensure that

The CLASP Application Security Process

41.4

development team members will consider and document any risks that are con-
sidered acceptable.

When the project manager becomes aware of a new security risk that was not
caught before introducing it into the system, it isimportant that he not decide
arbitrarily whether or not the risk should have been identified in advance.
Instead, we recommend having in place alist of risks that can be used as a base-
line. For example, devel opers should be given alist of coding security standards
— such asthe list in Appendix B — that they are periodically assessed against.
All members of the team should also be held accountable on the basis of adata-
base of root causes, such as the one provided in Chapter 5. Assessing against a
performance matrix for security is an activity discussed in Section 4.2.

Note that sometimes security accountability may affect schedule accountability
—i.e, finding a security issue that requires remediation can have a negative
impact on schedule. We recommend that, whenever the decision is made to
remediate a security risk in away that will impact schedule, the accountability
for the schedule slip should be tied to the accountability for the security prob-
lem.

Additionally, it isthe responsibility of the project manager to ensure adoption of
security activitiesinto the development lifecycle and ensure that they are given
the desired level of attention. Team members must, again, be accountable for
performing these activities to a satisfactory level.

Appoint a project security officer

An excellent way to increase security awareness throughout the development
lifecycleisto designate ateam member as the project security officer, particu-
larly someone who is enthusiastic about security.

Therole of this person (or persons) can vary depending on the development
organization but should encompass at |east the first two of the following duties:
* Serveasarepository of security expertise for other project members.

* Takeinto account security concerns through the SDLC — such as during
design meetings.

* Review work of other team members, asif an externa security auditor, per-
forming security assessments when appropriate.

The CLASP Application Security Process 49

4.1.5

4.2

Generally, independent auditors are far more effective than internal auditors,
regardless of the level of security expertise, even if independent auditors are
till inside the same company. Ultimately, more review is also preferable as
a defense-in-depth measure.

Institute rewards for handling of security issues

Accountability is a necessity for raising security awareness, but another highly
effective way isto institute reward programs for doing ajob well done with
regard to security. For example, it is recommended to reward someone for fol-
lowing security guidelines consistently over a period of time — particularly if
the result is that no incidents are associated with that person.

Additionally, if team members identify important security risks that were not

found in the course of standard auditing practices, these insights should be
rewarded.

Monitor security metrics

Purpose:

Role:

e Gauge the likely security posture of the ongoing development effort.
* Enforce accountability for inadequate security.

Project Manager

Frequency: Ongoing

421

Identify metrics to collect

Thereis awealth of metrics about a program that can offer insight into the
likely security posture of an application. However, the goal of metrics collection
goes beyond simply determining likely security posture; it also aims at identify-
ing specific areas in a system that should be targets for improvement.

Metrics are also important for enforcing accountability — i.e., they should be
used to measure the quality of work done by teams or individual project mem-
bers. The information can be used to determine, for example, which projects
need expert attention, which project members require additional training, or
who deserves special recognition for ajob well done.

One disadvantage of using metrics for accountability isthat, when creating your
own metric, it can take time to build confidence in a set of them. Generally, one
proposes a metric and then examines its value over anumber of projects over a

50

The CLASP Application Security Process

period of time before building confidence that, for example, .4 instead of .5 is
just asbad as .6 isjust as good.

That does not make metrics useless. If the metric always satisfies the property
that adding more risk to the program moves the metric in the proper direction,
then it is useful, because a bar can be set for team members to cross, based on
instinct, and refined over time, if necessary. One need not worry about the exact
meaning of the number, just one's position relative to some baseline.

Asapart of identifying metrics for monitoring teams and individuals, one must
clearly define the range of artifacts across which the metrics will be collected.
For example, if individual developers are responsible for individual modules,
then it is suitable to collect metrics on a per-module level. However, if multiple
developers can work on the same module, either they need to be accountable as
ateam, or metrics need to be collected — for example, based on check-insinto
aversion control system.

The range of metrics one can collect isvast and is easy to tailor to the special
needs of your organization. Standard complexity metrics such as McCabe met-
rics are a useful foundation because security errors become morelikely asa sys-
tem or component gets more complex.

One of the key requirements for choosing a metric isthat it be easy to collect.
Generdly, it ispreferable if the metric is fully automatable; otherwise, the odds
that your team will collect the metric on aregular basis will decrease dramati-
caly.

There are metrics tailored specifically to security. For example, here are some
basic metrics that can be used across a standard devel opment organization:

» \brksheet-based metrics. Simple questionnaires — such as the system
assessment worksheet in Appendix B — can give you a good indication of
your organizational health and can be a useful metric for evaluating third-
party components that you want to integrate into your organization or prod-
uct. Questions on that worksheet can be divided into three groups: “ critical,”
“important,” and “useful” ; then a simple metric can be based on this group-
ing. For example, it is useful enough to simply say that, if any critical ques-
tions are not answered to satisfaction, theresultisa“0".

The value of worksheet-based metrics depends on the worksheet and the
ease of collecting the data on the worksheet. Generally, this approach works

The CLASP Application Security Process 51

well for evaluating the overall security posture of adevelopment effort but is
too costly for measuring at any finer level of detail.

Attack surface measurement. The attack surface of an applicationisthe
number of potential entry points for an attack. The simplest attack surface
metric isto count the number of datainputs to the program or system —
including sockets, registry lookups, ACLs, and so on. A more sophisticated
metric would be to weight each of the entry points based on the level of risk
associated with them. For example, one could assign aweight of 1.0 to an
externaly visible network port where the code supporting the port iswritten
in C, 0.8 for any externally visible port in any other language, and then
assign lesser ratings for portsvisible inside afirewall, and small weightings
for those things accessible only from the local machine. Choosing good
weights requires sufficient data and a regression analysis, but it is reason-
ableto take a best guess.

Attack surface isacomplex topic, but a useful tool. See Appendix A for a
detailed discussion on the topic.

Metrics based on attack surface can be applied to designs, individual execut-
ables, or whole systems. They are well suited for evaluating architects and
designers (and possibly system integrators) and can be used to determine
whether an implementation matches a design.

Even with aweighted average, there is no threshold at which an attack sur-
face should be considered unacceptable. In all cases, the attack surface
should be kept down to the minimum feasible size, which will vary based on
other requirements. Therefore, the weighted average may not be useful
within all organizations.

Coding guideline adherence measurement. Organizations should have
secure programming guidelines that implementors are expected to follow.
Often, they simply describe APIsto avoid. To turn thisinto a metric, one
can weight guidelines based on the risk associated with it or organizational
importance, and then count the occurrences of each call. If more detailed
analysistools are available, it is reasonable to lower the weighting of those
constructs that are used in a safe manner — perhapsto 0.

While high-quality static analysistools are desirable here, simple lexical
scanners such as RATS are more than acceptable and sometimes even pref-
erable.

Reported defect rates. If your testing organization incorporates security tests
into its workflow, one can measure the number of defects that could poten-
tially have a security impact on a per-devel oper basis. The defects can be
weighted, based on their potential severity.

The CLASP Application Security Process

4.2.2

* Input validation thoroughness measurement. It is easy to build a metrics col-
lection strategy based on program features to avoid. Yet there are many
things that developers should be doing, and it is useful to measure those as
well. One basic secure programming principleisthat all datafrom untrusted
sources should go through an input validation routine. A simple metric isto
look at each entry point and determine whether input validation is always
being performed for that input.

If your team uses a set of abstractions for input validation, a high-level
check is straightforward. More accurate checks would follow every data
flow through the program.

Another factor that can complicate collection is that there can be different
input validation strategies — as discussed extensively in Appendix A.
Implementations can be judged for quality, based on the exact approach of
your team.

* Security test coverage measurement. It can be difficult to evaluate the qual-
ity of testing organizations, particularly in matters of security. Specifically,
does alack of defects mean the testers are not doing their jobs, or doesiit
mean that the rest of the team is doing theirs?

Testing organizations will sometimes use the concept of “coverage” asa
foundation for metrics. For example, in the general testing world, one may
striveto test every statement in the program (i.e., 100% statement coverage),
but may settle for a bit less than that. To get more accurate, one may try to
test each conditional in the program twice, once when the result is true and
once when it isfalse; thisis called branch coverage.

Directly moving traditional coverage metrics to the security realm is not
optimal, because it israrely appropriate to have directed security tests for
every line of code. A more appropriate metric would be coverage of the set
of resources the program has or accesses which need to be protected.
Another reasonable metric is coverage of an entire attack surface. A more
detailed metric would combine the two: For every entry point to the pro-
gram, perform an attainability analysis for each resource and then take all
remaining pairs of entry point and resource and check for coverage of those.

Identify how metrics will be used

Thistask often goes hand-in-hand with choosing metrics, since choice of metric
will often be driven by the purpose. Generally, the goal will be to measure
progress of either a project, ateam working on the project, or ateam member
working on a team.

The CLASP Application Security Process 53

4.2.3

Besides simply identifying each metric and how one intends to apply it, one

should consider how to use historical metrics data. For example, one can easily
track security-related defects per developer over the lifetime of the project, but
it is more useful to look at trends to track the progress of developers over time.

For each metric identified, it is recommended to ask: “What does this mean to
my organization right now?’ and “What are the long-term implications of this
result?’. That is, it is recommended to draw two baselines around a metric: an
absol ute baseline that identifies whether the current result is acceptable or not,
and arelative baseline that examines the metric relative to previous collections.
I dentified baselines should be specific enough that they can be used for
accountability purposes.

Additionally, one should identify how often each metric will be collected and
examined. One can then evaluate the effectiveness of the metrics collection pro-
cess by monitoring how well the schedule is being maintained.

Institute data collection and reporting strategy

A datareporting strategy takes the output of data collection and then produces
reports in an appropriate format for team consumption. This should be done
when selecting metrics and should result in system test requirements that can be
used by those people chosen to implement the strategy.

Implementing a data collection strategy generally involves: choosing tools to
perform collection; identifying the team member best suited to automate the
collection (to whatever degree possible); identifying the team member best
suited to perform any collection actions that can not be automated; identifying
the way datawill be communicated with the manager (for example, through a
third-party product, or simply through XML files); and then doing all the work
to put the strategy in place.

Data collection strategies are often built around the available tools. The most
coarse tools are simple pattern matchers — yet tools like this can still be
remarkably effective. When using such tools, there are multiple levels at which
one can collect data. For example, one can check individual changes by scan-
ning the incremental change as stored in your code repository (i.e., scan the
“diffs’ for each check-in), or one can check an entire revision, comparing the
results to the output from the last revision.

The CLASP Application Security Process

More sophisticated toolswill generally impose requirements on how you collect
data. For example, analysistools that perform sophisticated control and data
flow analysiswill not be able to work on incremental program changes, instead
requiring the entire program.

Wherein the lifecycle you collect metricsis a so tool-dependent. For example,
many per-system metrics can be collected using dynamic testing tools — such
as network scanners and application sandboxes, which are applied while the
system is running. Code coverage tools also require running the program and
therefore must be collected during testing (or, occasionally, deployment).

But static code scanners can produce metrics and can be run either at check-in
time or during nightly builds. Tools like RATS that perform only the most light-
weight of analysis may produce less accurate results than atrue static analysis
tool but have the advantage that they can operate over a patch or “diff” — as
opposed to requiring the entire program. This makes assigning problems to
team members much simpler.

424 Periodically collect and evaluate metrics

Periodically review the output of metrics collection processes (whether auto-
mated or manual). Act on the report, as appropriate to your organization. In
order to maintain high security awareness, it can be useful to review metrics
resultsin group meetings.

If — in the course of reviewing data produced by metrics — it becomes clear
that those metrics do not adequately capture data needed to evaluate the project,
teams or team members, use thisinformation to iterate on the metrics collection

process.
4.3 Specify operational environment
Purpose: e Document assumptions and requirements about the operating environ-

ment, so that the impact on security can be assessed.
Role: Requirements Specifier
Frequency: Asnecessary; generally, once per iteration.

An operational environment specification all ows team members to understand
the operational context that they need to consider for designing protection

The CLASP Application Security Process 55

43.1

mechanisms or building operational security guides. Much of the data required
for an operational environment specification will already be produced in defin-
ing business requirements, and specifying the operational environment will
often result in identifying new requirements.

Generally, this activity will result in changes to existing requirements and spec-
ifications, if necessary. However, it is also reasonable to produce stand-alone
documentation. An operational environment worksheet isprovidedin Appendix
B.

Identify requirements and assumptions related to individual hosts

A host-level operational environment specification should identify anything
that could potentially be security-relevant to other team members. In most cir-
cumstances, the large majority of considerations will be addressed by assuming
nothing. For example, it israre that, beyond the core OS, one will take actions
to ensure that particular pieces of software will not be running on a machine,
even if that software might pose athreat.

Still, there are properties that are worth specifying, even beyond hardware plat-
forms and OS. For example, it is worth specifying which user the software is
expected to run as, since this has security implications.

One can also enforce prerequisites, aslong as they are necessary to product
functionality. Any such prerequisites should be identified as early as possible. If
the project is expected to interact with important system components or libraries
that come bundled with the OS, it is recommended to note this aswell, not only
because those may be additional sources of risk to the resources the application
exports, but also because the software should be concerned about the security of
resources it is capable of using.

Additionally, one should consider what optional functionality might bein the
environment that could have a security impact — positive or negative — that
your project could explicitly leverage or protect, as hecessary.

Example: Your customer base is government-focused and is likely to have a
dynamic policy enforcement environment available. Note that — since provid-
ing policies for such an environment might be a way to remediate significant
risks for those users — you can aso serve other users by recommending a
dynamic policy-enforcement environment to them. On the other hand, if your
software is dependent on a component that is known to be risky, such as
Microsoft's [1S server, it is good to know about the risk up-front.

The CLASP Application Security Process

4.3.2

4.4

Identify requirements and assumptions related to network
architecture

In some environments, one can assume particular things about network topol-
ogy, such as the existence and configuration details of afirewall or asingle-
sign-on mechanism. Often, however, assumptions cannot be made.

Aswith host-related concerns, it is recommended to define not only those
things that will or will not be in the environment but also those things that may
have an impact (either positive or negative) if present in the environment. For
example, many applications assumeimplicitly that there is no network-attached
storage, or if thereis, it hasits own security measures in place that make it as
secure as the local disk. That is often not the case; and thisis a concern that
should ultimately be entered into an operational security guide if the risk is not
addressed at the application level.

Additionally, focus on those network resources that must be present for the sys-
tem to correctly function — such as a database, and possibly available band-
width. Also, if your customers are expected to want integration with centralized
authentication servers or other network resources, this should be noted as a
reguirement.

Identify global security policy

Purpose:

Role:

* Provide default baseline product security business requirements.

* Provide away to compare the security posture of different products
across an organization.

Requirements Specifier

Frequency: Asnecessary; generaly, at least once per iteration.

441

Build a global project security policy, if necessary

If the organization islacking a global project security policy, then the CISO,
head of engineering and managers of significant projects (or the equivalents)
should work together to determine whether a policy is valuable, and if so, pro-
duce the policy. It is generally a good idea to maintain this policy as a group,
athoughiit is particularly reasonable to entrust it to asingle individual when the
head of engineering has a strong security background.

The CLASP Application Security Process 57

442

Particularly in large organizations with many separate projects, it is useful to
have a set of baseline security requirementsfor software projects. Not only does
this ease the burden of requirements specifiersin the long term, it also provides
away to compare the security posture of applications within the organization,
and can be aframework for per-project accountability.

If some projects are deployed on the company’s network, such requirements are
even more valuable since they serve as a concrete documentation of internal
procedures that documentation teams should be following. Some organizations
even have separate policies for both internally deployed software and externally
delivered software.

A global project security policy should detail aminimum baseline for protecting
data resources, with respect to the basic security services. It can (and should)
break resources up into categories (or specific technologies), providing different
guidance for each, where appropriate. Such guidance should include when to
apply technologies as well as how to apply technologies when they are used on
aproject.

When designing such requirements, one should avoid making choices that are

arbitrary, and potentially limiting. For example, it is fine to specify a particular
minimum key size for a cryptographic algorithm, but a policy shouldn’t disal-

low aproject from choosing larger keys, unless there is a strong reason for it.

We provide a sample list of global security requirementsin Appendix B.

Determine suitability of global requirements to project

For each of the requirementsin the global requirement list, one should deter-
mine whether it is appropriate to the project. If it is not appropriate to the
project, that fact should be documented explicitly. Preferably, this would be
done by maintaining an annotated copy of the global requirements document, so
that one can easily demonstrate coverage of the global policy. However, itis
also reasonable to incorporate irrelevant requirements directly into a require-
ments document, with an annotation indicating that it is believed to beirrele-
vant to the project, but must be followed per the global policy, if it becomes
relevant.

If the global requirement is relevant to the project, determine how it is relevant:

* Theglobal requirement is already addressed by one or more of the other sys-
tem regquirements. In this case, one should denote explicitly that the global

58

The CLASP Application Security Process

requirement is addressed, and which project requirement(s) addressiit. This
can be done either on amarked up version of the global policy, or in placein
the system requirements document, depending on the organization’s prefer-
ences.

The global requirement contradicts the project requirements (implicit or
explicit). Generally, this should result in a change of the project require-
ments. If not, it should be escalated beyond the project to the global policy
maintainer(s), resulting either in a change of the global requirements or an
exception that gets explicitly documented.

The global requirement does not contradict existing requirements, but has
not yet been addressed. The requirements specifier should determine how to
incorporate the requirement. Sometimes the global requirement can be cop-
ied directly, and sometimes it will need to be elaborated. Often, however,
global requirements will provide general, high-level guidance that an indi-
vidual project may elaborate. For example, a global requirement may be to
allow any cryptographic algorithm that was afinalist in the AES competi-
tion with 128-bit keys or larger for providing symmetric confidentiality, but
aparticular system may specify AES with 256 bit keys.

4.5 Identify resources and trust boundaries
Purpose: * Provide a structured foundation for understanding the security
requirements of a system.
Role: Architect
Frequency: Asneeded; at least once per iteration.
451 Identify network-level design

Describe the architecture of the system from the perspective of the network.
Particularly, identify any components that could possibly be located on different
logical platforms. For example, client software should be identified, as well as
middleware and any database. If there is both middleware and a database, which
might possibly live on a separate machine, they should be identified aslogically
separate.

As part of denoting components, denote trust boundaries. For example, the fire-
wall is often atrust boundary — the client machines on the outside are less
trustworthy. Individual hosts are often trust boundaries, and many multi-user

The CLASP Application Security Process 59

45.2

systems can have multiple trust boundaries internally. Trust boundaries should
be mapped to system roles that can be granted that level of trust.

A network-level design should be codified with adiagram in order to facilitate
communication. This should be the same kind of diagram one would put on a
whiteboard when asked about the architecture. The document should be kept
up-to-date with changes and additions to the architecture. Particularly, as you
identify protection mechanisms for resources and data links, you should anno-
tate the diagram with these mechanisms.

Identify data resources

Identify data resources that may be used by a program. In conjunction with the
next activity, this should ultimately be broken down into individual capabilities
related to each resource. When the information is known, break down each
resource as granularly as possible — e.g., by identifying individual database
tables, instead of simply the database as awhole.

This information should be documented separately to facilitate analysis, but
may be incorporated directly into business regquirements.

Sample resources include;

» Databases and database tables

e Configuration files

* Cryptographic key stores

* ACLs

* Registry keys

* Web pages (static and dynamic)

e Audit logs

* Network sockets/ network media
* |IPC, Services, and RPC resources
* Any other files and directories

* Any other memory resource

Note that network mediais aresource of its own. Data resources will often be
stored in memory, placed onto awire, received in memory on the other end, and
then stored on disk. In such a scenario, we often will not want to address the
security of the datain a vacuum, but instead in the context of the resource the

60

The CLASP Application Security Process

dataisinhabiting. In the network media, we need to specify how to protect that
datawhen it traverses the media, which may be done generically or specifically
to the media

4.6 Identify user roles and resource capabilities
Purpose: * Define system roles and the capabilities/resources that the role can
access.
Role: Architect

Frequency: Asneeded; at least once per iteration.

46.1

4.6.2

Identify distinct capabilities

Intelligent role division requires understanding the thingsin a system that users
may be able to do (capabilities). Even if thereis a heavy disposition to use a
very limited number of roles, thereis much value in identifying possible capa-
bilities, then applying the principle of least privilege by binding capabilities to
roles only when necessary. For example, even if the primary role abstraction is
“user”, it is perfectly valid to restrict sensitive operations to a subset of those
users.

Capabilities are interesting operations on resources that should be mediated via
an authorization/access control mechanism. For example, the obvious capabili-
tiesfor afile on afile system are: read, write, execute, create, and delete. How-
ever, there are other operations that could be considered “ meta-operations’ that
are often overlooked, particularly: reading and writing file attributes, setting file
ownership, and establishing access control policy to any of these operations.

Map system roles to capabilities

Roles are away of mapping sets of capabilitiesto classes of users. Traditionally,
people have thought of roles only at the highest level, breaking them down into
administrator, users and guest, or whatever natural division suits the system.
Thisisareasonable high-level abstraction, but in many systemsit does not
serve the principle of least privilege, which states that one should have the min-
imal privileges necessary, and no more.

On the other end of the spectrum, one can define one role for every set of
resource capabilities one might want to allow. But that can quickly get complex
if users need to be able to assign capabilities to other users dynamically. Asa

The CLASP Application Security Process 61

4.6.3

result, it isusually best to map rolesto static sets of capabilities. This should be
done by specifying the default set of capabilities for the role as well as the max-
imum set of capabilities for therole.

In most situations, the system itself isan implicit role (or set of roles) that has
all capabilities and mediates access to them — particularly in a client-server
application.

Role to capability mappings can be expressed as requirements stating that the
given role should have access to aparticular set of capabilities. Optionally, role
information can be captured in a separate artifact.

Identify the attacker profile (attacker roles and resources)

When defining system requirements, one must have a good model specifying
where threats could originate. Particularly, one should attempt to identify poten-
tial groupsthat could be athreat aswell as the gross resources one expects them
to have.

For example, one should consider acknowledging the following attacker roles
in an architecture:

* Insiders— particularly those who have physical access to the building
where critical infrastructure is kept. Most crimes are caused by people with
some sort of insider access, including friends, building workers etc. While
many insider attacks are due to some form of disgruntlement, more often
they are crimes of opportunity.

e “Seript Kiddies” — are those people who leverage exploits that are easy to
find in the underground community. This group generally targets widely
deployed software systems, due to the ready availability of exploits and tar-
gets. Such systems are often present as components in more complex sys-
tems.

* Competitors — who may have a reasonable budget and may be willing to
fundillegal or borderline activity that is unlikely to be traced back to them
(e.g., due to outsourcing to Russia).

* Governments — who are generally extraordinarily well funded.

* Organized crime —who choose few targets based on financial gain but are
well funded.

¢ Activists— who will target organizations that are particularly unliked. This
threat vector is easy to ignore, but could be a source of risk. For example,

62

The CLASP Application Security Process

there are non-traditional activists, such as those that target security compa-
nies perceived to be untalented.

An attacker profile should be documented independently but could be incorpo-
rated into business requirements.

4.7 Document security-relevant requirements
Purpose: e Document business-level and functional requirements for security.
Role: Requirements specifier

Frequency: Asneeded; at least once per iteration.

In this activity, we describe how to take a resource-centric approach to deriving
reguirements. This approach resultsin much better coverage of security require-
ments than do ad-hoc or technology-driven methods. For example, many busi-
nesses will quickly derive the business requirement “Use SSL for security,”
without truly understanding what requirements they are addressing. For exam-
ple, is SSL providing entity authentication, and if so, what is getting authenti-
cated, and with what level of confidence? Many organi zations overlook this,
and use SSL in a default mode that provides no concrete authentication.

All requirements (not simply security requirements) should be SMART+
regquirements — i.e., they should follow afew basic properties:

* Secific. There should be as detailed as necessary so that there are no ambi-
guitiesin the requirement. This requires consistent terminology between
reguirements.

* Measurable. It should be possible to determine whether the requirement has
been met, through analysis, testing, or both.

* Appropriate. Requirements should be validated, thereby ensuring that they
not only derive from areal need or demand but also that different require-
ments would not be more appropriate.

* Reasonable. While the mechanism or mechanisms for implementing a
requirement need not be solidified, one should conduct some validation to
determine whether meeting the requirement is physically possible, and pos-
sible given other likely project constraints.

* Traceable. Requirements should also be isolated to make them easy to track/
validate throughout the development lifecycle.

The CLASP Application Security Process 63

4.7.1

4.7.2

SMART requirements were originally defined by Mannion and Keepence. We
have modified the acronym. The original “A” was “Attainable”, meaning phys-
ically possible, whereas “ Reasonable” was specific to project constraints. We
have combined these two requirements since their separation is somewhat arbi-
trary and since we believe there should be afocus on appropriateness. Due to
this change, we distinguish our refinement as SMART + requirements.

The original paper on SMART requirementsis good elaboration on these princi-
ples. See http://www.win.tue.nl/~wstomv/edu/2i p30/references/smart-require-
ments.pdf.

Document explicit business requirements

Security requirements should be reflected in both business and functional
reguirements. Generally, business requirements will focus on demands from the
customer and demands that areinternal to the organization. Asaresult, business
reguirements may be somewhat unstructured.

A starting point for internally driven requirements can be taken from a global
security policy, if present. Be aware that individual projects may have specific
reguirements that are not covered by the global policy or arein conflict with it.

Since customers often are not adequately security-aware, one should not expect
to derive an exemplary set of security requirements through customer interac-
tion. It isrecommended to explicitly bring up issues that may become important
with system users after deployment, particularly:

* Preferred authentication solutions;

* Preferred confidentiality solutions for network traffic;

» Preferred confidentiality solutions for long-term storage of key data; and
* Privacy concerns (particularly for personal data).

Develop functional security requirements

Functional security requirements should show how the basic security services
are addressed for each resource in the system, and preferably on each capability
on each resource. This generally calls for abstraction to make the process man-
ageable. Security requirements should be, wherever possible, abstracted into
broad classes, and then those classes can be applied to all appropriate resources/
capabilities. If there are still resources or capabilities that do not map to the
abstractions, they can be handled individually.

The CLASP Application Security Process

For example, end-user datathat is generally considered highly sensitive can
often be placed into a“ User-Confidential” class, whereas public data could be
placed into a“User-Public” class. Requirementsin the first class would tend to
focus on circumstances in which access to that data can be granted to other enti-
ties.

Classes can be applied either to data resources or to individual capabilities by
specifying arequirement that the specific resource or capability should be han-
dled in accordance with the security policy of the particular protection class.
When applied to data resources, requirements should be specified in the
abstracted class for any possible capability, even if some data elements will not
have the capability.

Whereas most data resources will lump into afew reasonable abstractions, it is
often the case that other system resources such as the network, local memories,
and processors do not conform to user data requirements.

For each identified category, specify protection requirements on any resource
in that category, relative to the basic security services:

* Authorization (access control): What privileges on data should be granted to
the variousroles at various timesin the life of the resource, and what mech-
anisms should be in place to enforce the policy. Thisisalso known as access
control and is the most fundamental security service. Many other traditional
security services (authentication, integrity, and confidentiality) support
authorization in some way.

Consider here resources outside the scope of your system that are in the
operating environment which need to be protected — such as administrative
privileges on a host machine.

* Authentication and integrity: How is identity determined for the sake of
access to the resource, and must the resource be strongly bound to an iden-
tity? For example, on communication channels, do individual messages
need to have their origin identified, or can data be anonymous?

Generally, requirements should specify necessary authentication factors and
methods for each endpoint on a communication channel and should denote
any dependencies, such as out-of-band authentication channels — which
should be treated as a separate system resource.

Integrity isusually handled as a subset of data origin authentication. For
example, when new data arrives over acommunication channel, one wants
to ensure that the data arrived unaltered (whether accidentally or mali-

The CLASP Application Security Process 65

ciously). If the data changes on the wire (whether by accident or malice),
then the data origin has changed. Therefore, if we validate the origin of the
data, we will determine the integrity of the data as well.

Thisillustrates that authentication — if it is necessary in a system — must
be an ongoing service. An initial authentication is used to establish identity,
but that identity needs to be reaffirmed with each message.

Identity isthe basis for access control decisions. A failure in authentication
can lead to establishing an improper identity, which can lead to aviolation of
access control policy.

* Confidentiality (including privacy): Confidentiality mechanisms such as
encryption are generally used to enforce authorization. When aresourceis
exposed to a user, what exactly is exposed: the actual resource or some
transformati on? Reguirements should address what confidentiality mecha
nism isrequired and should identify how to establish confidentiality — usu-
ally requiring identity establishment.

* Availability: Requirements should focus on how available a resource should
be for authorized users.

* Accountability (including non-repudiation): What kind of audit records need
to be kept to support independent review of access to resources/uses of
capabilities— i.e., what logging is necessary? Remember that log files are
also a data resource that need to be specified and protected.

After building a set of abstractions and mapping it to resources, one needs to
ensure that all resources (and preferably capabilities) have adequate coverage
for security requirements. This generally entails walking through each resource
identified in the system and attempting to determine whether there are special
reguirements relative to each of the core security services.

The output should not only consist of security requirements, but also documen-
tation of what threats were considered. Considered threats should be docu-
mented on a per-resource — or per-capability — basis and should address each
security service. These should be cataloged in the threat model.

4.7.3 Explicitly label requirements that denote dependencies

All externa dependencies should be captured in requirements to whatever
degree reasonable. All third-party components used should be specified. Any
required functionality in the operational environment specification should be
specified.

66 The CLASP Application Security Process

4.7.4

Any requirements denoting external dependencies should be explicitly |abeled
as such in order to facilitate subsequent analysis.

Determine risk mitigations (compensating controls) for each
resource

At the business requirement level, one generally identifies what resources need
to be protected — i.e., what risks on individual resources need to be addressed
— and may document customer-driven technology decisions for ways to miti-
gate risks on those resources.

Functional requirements should specify what mechanisms should be put in
place to provide security services on resources. Such mechanisms address par-
ticular risks. A requirements specifier should not worry about determining spe-
cific risks. This means that the requirements specifier should not spend too
much time identifying how particular services might be compromised. Instead,
he should prefer specifying general mechanisms that assume any method of
compromise.

While this may not address all risks, it shiftsthe need for security expertiseinto
the analysis process (usually, architectural analysis). Of course, asrisksthat are
more granular are identified, requirements and mitigations should be updated.

Functional security requirements should focus on how potential security risks
areto be addressed in a system. Aswith business requirements, functional secu-
rity requirements can be derived in a structured way from either a set of
resources (including those that are not explicitly data resources, such as the
CPU) or, preferably, aset of capabilities defined over a set of resources.

Risks on capabilities differ throughout the lifetime of a system, and when speci-
fying functional requirementsfor protecting data, one should explicitly consider
this. If and when data-flow diagrams are avail able for the system, one should
trace each resource through the diagram, assessing risk relative to each core
security service at each step, particularly assessing whether currently identified
controls are valid at each trust level.

It can be useful to carefully consider data flow through the system as opposed to
just data considered statically. Realistically, requirements on that data can
change, depending on the subsystem in which the datais passing — particularly
as the data passes through system trust boundaries.

The CLASP Application Security Process 67

4.7.5

Particularly, one should realize that data belonging to one user could often have
accidental (unauthorized) flows to other usersin the system and to people with
insider access to the system. Seek to protect data as soon as feasible and for as
long as possible — particularly, while dataisin storage.

For each resource capability tracked through the system, identify on trust
boundaries what risks could be considered (iterating through the basic security
services), then identify solutions for addressing those risks. If an action isto be
taken as part of the system being built, document it as afunctional requirement,
mapping it explicitly to the capability, resource, and any relevant business
reguirements.

If no protection is to be implemented in the context of the system, the risk
should be documented for the benefit of the end user. Additionally, when feasi-
ble, one should recommend compensating controls — mitigation techniques
that can be implemented by the customer. Similarly, even when risks are
addressed internal to the system, there will generally be lesser lingering risks,
and these too should be documented in an operational security guide. See the
activity on Building operational security guide for more detail.

One should iterate on security requirements as new risks are presented — such
asthrough risk analysis.

Resolve deficiencies and conflicts between requirement sets

Many systems will have multiple levels of requirements, all of which will
address security. For example, a project may have a set of business require-
ments, a set of functional requirements, and a set of global requirementsthat are
effectively requirements for the project — particularly if they are not directly
incorporated into either of the other artifacts.

One should map each set of requirements to the othersin order to determine
omissions and conflicts. For example, one can annotate a copy of global
reguirements, specifying which business or functional requirements map to
each global requirement by iterating through the business or functional require-
ments that are security-relevant.

Conflicts, when noticed, should be resolved as appropriate. If a global require-
ment is to be exempted, an organization should have an approval process
involving the owner of the global requirements and resulting in explicit sign-
off. Otherwise, conflicts should be resolved by mutual agreement of appropriate
contributors.

68

The CLASP Application Security Process

When business requirements fail to address aglobal requirement, or functional
requirementsfail to elaborate on business requirements adequately, create anew
reguirement as appropriate.

4.8 Detail misuse cases
Purpose: e Communicate potential risksto stakeholder.
e Communicate rationale for security-relevant decisions to stakeholder.
Role: Requirements Specifier
Frequency: Asrequired; typically occurring multiple times per iteration, and most fre-
quently in Inception and Elaboration iterations.
48.1 Identify misuse cases

Misuse cases are identical to use cases, except that they are meant to detail com-
mon attempted abuses of the system. Like use cases, misuse cases require
understanding the actors that are present in the system. Those actors should be
mapped to capabilities, if possible. Misuse cases should be designed for each
actor, and one should also consider uses cases for nefarious collaborating actors.

Aswith normal use cases, one should expect misuse cases to require adjustment
over time. Particularly, it is common to start with high-level misuse cases, and
refine them as the details of the system are better understood.

Determining misuse cases generally constitutes a brainstorming activity. There
are three good starting points for structured brainstorming:

* First, one can start with a pre-existing knowl edge base of common security
problems and determine whether an attacker may have cause to think such a
vulnerability is possible in the system. Then, one should attempt to describe
how the attacker will leverage the problem if it exists.

* Second, one can brainstorm on the basis of alist of system resources. For
each resource, attempt to construct misuse cases in connection with each of
the basic security services: authentication, confidentiality, access control,
integrity, and availability.

¢ Third, one can brainstorm on the basis of a set of existing use cases. Thisis
afar less structured way to identify risksin a system, yet is good for identi-
fying representative risks and for ensuring the first two approaches did not

The CLASP Application Security Process 69

4.8.2

4.8.3

4.8.4

overlook any obvious threats. Misuse cases derived in this fashion are often
written in terms of avalid use and then annotated to have malicious steps.

Describe misuse cases

A system will have anumber of predefined roles, and a set of attackers that
might reasonably target instances of the system under development. These
together should constitute the set of actors that should be considered in misuse
Cases.

Aswith traditional use cases, you should establish which actors interact with a
use case — and how they do so — by showing a communi cates-association.
Also astraditionally done, one can divide use cases or actors into packages if
they become too unwiel dy.

Important misuse cases should be represented visually, in typical use case for-
mat, with steps in a misuse set off (e.g., a shaded background), particularly
when the misuse is effectively an annotation of alegitimate use case.

Those misuse cases that are not depicted visually but are still important to com-
municate to the user should be documented, as should any issues not handled by
the use case modedl.

Identify defense mechanisms for misuse cases

Asoneidentifies defense mechanismsfor various threats specified in a use case
model, one should update the use case model to illustrate the defense mecha-
nism. If thereis no identified mechanism at a particular point in time, the use
case should be annotated to say so.

Defense mechanisms either should map directly to afunctional requirement, or,
if the defense mechanism is user-dependent, to an item in an operational secu-
rity guide.

Evaluate results with stakeholders

Review and discuss the misuse case with stakeholders, so that they have a clear
understanding of the misuse case and agree that it is an adequate reflection of
their requirements.

70

The CLASP Application Security Process

4.9 Identify attack surface
Purpose: * Specify all entry pointsto a program in a structured way to facilitate
analysis.
Role: Designer
Frequency: As needed; usually once after design, and ongoing during elaboration.
The attack surface can be defined explicitly in requirements, but is generally
defined in the threat model document.
49.1 Identify system entry points

The system attack surface isthe collection of possible entry pointsfor an
attacker. Generally, when performing a network-level design, one will already
have defined the components with which an attacker can interact, giving the
highest-level notion of entry points.

In this task, define the specific mechanisms through which anyone could inter-
act with the application regardless of their role in the system. For example, doc-
ument all network ports opened, all places where the file system is touched, any
local Ul elements, any inter-procedural communication points, and any public
methods that can be called externally while the program is running.

For each entry point, provide an unambiguous description and a unique i denti-
fier. Generally, thisinformation — aswell as the supporting information col-
lected below — can be stored in a table-based format much like a requirements
matrix.

Program entry points should be documented as they are identified. Often, asa
project transitions from specification to elaboration, entry points become more
granular. Thisincreased granularity should be handled by defining attack sur-
faces hierarchically. For example, data communication over a network port will
have a corresponding handler in the code where input from the network socket
isread and will sometimes have multiple handlers. Such handlers should be
identified as input points that are parented under the specific network socket.

Another example is aweb application. There may be one or more ports that are
entry points, and there may be multiple web pages on the port that are entry
points. Also, each web page may have one or more forms that are entry points.

The CLASP Application Security Process 71

4.9.2

Map roles to entry points

For each point in the attack surface, identify al rolesthat could possibly access
the entry point. This should map to trust boundaries previously defined —i.e.,
all entry pointsin the same trust boundary should have the same set of roles
attached.

Otherwise, ensure that there really isa control enforcing access control to the
resource and update trust boundaries appropriately.

4.9.3 Map resources to entry points
For each entry point, document the resources that should be accessible from that
entry point — and capabilities that should be accessible if the system is speci-
fied to thislevel. Thiswill facilitate building data flow diagrams, if part of your
process. It will also facilitate security analysis— as will data flow diagrams, if
available.
4.10 Apply security principles to design
Purpose: e Harden application design by applying security design principles.
e |dentify security risksin third-party components.
Role: Designer

Frequency: Asnecessary; at least once per iteration

4.10.1

Refine existing application security profile

This activity is performed on an existing design. If it follows other CLASP
activities, the team will have done the following before this point:

* Identified resources in the system and capabilities on those resources,
* |dentified roles in the system;
* |dentified trust boundaries; and

* Identified requirements for providing security services on aresource-by-
resource basis, throughout the lifetime of the resource.

Often, al of thisinformation will beidentified in the requirements. If any of the
information is not present, it should be produced at this time.

72

The CLASP Application Security Process

4.10.2

If the information does exist, it should be updated to account for additional
detail and refinements that have since been added to the architecture.

At the end of this subtask, one should understand the security needs for each
role resource in the system, throughout the compl ete lifetime of the application,
including security requirements for data links and long-term data storage.

Determine implementation strategy for security services

Security requirements should specify what needs to be done in relation to core
security services. The purpose of design is to elaborate on how those require-
ments will be met.

Identify solutions for meeting security requirements at each identified point in
the design by adhering to the following principles:

* Look for third-party solutions, starting the search with a preference for well-
vetted off-the-shelf solutions to untrusted solutions or in-house solutions.
For example, when cryptography is viewed as a solution to a problem, look
first to seeif there are recent standards from well-regarded standards bodies
that address the problem.

For exampl e, the recent trend for standards by organizations such as the
IETF, IEEE, ITU, and NIST isto adopt well-vetted research ideas into stan-
dards, then bring in external security review. Do enough diligence to build
confidence that the research community is not worried about the standard. If
no good standard exists, try to leverage software that has a clear lineage
from peer-reviewed academic research and avoid designing your own solu-
tions without the guidance of awell-respected cryptographer.

* When considering off-the-shelf technologies, perform arisk assessment of
the technol ogy before designing it into the system, as discussed in the next
activity. When choosing to integrate the technology, go back and integrate
additional security requirements into the product reguirements as appropri-
ate.

* Design appropriate validation mechanisms — input validation, authentica-
tion, and authorization — wherever data can enter a system or cross a trust
boundary. For example, in amulti-tier system with afirewall, it is insuffi-
cient to perform either input validation or authentication on data of external
origin, because insiders behind the firewall would be able to inject data
without being validated.

A more reasonable solution is to validate on every architectural tier and to
pass credential s securely between architectural components.

The CLASP Application Security Process 73

4.10.3

* Ensure that identified solutions address risks to the desired degree. For
example, input validation routines that only perform basic pattern matching
and do not perform syntactic validation can often be circumvented. See the
discussion in Appendix A on input validation.

* Prefer the simplest solution that meets requirements. Complex solutions
tend to both have additional inherent risks and be harder to analyze.

* When multiple security solutions are necessary to better alleviate risks —
i.e, asingle solutionisleft with risk that still needs to be mitigated using
another solution — be sure that, if thereis an instance of arisk that one of
the solutions can address, the risk does get addressed. For example, if using
multiple authentication factors such as passwords and smart cards, a user
should need to validate using both technologies, instead of smply one.

If this " defense-in-depth” strategy is taken, the attacker has to thwart both
authentication mechanisms. Otherwise, the system isonly as good as the
weaker of the two mechanisms — the “weakest-link” principle.

* Look for waysto minimize exposure if defenses are somehow compro-
mised: e.g., fine-grained access control, trusted systems, or operational con-
trols such as backups, firewalls, and the like.

Build hardened protocol specifications

Whileit is desirable to use high-level protocols for security such as SSL/TLS,
most applications will ultimately define their own semantics and thus their own
protocols when communicating.

No matter how simple, protocols that are devel oped in-house should be well-
specified so that they can be analyzed. They should always berigid in what they
accept. This means that the method for performing input validation should be
apparent in the protocol specification.

A cryptographer should analyze any system containing new protocols for secure
communication or identity establishment authored by the development organi-
zation. Protocols should also be as simple as feasible so as to be as easy to ana-
lyzeasisfeasible.

One should also specify what happens on error conditions. Generally, when
errors are not related to well-known classes of accidental user error, it is best to
fail safely and reset, even if thereis minimal lack of availability created,
because secure recovery from unexpected and infrequent classes of errorsis
generally quite difficult to perform.

74

The CLASP Application Security Process

4.10.4

4.11

Design hardened interfaces

API interfaces themsel ves define protocol s, and should be treated in the same
way, with well-defined specifications, including specifications defining valid
input. Note that — as discussed in the Input Validation concept — checking the
range of each parameter in isolation is not always a sufficient specification. Be
thorough in defining under which circumstances data is semantically valid. For
example, if the first parameter affects what values are valid for the second
parameter, this should be noted in a specification.

APIs should also come with well-specified error handling mechanisms. Callers
should be forced to deal with unusual conditions when they occur. Particularly,
do not specify use of error codes that a developer will often ignore. Instead,
specify use of an exception that — if al else fails— will be caught at the top
level; in this case, the program should fail securely and reset.

Additionally, one should focus on exporting afew simple APIs, which will min-

imize the attack surface.

Research and assess security posture of
technology solutions

Purpose:

Role:

e Assess security risksin third-party components.

* Determine how effective atechnology islikely to be at alleviating
risks.

Designer

Frequency: Asnecessary.

4111

Get structured technology assessment from vendor

If atechnology isto beintegrated into your system — even if it isfor the pur-
poses of mitigating risk in your own system — you will generally assume the
risks associated with that technol ogy.

For thisreason (among others), it ismost desirable to assess the security risks of
such components in the same way as your own software. Vendors are rarely
cooperative in giving the access required for this; and in cases where they are
(e.g., open source software), the effort involved in afull assessment israrely
cost-effective.

The CLASP Application Security Process 75

4.11.2

411.3

Instead, one will generally want to collect relevant data that will provideinsight
into the likely security posture of software through interaction with the vendor.
See Appendix A for a sample “ self-assessment worksheet” that either the ven-
dor canfill out, or (more often) you can fill out, based on interaction with the
vendor.

A good product assessment worksheet should give insight into the following:

* Atahighlevel, what arethe trust boundaries, resources, and rolesin the sys-
tem?

* Has an independent assessment been performed by a respected third-party?
Andif so, what businessrisksdid it identify, and what has changed since the
assessment?

* What are the security qualifications of the development team?
¢ What are the major areas of risk in the product?

* What were the security requirements that were used for development
(implicit and explicit)?

This assessment should essentially be astructured interview with the purpose of
collecting as much documentation as possible about the product and the process
used to develop that product.

Perform security risk assessment

Perform due diligence on the vendor-reported assessment information to the
degree possible. For example, validate datawith other customers and/or through
information available on the Internet.

Perform arequirements analysis from the material collected to assess resource
risks that may be present but that are not addressed by the product. For any risk
that would not be acceptable if incorporated into your effort, identify possible
mitigating controls, the likely cost to implement, and who would need to imple-
ment the control — particularly if it isthe vendor.

If desirable, attempt to resolve risks with the vendor. Based on the assessment,
make a determination on whether to proceed with the technology.

Receive permission to perform security testing of software

A way to gain additional confidencein softwareisto test it. However, testing
software for security vulnerabilities may bein violation of a software licensing

76

The CLASP Application Security Process

agreement. To avoid any potential issues, vendor acknowledgement should be
sought.

4114 Perform security testing
Perform security testing as described in the CLASP activity Identify, implement
and perform security tests.
4.12 Annotate class designs with security
properties
Purpose: * Elaborate security policies for individual datafields.
Role: Designer
Frequency: Once per iteration
4121 Map data elements to resources and capabilities

Each data element in the system should have a security policy for it that is
defined by the system requirements and design, either explicitly or explicitly.
While security requirements should be defined on a per-resource or a per-capa-
bility basis, data elements will often not be a resource on their own, but will be
a component of a more abstractly defined resource.

Each data element should be mapped back to the requirements to determine the
reguirements on that datain relation to the basic security services. Often, this
task will lead to a refinement of requirements.

For example, consider a system that defines user data as a resource. There may
be an access control requirement stating the data should be available only to the
individua user and the administrator — except as allowed by the user. In such
an example, it may be that not all data should have this flexibility. Maybe the
user could choose to export his name and address to others but not his social
security number.

Realistically, such refinement of requirements happens frequently, and in an
agile environment, these changes may not be incorporated directly into require-
ments; in this case, documenting information either in aclass diagram or asa
structured annotation to the code helps ensure correct implementation and facil-
itates review.

The CLASP Application Security Process 77

4.12.2

4123

Annotate fields with policy information

Note that access control policy on aresource depends on the operation on that
resource (i.e., the capability). In aclass diagram, capabilities are generally iden-
tified by methods operating on that data.

Data fields should define the owning role or roles and should also define gener-
ically which role or roles have access to which basic capabilities throughout the
lifetime of the data— e.g., read, write, modify, execute, assign permissionsto a
capability, and add or transfer ownership.

Animportant goal of such a specification isto alow an auditor to determine
whether data could ever flow in away that violates the access control policy.
The policy should be as coarse as possible to make it easy to specify and check.

A coarse policy will often require exceptionsto implement a policy that is more
complex. That is, there may be conditions where it may be valid to pass datain
away that would not be allowed by ahigh-level policy. For example, consider a
simple policy that user data should not go to other users. Instead of specifying
fine-grained capabilities around granting read and write access, one can mark
the data as relaxable.

Points where such decisions are made are called relaxation points. How relax-
ation can occur should be well specified in the requirements, and the number of
pointsin the program should be minimized to lessen the chance of error and
facilitate analysis.

If policy relaxation should never be necessary for a data element, it should be
annotated as non-relaxable. Otherwise, it should be annotated as relaxable,
along with a description under the conditions where relaxation can occur; this
may be done by identifying a requirement by reference.

Annotate methods with policy data

Methods operate on data, and may use one or more capabilities on that data.
Methods should be annotated to identify which operations they perform on data,
and whether they are relaxation points for any data element.

78

The CLASP Application Security Process

4.13

Specify database security configuration

Purpose:

Role:

Frequency:

4131

4.13.2

* Define a secure default configuration for database resources that are
deployed as part of an implementation.

* Identify arecommended configuration for database resources for data-
bases that are deployed by athird party.

Database Designer
As necessary; generally once per iteration.

Identify candidate configuration
Choose a candidate database configuration for the database.

While an out-of-the-box configuration is an acceptable starting point, it is usu-
ally more efficient to start with athird-party baseline or to go through a process
to identify a candidate baseline. For example, see the NIST database security
checklist: http://csrc.nist.gov/pcig/cig.html.

In the case of third-party deployments, the configuration will generally be
defined relative to the default configuration.

Validate configuration

For the resources specified that interact with the database, validate that the
baseline configuration properly addresses the security requirements for that
data.

Also, unnecessary functionality (e.g., stored procedures) can introduce unantic-
ipated risk vectors. Practice the principle of least privilege by removing unnec-
essary functionality from the configuration.

In the case of third-party deployments, it is sufficient to specify which function-
ality is absolutely necessary in the operational security guide, then to recom-
mend that al other features be disabled.

If appropriate, perform testing with a database configuration tool for any candi-
date platforms to determine non-obvious security risks to resources. Again,
make changes to the configuration if necessary, and documenting them in the
operational security guide, if appropriate.

The CLASP Application Security Process 79

4.14

Perform security analysis of system
requirements and design (threat modeling)

Purpose:

Role:
Frequency:

4141

4.14.2

Assess likely system risks in atimely and cost-effective manner by
analyzing the requirements and design.

e Identify high-level system threats that are documented neither in
requirements nor in supplemental documentation.

* |dentify inadequate or improper security requirements.
* Assessthe security impact of non-security requirements.
Security Auditor

As needed; generally, onceinitial requirements are identified; once when
nearing feature complete.

Develop an understanding of the system

Before performing a security analysis, one must understand what isto be built.
This task should involve reviewing all existing high-level system documenta-
tion. If other documentation such as user manuals and architectural documenta-
tion exists, it is recommended to review that material as well.

To facilitate understanding when the auditor is not part of the project team, it is
generally best to have a project overview from a person with a good customer-
centric perspective on the project — whom we assume is the requirements spec-
ifier.

If feasible, documentation should be reviewed both before and after such a
review so that the auditor has as many opportunities to identify apparent con-
stancies as possible. If documentation is only to be read once, it is generally
more effective to do so after a personal introduction.

Anything that is unclear or inconsistent should be presented to the requirements
specifier and resolved before beginning analysis.

Determine and validate security-relevant assumptions

Systems will be built with assumptions about the attacker and the environment
in which the software will be deployed. If the proper CLASP activities have
been incorporated into the development process, the following key information
should be documented before starting a requirements assessment:

80

The CLASP Application Security Process

4.14.2.1

* A specification of the operational environment;
* A high-level architectural diagram indicating trust boundaries;

* A specification of resources and capabilities on those resources; this may be
incorporated into the requirements;

* A specification of system users and a mapping of users to resource capabili-
ties; this also may be incorporated into the requirements;

* An attack surface specification, to whatever degree elaborated;

e Dataflow diagrams, if available;

* An attacker profile (again, this may be part of the requirements); and
* Misuse cases, if any.

With the exception of misuse cases, if the development process does not pro-
duce all of these artifacts, the security auditor should do so. Sometimes review-
erswill forego data-flow diagrams, because the flow of dataiswell understood
on the basis of the architectural diagram.

If the artifacts have been produced previously, the auditor should validate the
security content of these documents, particularly focusing on inconsistencies,
technical inaccuracies, and invalid assumptions. Particularly, review should
address the question of whether the attacker profile is accurate since many orga-
nizations are not attentive enough to insider risks.

Any assumptions that are implicit should be validated and then incorporated
into project documentation.

REVIEW NON-SECURITY REQUIREMENTS

For requirements that are not explicitly aimed at security, determine whether
there are any security implications that are not properly addressed in the secu-
rity requirements. Thisis best done by tracing resources that are relevant to a
reguirement through a data-flow diagram of the system and assessing the
impact on each security service.

When there are security implications, identify the affected resource(s) and secu-
rity service(s), and look to seeif thereisarequirement explicitly addressing the
issue.

If you are using a correlation matrix or some similar tool, update it as appropri-
ate after tracing each requirement through the system.

The CLASP Application Security Process 81

4.14.2.2

4143

Also, correlate system resources with external dependencies, ensuring that all
dependencies are properly listed as aresource. Similarly, perform a correlation
analysis with the attack surface, making sure that any system entry pointsin
third-party software are reflected.

ASSESS COMPLETENESS OF SECURITY REQUIREMENTS

Ensure that each resource (or, preferably, capability) has adegquate requirements
addressing each security service. A best practice here isto create a correlation
matrix, where requirements are on one axis and security services on capabilities
(or resources) are on another axis. For each security requirement, one notesin
the appropriate boxes in the matrix which requirements have an impact.

The matrix should also denote compl eteness of requirements, particularly
whether the security service isadequately addressed. Asthreatsareidentifiedin
the system that are not addressed in the requirements by compensating controls,
this documents what gaps there are in the requirements.

Identify threats on assets/capabilities

Iterate through the assets and/or capabilities. For each security service on each
capability, identify all potential security threats on the capability, documenting
each threat uniquely in the threat model.

In an ideal world, one would identify all possible security threats under the
assumption of no compensating controls. The purpose is to demonstrate which
threats were considered, and which controls mitigate those threats. However,
one should not get too specific about threats that are mitigated adequately by
compensating controls.

To achieve this balance, one identifies athreat and works to determine whether
the threat can be applied to the system (see next subtask). If the auditor deter-
mines that the threat cannot be turned into a vulnerability based on contrals,
avoid going into further detail.

For example, a system may use a provably secure authenticated encryption sys-
tem in conjunction with AES (e.g., GCM-AES) with packet counters to protect
against replay attacks. There are many ways that the confidentiality of thislink
might be thwartabl e if this system were not in place. But since thetools are used
properly, the only possible threat to confidentiality is breaking AES itself,
which isaresult of the GCM security proof. Since — assuming that the tools
are used correctly — al possible on-the-wire threats are mitigated except for
this one, threat analysis should focus on determining whether the tool was used

82

The CLASP Application Security Process

4.14.4

correctly and not on determining what threats might exist if the tool is used
incorrectly (or if adifferent tool is used).

Identifying security threats is a structured activity that requires some creativity
since many systems have unique requirements that introduce unique threats.
Onelooks at each security service and ask: “If | were an attacker, how could |
possibly try to exploit this security service?’. Any answer constitutes a threat.

Many threats are obvious from the security service. For example, confidential-
ity implemented using encryption has several well-known threats — e.g., break-
ing the cipher, stealing keying material, or leveraging a protocol fault. However,
as abaseline, use alist of well-known root causes as a bare minimum set of
threats to address — such as the set provided with CLASP. Be sure to supple-
ment this with your own knowledge of the system.

This question of how to subvert security services on aresource needsto be
addressed through the lifetime of the resource, from data creation to long-term
storage. Assess the question at each trust boundary, at the input points to the
program, and at data storage points.

Determine level of risk

Use threat trees to model the decision-making process of an attacker. Look par-
ticularly for ways that multiple conditions can be used together to create addi-
tional threats.

Thisis best done by using attack trees (Appendix A). Attack trees should repre-
sent all known risks against aresource (which isthe root of the treg), the rela
tionships between multiple risks (particularly, can risks be combined to result in
abigger risk), and then should characterize the likelihood of risk and the impact
of risk on the business to make decisions possible.

Risk assessment can be done using a standard risk formulafor expected cost
analysis, but the data is too complex to gather for most organizations. Most
organizationswill want to assign relative values to important concerns and use a
weighted average to determine arisk level.

Most of the important concerns going into such an average can be identified
using Microsoft’'s DREAD acronym:

* Damage potential. If the problem is exploited, what are the consequences?

The CLASP Application Security Process 83

* Reproducibility. How often does an attempt to exploit a vulnerability work,
if repeated attempts have an associated cost. Thisis asking: What isthe cost
to the attacker once he has a working expl it for the problem? In some
cases, a vulnerability may only work one time in 10,000, but the attacker
can easily automate attempts at afixed additional cost.

* Exploitability. What is the cost to devel op an exploit for the problem? Usu-
ally this should be considered incredibly low, unless there are mitigating cir-
cumstances.

» Affected users. What users are actually affected if an exploit were to be
widely available?

* Discoverability. If unpatched, what is the worst-case and expected time
frame for an attacker to identify the problem and begin exploiting it (gener-
ally assume awell-informed insider risk with accessto your internal process
inthefirst case, and a persistent, targeted reverse engineer in the second).

Additionally, proper risk assessment requires an estimation of the following fac-
tors:

* The effectiveness of current compensating controls. If the control is always
effective, thereislittle point in drilling down farther after that fact is well
documented.

* The cost associated with implementing compensating controls— asthe cost
of remediation — must be balanced against the expected loss.

For existing compensating controls, map them to the specific threat you have
identified that they addressed, denoting any shortcomings in the control.

If it isunclear, use data flow diagrams and available resources to determine
where the threat is or is not adequately addressed, focused particularly on stor-
age, input points (the attack surface), and trust boundaries (generally, network
connections).

Unfortunately, detailed values for each of these concerns are difficult to attain.
Best practiceisto assign relative values on atight scale (for example: 0-10),
and assign weights to each of the categories. Particularly, damage potential and
affected users should generally be weighted most highly.

For each risk identified in the system, use the present information to make a
determination on remediation strategy, based on business risk. At a bare mini-
mum, make a determination such as: “Must fix before deployment”; “Must

The CLASP Application Security Process

4.14.5

4.14.6

identify and recommend a compensating control”; “Must document the prob-
lem”; or “No action necessary”.

Identify compensating controls

For each identified risk with inadequate compensating controls, identify any
feasible approaches for mitigating the risk and evaluate their cost and effective-
ness.

Evaluate findings

The auditor should detail methodology and scope, and report on any identified
security risks that may not have been adequately addressed in the requirements.

Additionally, for any risks, the auditor should recommend a preferred strategy
for implementing compensating controls and should discuss any alternatives
that could be considered.

If any conflicts or omissions are brought to light during requirement review, the
security auditor should make recommendations that are consistent with project
reguirements.

The security auditor should be available to support the project by addressing
problems adequately.

The project manager is responsible for reviewing the findings, determining
whether the assessments are actually correct to the business, and making risk-
based decisions based on this information. Generally, for those problems that
the project manager chooses to address, the risk should be integrated into the
project requirements and tasking.

The CLASP Application Security Process 85

4.15

Integrate security analysis into source
management process

Purpose:

Role:
Frequency:

4.15.1

4.15.2

e Automate implementation-level security analysis and metrics collec-
tion.

Integrator
Asrequired

Select analysis technology or technologies

There are anumber of analysis technologies that could be integrated into the
development process. One broad way to categorize them is dividing them into
two classes:

* Dynamic analysistools, which require running the program in order to per-
form an analysis, oftenin its full operational context for maximum effec-
tiveness; and

* Satic analysistools, which analyze the program entirely without running
the program.

Generally, dynamic analysis tools are better suited to be run manually as part of
the quality assurance process, as they require running many teststo exercise the
code thoroughly, and often those tests must be driven by a human.

There are several available static analysistools. For example, the CodeAssure™
security analysis suite from Secure Software provides high-quality security
analysis and integration with popular build environments.

Determine analysis integration point

Source code analysis can be integrated into source management as part of the
check-in process, as part of the build process, or independently. CLASP recom-
mends integrating it into check-in and into build, using efficient but less accu-
rate technol ogy to avoid most problems early, and deeper analysis on occasional
builds to identify more complex problems.

Integration at check-in can be used to prevent check-in of code into a primary
branch that does not meet coding standards or to assign potential new security
defects to committers. The first goal is not well suited to legacy software appli-

86

The CLASP Application Security Process

4.15.3

cations, unless a baseline of tool output is used for comparison. The second goal
also requires baseline output used for comparison that is updated incrementally.

Deep analysis can be done as aresult of check-in, but frequent deep analysisis
not necessary. Developers should get more immediate feedback; security audi-
tors should get more detailed feedback, but not as frequently as with every
check-in.

Integrate analysis technology

Analysis technology should be integrated into the source management process
in an automated way if possible. If the technology does not support such inte-
gration out-of-the-box, one could consider building integration. Otherwise, it
must be performed manually, which will generally rule out per-check-in analy-
sis.

Integrating analysis technol ogy should involve the following:

* Producing aversion of the source to be tested which is suitable for input into
the analysis tool. Most analysis tools will reguire the code to compile as
well asinstructions for turning the code into an actual executable, even
though the executableis not run.

¢ Performing the analysis.

* Eliminating results that have been previoudly reported by the tool and have
yet to be resolved.

* Presenting any new results or the lack of resultsto the appropriate parties—
usually the devel oper or the security auditor. This may occur through a com-
mon interface, such as a bug tracking system. Potential problems should go
through a single process for reported security problems.

* Storing information about the analysis for use in future analyses, and also
store any metrics collection.

The CLASP Application Security Process 87

4.16

Implement interface contracts

Purpose:

Role:
Frequency:

4.16.1

e Provide unit-level semantic input validation.

e Identify reliability errorsin astructured way at the earliest point in
time.

Implementor
As needed; generally as functions or methods are modified.

Interface contracts are also commonly known as assertions. They can be afor-
midable tool for preventing security problems — particularly if applied consis-
tently, and rigorously.

In many application development processes, interface contracts are not enabled
in production software. They are removed by habit in order to improve effi-
ciency. If the efficiency impact is nominal for the project, CLASP strongly rec-
ommends leaving such checks in the code for the sake of security.

Otherwise, checks of security critical parameters should be implemented using
a permanent mechanism, such as code directly at the top of the function, asdis-
cussed in activities below.

Implement validation and error handling on function or method
inputs

For each method or function visible outside its compilation unit, specify in code
what the expectations are for valid input values. One should validate that each
input variable has avalid valuein and of itself, and should determine validity in
relation to other inputs. Validation checks should contain no side effects. Fail-
ures should be handled as specified in design. See Appendix A for the concept
on input validation.

Input variables should not be constrained to parameters. Any variable read by
the function or method should be considered an input variable — including glo-
bal variables, and class and method variables. Note that some interface contract
facilitieswill allow specifying invariants for an entire class — i.e., things that
must always be true about class data before and after each method invocation —
once.

88

The CLASP Application Security Process

4.16.2

4.17

Implement validation on function or method outputs

Perform the same validation between relationships before exiting a function or
method. Output specifications are meant to provide aclear behavioral specifica-
tion to calling code to prevent accidental misuse.

Generally, output validation code is most useful in implementation. It is reason-
able to disable such code for deployment or even use pseudo-code if absolutely
necessary.

Implement and elaborate resource policies
and security technologies

Purpose:
Role:

Frequency:

4.17.1

4.17.2

e Implement security functionality to specification.
Implementor

As necessary.

Review specified behavior

The devel oper should identify any remaining ambiguities in the specification of
security properties or technologies, including any further information necessary
to build a concrete implementation.

Perceived ambiguities should be addressed with the designer.

Implement specification

As with most development, implementors should build software to specifica-
tion. Even when security is a concern, thisis not different. Asis the case when
implementing traditional features, the implementor should ensure that all cod-
ing guidelines are met — especially security guidelines.

The CLASP Application Security Process 89

4.18 Address reported security issues
Purpose: e Ensurethat identified security risksin an implementation are properly
considered.
Role: Designer

Frequency: Asrequired.

4.18.1

4.18.2

Assign issue to investigator

When a security issue isidentified in a system, further investigation should be
assigned to the appropriate designer if it can be determined from known infor-
mation about the problem. Otherwise, it should be assigned to the chief archi-
tect until the determination of the most appropriate designer can be made.

Assess likely exposure and impact

If the problem exists in released software and was reported by a security
researcher, attempt to reproduce the exploit in order to determine whether the
vulnerability actually exists. If it cannot be reproduced, work with the
researcher to determine whether the problem does not actually exist or whether
it could have been a side effect of something in the researcher’s test environ-
ment.

When reproducing the explait is too difficult or when there is no risk of disclo-
sure, at least determine whether there is enough evidence to demonstrate that
the vulnerability islikely to exist.

Determine the circumstances when the vulnerability could potentially be
exploited in order to get a sense of the overall risk level, focusing on the follow-

ing:

* Which builds of the product contain the risk, if any?

* Which configuration options are required in order for the risk to exist?

* What must the operational environment look like for the risk to be relevant?

This information will allow you to determine how many customers will — or
would be — at risk.

90

The CLASP Application Security Process

4.18.3

4.18.4

Determine what the worst case and likely consequences are for the risk. From
thisinformation, determine how responding to this risk will be handled from a
resourcing perspective. That is, will it be handled at al, immediately, or at a
particular point in time? Further: Will there be an effort to provide more imme-
diate remediation guidelines to customers while a permanent patch is being
devised?

If the risk involves software that may be in use by other vendorsin their prod-
ucts, contact either the vendors directly or a coordinating body — such asthe
CERT (Computer Emergency Response Team) coordination center.

Determine and execute remediation strategies

Identify how the problem is to be addressed, in the short term and in the long
term, if the short-term solution is not a permanent fix. Incorporate the task of
addressing the problem into the development lifecycle if appropriate.

If part or all of the remediation strategy involves implementing external con-
trols, task an appropriate party to document the implementation of those con-
trolsin the operational security guide.

The architect should review all remediation strategies that impact the code base
before they are implemented in order to ensure that they are valid in the context
of the entire system.

Validation of remediation

Perform testing to ensure that the risk was properly addressed. This should
include production of regression tests meant to detect the vulnerability if acci-
dentally introduced. See the CLASP activity on testing for more.

The CLASP Application Security Process 91

4.19 Perform source-level security review
Purpose: * Find security vulnerabilities introduced into implementation.
Role: Security Auditor
Frequency: Incrementally, at the end of each implementation iteration.
4.19.1 Scope the engagement

Itisrarely possibleto look at each line of codein a system, particularly if some-
one needs to understand its relationship with every other line. Therefore, it is
important to collect as much information as feasible about the system architec-
ture and overall development process in order to help scope out the areas that
merit the most attention.

The auditor should always start by collecting the most recent documentation for
the system — including requirements, architecture, API docs, and user manuals.
If previous stepsin the process were followed, the material needed to scope a
source-level security review should have already been produced and would be
included in this material. The auditor should ensure that all documentation
seems to be present and should work to collect anything that is not. While the
auditor can perform an initial sanity check of the material collected, this check
should not be the initial focus since much of the auditing work will involve per-
forming such validation.

The auditor should be collecting the following material (and generally produc-
ing it if it does not exist):

* System requirements and specification. An auditor is expected to identify
places where security requirements are violated and to make recommenda-
tions for remediating risks.

» Athreat profile for the system. Possible threats. governments, employees,
etc., and the associated capabilities they are assumed to have.

¢ Any previous assessments, including architectural assessments.

The data one should be capturing in the scoping of the engagement is collected
in the assessment worksheet in Appendix B.

If the auditor did not produce the threat profile — or if the threat profileis not
current —, one should perform an incremental assessment, focusing on changes
and shortcomings in the original.

92

The CLASP Application Security Process

4.19.2

4.19.3

4.19.4

Run automated analysis tools

Automated analysis may be incorporated into the build process, in which case
the auditor can use results from a current analysis, instead of running an addi-
tional analysis.

Evaluate tool results

For each potential risk identified by the tool, assess whether the risk is relevant
to the development effort. Risks that are not relevant should be marked as not
relevant for one of the following reasons:

* Therisk is mitigated by an existing or recommended compensating control
that is not within the scope of analysis for the tool.

e Theriskisnotinthethreat profilefor the program. For example, attacks that
require local user access to the same machine running the software may
have already been deemed outside the scope of consideration.

e Therisk isafalse positive in the analysis itself.

Evaluating the results requires tool-dependent processes. Determining abso-
lutely whether atool result isareal vulnerability or afalse positive is often not
necessary, asit often involves attempting to craft an exploit. Instead, the investi-
gator should deem it alikely risk in the case of those risks that the investigator
cannot rule out as arisk based on examining the tool output and the code.

For those risks that are relevant, determine impact and recommend remediation
strategies in the same manner as performing an architectural analysis, docu-
menting results in an implementation security review report.

Identify additional risks

Analysistools are not capable of finding all security risks in software. Many
classes of risk can beidentified in an architectural analysisthat is not conclu-
sively controlled. Additionally, some classes of risk may not be considered in an
architectural analysis because they are artifacts of implementation error.

Compose alist of possible risks by reviewing both those risks identified in the
architectural analysis and a database of common risks. See the CLASP Root-
Causes database in Chapter 5.

For each potential risk, identify system resources that might be susceptible to
the risk. Follow execution through the code from any relevant input points to

The CLASP Application Security Process 93

the data resource, looking at each appropriate point whether thereisalikely
instantiation of therisk.

Aswith examining tool output, the investigator should not look to prove risk
beyond a doubt. Identifying likely risksis sufficient, where alikely risk is one
that the auditor cannot rule out on the basis of a detailed manual analysis of the
code.

Determine the impact of likely risks that are identified and recommend remedi-
ation strategies in the same manner as if performing an architectural analysis,
documenting results in an implementation security review report.

4.20 Identify, implement and perform security tests
Purpose: e Find security problems not found by implementation review.
* Find security risks introduced by the operational environment.
¢ Act as adefense-in-depth mechanism, catching failuresin design,
specification, or implementation.
Role: Test Analyst

Frequency: Asnecessary; generally multiple times per iteration.

4.20.1

Identify security tests for individual requirements

For any requirement previously identified to have security relevance, identify
an implementabl e testing strategy, looking to provide as complete assurance as
possible and noting that some testing may be best performed statically — which
istherefore potentially outside the scope of the actual QA organization. How-
ever, it isagood ideato dynamically test even those things that are assured stat-
ically, particularly if something in the operational environment could adversely
affect the original test result.

Build these security testsinto your test plan as with any other test. For example,
specify the frequency at which the test should be run.

See the overview of security testing techniquesin Appendix A.

94

The CLASP Application Security Process

4.20.2

4.20.3

4.20.4

4.20.5

Identify resource-driven security tests

Usually, a system will not have resource-driven security requirements, or those
reguirements will somehow be inadequate if only in minor ways.

If necessary, identify the resources available to the system on the basis of the
architectural documentation and use of the software.

For each resource, identify whether that resource was addressed adequately by
testable security requirements— i.e., that it had testable protection mechanisms
in place for the core security services.

Note that in many cases security requirements will be left implicit, leaving the
tester or analyst to guess what a violation of security policy entails. In such
cases, the analyst should particularly focus on identifying tests that can ferret
out non-obvious users of resources. That is, identify tests that will determine
which system roles can gain access to each resource, paying attention to the
case of unauthorized parties, as well asvalid users attempting to access the
resources that should only be accessible to the owning user.

Again, integrate any identified testsinto the existing test plan.

Identify other relevant security tests

Using acommon testing checklist, determine what other security tests are
appropriate to the system. For an example, see the checklistsin the book How to
Break Software Security by Whittaker and Thompson.

Missing tests will point out a weakness in the resource-driven security require-
ments, and the gap should be communicated to the requirement specifier. Often,
these gaps will be afailure in specifying the operational security requirements.
If security testing determines that the security depends on the operational envi-
ronment, or if it is obvious that security depends on the operational environ-
ment, then the test analyst should inform the owner of the operational security
guide, who should document the issue appropriately.

Implement test plan

Implement the test plan as normal. For example, the test plan may indicate
acquiring tools, writing test scripts, or other similar activity.

Execute security tests
Perform the identified security tests as specified in the test plan.

The CLASP Application Security Process 95

4.21

Verify security attributes of resources

Purpose:

Role:

Frequency:

4211

4.21.2

e Confirm that software abides by previously defined security policies.
Tester
Once per iteration.

Check permissions on all static resources

Using astandard install on a clean system, inspect the permissions and access
controls placed on all resources owned by the system, including files and regis-
try keys. The permissions granted by the system’s default install should exactly
match those put forth by the resource specifier in the security requirements, or
from the global security policy.

If no specific permissions are identified by resources, determine whether roles
other than the owning role can access the resource, based on its permissions.

Any deviation from specified or expected behavior should be treated as a
defect.

Profile resource usage in the operational context

The requirements, a security profile the or operational security guide should
specify what resources the system should be able to access. When performing
functional and non-functional testing, use profiling tools to determine whether
the software abides by the policy. In particular, ook for the following:

* Access to network resources (local ports and remote addresses) that are —
or appear to be — invalid.
* Accessto areas of the local file system outside the specification.

* Accessto other system data resources, including registry keys and inter-pro-
€ess communications.

* Useof system privilegesin situations that are not specified.

Again, any deviation from specified or expected behavior should be treated as a
defect.

The CLASP Application Security Process

4.22 Perform code signing
Purpose: * Provide the stakeholder with away to validate the origin and integrity
of the software.
Role: Integrator
Frequency: Once per release build.
4.22.1 Obtain code signing credentials
A prerequisite for code signing are credentials that establish your identity to a
trusted third party. Most PKI1 (public key infrastructure) vendors (also known as
certification authorities, or CAs), offer Software publishing Certificates (i.e.,
code signing credentials), including Verisign. Process for obtaining credentials
differs, depending on the CA.
4.22.2 Identify signing targets
Signatures are generally performed on a unit that contains all parts of an appli-
cation, such asasingle archivefile (JAR, WAR, or CAB). Generally, the unit is
an installable package. Any other granularity requires multiple signature checks
per application install, which isinconvenient for the end user.
4.22.3 Sign identified targets

Running the code signing tools usually will automatically add a signature to the
packaging unit, which can then be distributed directly.

The CLASP Application Security Process 97

4.23

Build operational security guide

Purpose:

Role:
Frequency:

4.23.1

4.23.2

4.23.3

4.23.4

¢ Provide stakeholder with documentation on operational security mea-
suresthat can better secure the product.

* Provide documentation for the use of security functionality within the
product.

Implementor
Once per iteration.

In the course of conception, elaboration, and evaluation, there will generally be
many items identified that should be communicated to one or more roles at
deployment. This information should all be collected in arole-driven imple-
mentation guide that addresses security concerns.

Document pre-install configuration requirements

Begin by documenting the environmental requirements that must be satisfied
before the system isinstalled. See the task on operational environment assump-
tions for more detail.

Document application activity

Document any security-relevant use of resources, including network ports, files
on thefile system, registry resources, database resources etc. See the activity on
Resource identification for more detail.

Document the security architecture

Document the threat profile assumed in design and the high-level security func-
tionality of the system as relevant to the user — including authentication mech-
anisms, default policies for authentication and other functions, and any security
protocols that are mandatory or optional. For protocols used, document the
scope of their protection.

Document security configuration mechanisms

List, and explain all security configuration options present in the system, and
make note of their default and recommended settings. Be explicit about how
they work, referencing any technologies utilized.

98

The CLASP Application Security Process

4.23.5

4.24

Document significant risks and known compensating controls

Any known security risks that the customer may find reasonable should be doc-
umented, along with recommended compensating controls, such as recom-
mended third party software that can mitigate the issue, firewall configurations,
or intrusion detection signatures.

Manage security issue disclosure process

Purpose:

Role:

Frequency:

4.24.1

e Communicate effectively with outside security researchers when secu-
rity issues are identified in released software, facilitating more effec-
tive prevention technologies.

e Communicate effectively with customers when security issues are
identified in released software.

Project Manager
As needed.

Many security researchersfind security problemsin software products, often by
intentional investigation. Except in avery few cases, researchers will release
information about the security vulnerability publicly, usually to either the
BUGTRAQ mailing lists or the Full Disclosure mailing list.

Most security researchers act responsibly in that they attempt to give the soft-
ware vendor adequate time to address the issue before publicly disclosing infor-
mation. This activity addresses how to interface with responsible security
researchers.

Industry best-practice guidance for responsible security vulnerability research
can befound at: http://www.whitehats.ca/main/about_us/policies/draft-christey-
wysopal-vul n-disclosure-00.txt

Provide means of communication for security issues

If reasonable, the communication mechanism should be published on the ven-
dor web site in a security area devoted to the product since thisis where
researchers will first [ook.

Otherwise, vendors should be prepared to handle security alerts at the following
standard addresses:

* Ssecurity@

The CLASP Application Security Process 99

4.24.2

* secaert@

* contact@

* support@

* sdes@

* info@

e Thelisted domain contact information.

A researcher attempting to be responsible may still not be well informed, and so
may only try one of these addresses. Some researchers will only attempt com-
munication until they successfully send the vendor an E-mail that does not
bounce. Sometimes that E-mail will be sent to a high-volume alias or to an indi-
vidual who receives a high volume of E-mail, such asthe CEO or CTO.

A central security response alias should be established, such as security@ or
secalert@ and published on the web site if possible. Additionally, owners of
various E-mail addresses that might receive security aerts should be notified of
the central alias and be asked to forward any relevant communication.

Acknowledge receipt of vulnerability disclosures

On receipt of the vulnerability disclosure, respond with acknowledgement of
receipt, aswell as a reasonable timetable for addressing the vulnerability. This
should never take more than a calendar week from receipt and should generally
be handled as quickly as possible.

Thetime line should indicate at a bare minimum when the vendor expectsto be
able to provide remediation for the problem, if validated. Responsible security
researchers often will inform the vendor that they will go public if the time
frame given is seen as an attempt to keep the information from the public. Gen-
erally, target 30 days, but let the researcher know that you may require 30 to 60
days moreif circumstances warrant. Also, inform him that you expect the
researcher to act responsibly by not disclosing before you can ready aremedia-
tion strategy for customers (aslong as you act in areasonable time frame), and
show that you are doing so in such away that the researcher can determine good
faith. Good faith is best shown by providing weekly status updates, which
should be offered in the acknowledgement E-mail.

If the vulnerability is found in a version of the software that is no longer sup-
ported, this should be communicated. However, you should attempt to ascertain

100

The CLASP Application Security Process

4243

4.24.4

whether the vulnerability affects supported versions of the software, and this
fact should also be communicated to the researcher.

The process and policies for security disclosure should be communicated
clearly to the researcher, either by E-mail or by publishing it on the web, in
which case the web page should be referenced in the E-mail.

Address the issue internally

The reported vulnerability should be entered into the process for dealing with
reported security issues. Communication information for the researcher should
be passed along, in case further contact is necessary to better understand the
report.

The researcher should be given the opportunity to test any remediation strate-
giesimplemented before they are distributed publicly. The researcher will gen-
erally make an effort to determine whether the vulnerability has been addressed
adequately. In cases where it is not addressed adequately, the researcher should
give the vendor additional time to address the problem, if required.

Communicate relevant information to the researcher

Astheissueisinternally addressed, the vendor should provide the researcher
with the following information on update, as the information becomes avail-
able:

* Whether the vulnerability has been reproduced.
e Timing and distribution mechanism for any patches or fixed releases.

* Work-arounds to the problem for those that will be unwilling or unable to
patch in atimely fashion.

Additionally, if alonger resolution period is necessary, then this should be com-
municated to the researcher. If thetime frame isaready 45 daysfrom report, the
researcher will be unlikely to grant an extension unless the vendor can clearly
demonstrate to the researcher that the problem requires extensive changes, usu-
aly asthe result of afundamental design change. The vendor will also likely
need to show that there are no adequate mitigating controls, which will gener-
ally require demonstrating why the researcher’s proposed work-arounds are
inadequate.

The CLASP Application Security Process 101

4.24.5

Provide a security advisory and customer access to remediation

The vendor should provide its own security advisory of the issue, but may also
choose only to endorse the researcher’s advisory, after assuring that it contains
adequate information for customers to protect themselves.

If the advisory only points to compensating controls, not an actua fix, it should
provide atime line and distribution information for a permanent fix.

The advisory should also present an overview of the problem, denoting what
resources are at risk, as well as information on how to assess whether an instal-
lationis at risk.

102

The CLASP Application Security Process

CHAPTER 5

Vulnerability Root-Causes

It would be convenient if security problemsin software fell neatly into catego-
riesthat we could dissect and reason about. Unfortunately, almost any reliability
bug can also be a security bug — if the circumstances are right. Capturing the
core of arisk sometimes requires understanding a broad architectural issue, and
sometimes it requires understanding a highly specific detail.

In this taxonomy, we have attempted to catalog any themes that lead to security
problems, even if only occasionally, and to do thisat all appropriatelevels. Asa
result, there are alot of thingsin it that are not often security concerns, or more
precisely are only security concerns when some (potentially rare) condition is
met.

Since there are many different common threads between problems, organizing
this taxonomy is somewhat of an issue. Our taxonomy isinspired by Landwehr
et al.’s 1994 research article, A Taxonomy of Computer Program Security

Flaws.! In that article, the authors identify several axes by which one can clas-
sify security problems: genesis (origin); time of introduction (in the develop-
ment lifecycle); and location (in a software system).

1. Carl Landwehr, Alan Bull, John McDermott, William Choi, ACM Computing Surveys 26(3), Sep-
tember, 1994, pp. 211-254.

The CLASP Application Security Process 103

We have added some additional axes: e.g., the consequence, which we view in
terms of security service compromised (see below). Our main axisis actually
called problem type, which we use to divide causesinto logical sections. Thisis
similar to, but somewhat different than, Landwehr’s “genesis’ (origin of flaw).
We find that individual types of flaws can — at the highest levels — be intro-
duced for many reasons, including: poor or misunderstood requirements;
improper specification; sloppy implementation; flawed components; malicious
introduction, etc. Such a breakout — although it is hot conducive to organizing
software-security problemsin an easily understandable way — accurately
reflects how, where, and why flaws occur.

Our notion of problem type matchesto the notion of “root-cause” — except that
we note that individual vulnerabilities are often composed of multiple problems
that combine to create a security condition. The individual problems are often
not security flawsin and of themselves.

Additionally, we have made some modifications to Landwehr’s high-level divi-
sions, largely reflecting the past decade of experience with security issuesin
software. We have also introduced many subcategories that did not exist in the
original taxonomy.

A key difference between the two taxonomiesis that Landwehr’s was used to
categorize the first few dozen major security flaws; our taxonomy strivesto pro-
vide alexicon for the underlying problems that form the basis for the many
security flaws the world has since seen.

Asaresult of the differing goals of the two taxonomies, there are some impor-
tant things to note:

* Few issuesin our taxonomy are always security problems every timethey
manifest. In fact, many of them are very rarely security issues and may
only be conditions that are necessary but not sufficient for a security inci-
dent.

* Sincethisislargely ataxonomy of bugsin software, it isalso not likely to
be complete. As of version 1.0, there are several overt security risks that
are known to be omitted due to lack of resources, and some of the prob-
lems discussed are still under-specified. Additional suggestions and con-
tributions are encouraged and can be made by using the contact address
for this document.

* Inaddition, in thistaxonomy there are many problems that can be catego-
rized in multiple ways. In problem origin, we have lumped problems

104

The CLASP Application Security Process

5.1

where they seem most appropriate, but we always denote additional cate-
goriesin the actual description.

Preliminaries

511

Aswe mentioned above, the programming flaws discussed in this taxonomy are
broken into several categories. The primary category can be thought of asthe
“problem type.” Since this taxonomy does not classify individual instances of
problems, it really is, to some degree, a catalogue of potential root-causes (or
contributing causes).

Problem types

The problem typesin CLASP are individually documented within a very broad
set of “categories’ but interrelate in away that is mostly hierarchical. The
breakout categories was chosen to be as natural as possible to practitionersin
the space, making it somewhat ad hoc. In particular, there are many implicit cat-
egories. For example, we define top-level categories, most of which could be
considered subcategories of “generic logical flaws,” yet this category does little
to advance understanding about actual security issues.

The top-level problem type categories are:

* Range and type errors

¢ Environmental problems

e Synchronization and timing errors
* Protocol errors

* General logic errors

* Maware

These top-level categories each have their own entries. Subcategories (i.e.,
problem types) are largely hierarchical (i.e., one problem type relates to one
“parent” category), although there are some cases where a specific problem
type has multiple parents.

In this taxonomy we ignore malware, because any of the other types of prob-
lems can be inserted intentionally.

The CLASP Application Security Process 105

51.2

513

Consequences

Another axis for evaluating problems s the consequence of the flaw. Much like
problem types, there are many possible sub-categories here. Our high-level cat-
egories are all afailurein any of the basic security services:

* Authorization (resource access control)

* Confidentiality (of data or other resources)

* Authentication (identity establishment and integrity)
* Availability (denial of service)

* Accountability

* Non-repudiation

Thisisamore structured way of thinking about security issues than typically
used. For example, buffer overflow conditions are usually availability problems
because they tend to cause crashes, but often an attacker can escalate privileges
or otherwise perform operations under a given privilege that were implicitly not
alowed (e.g., overwriting sensitive data), which is ultimately afailure in autho-
rization. In many circumstances, the failure in authorization may be used to
thwart other security services, but that is not the direct consequence.

Whether a problem is considered “real” or exploitable is dependent on a secu-
rity policy that is often implicit. For example, users might consider a system
that leaks their personal datato be broken (alack of privacy, a confidentiality
failure). Yet the system designer may not consider this an issue. When evaluat-
ing a system, the evaluator should consider the specified requirements and also
consider likely implicit requirements of the system users.

Similarly, an important aspect to evaluate about the consequence is “ severity.”
While we give some indication of Severity ranges, the ultimate determination

can only be made on the basis of a set of requirements — and different partici-
pants may have different requirements.

Exposure period

Another axis for evaluating problemsis the “exposure period.” In CLASP,
exposure period refersto the times in the software development lifecycle when
the bug can be introduced into a system. Thiswill generally be one or more of
the following: regquirements specification; architecture and design; implementa-
tion; and deployment.

106

The CLASP Application Security Process

Note that failures introduced late in the lifecycle can often be avoided by mak-
ing different decisions earlier in the lifecycle. For example, deployment prob-
lems are generally misconfigurations — and as such can often be explicitly
avoided with different up-front decisions.

514 Other recorded information

Currently, we record the following additional information about vulnerability
classes:

e Overview — A brief summary of the problem.

* Discussion — A discussion of key pointsthat can help understand the
issue.

* Platform— An indication of what platforms may be affected. Here, we
use the term in a broad sense. It may mean programming language (e.g.,
some vulnerabilities common in C and C++ are not possible in other lan-
guages), or it may mean operating system, etc.

* Required resources — Which resources must the attacker have to exploit
an issue? For example, doesthe attack require local access to the machine
running the application? This information can be used to determine
whether a particular risk may apply to a given system.

* Severity — A relative indication of how critical the problem tendsto be
in a system, when exploitable.

* Likelihood of exploit — If aparticular problem existsin code, what isthe
likelihood that it will result in an exploitable security condition, given
common system requirements?

* Avoidance and mitigation techniques — We provide a high-level over-
view of some of the more important techniques for avoiding or mitigating
a problem, broken down by where in the devel opment lifecycle the tech-
nique is generally applied.

¢ Examples — For many problems, we give simple examples to better
illustrate the problem. We a so try to note real-world instances of the vul-
nerability (i.e., real software that has fallen victim to the problem).

* Related problems — Beyond the obvious, sometimes multiple entries
refer to the same basic kind of problem but are specific instances. For
example, “buffer overflow” getsits own entry, but we also have entries
for many specific kinds of buffer overflow that are subject to different
exploitation techniques (e.g., heap overflow and stack overflow), and we

The CLASP Application Security Process 107

have entries for many reliability problems that can cause alogic error
resulting in a buffer overflow.

5.2 Range and type errors
5.2.1 Buffer overflow
52.1.1 OVERVIEW

A buffer overflow condition exists when a program attempts to put more datain
abuffer than it can hold or when a program attempts to put datain a memory
area past a buffer. In this case, a buffer is a sequential section of memory allo-
cated to contain anything from a character string to an array of integers.

5.2.1.2 CONSEQUENCES

* Availability: Buffer overflows generally lead to crashes. Other attacks
leading to lack of availability are possible, including putting the program
into an infinite loop.

* Access contral (instruction processing): Buffer overflows often can be
used to execute arbitrary code, which is usually outside the scope of a
program’simplicit security policy.

* Other: When the consequence is arbitrary code execution, this can often
be used to subvert any other security service.

5.2.1.3 EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Design: Mitigating technol ogies such as safe-string libraries and con-
tainer abstractions could be introduced.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

5.2.1.4 PLATFORM
¢ Languages. C, C++, Fortran, Assembly

* Operating platforms: All, although partial preventative measures may be
deployed, depending on environment.

108 The CLASP Application Security Process

5.2.1.5

5.2.1.6

5.2.1.7

5.2.1.8

5.2.1.9

5.2.1.10

REQUIRED RESOURCES
Any

SEVERITY
Very High

LIKELIHOOD OF EXPLOIT
High to Very High

AVOIDANCE AND MITIGATION

* Pre-design: Use alanguage or compiler that performs automatic bounds
checking.

* Design: Use an abstraction library to abstract away risky APIs. Not a
complete solution.

* Pre-design through Build: Compiler-based canary mechanisms such as
StackGuard, ProPolice and the Microsoft Visual Studio /GS flag. Unless
this provides automatic bounds checking, it is not a complete solution.

* Operational: Use OS-level preventative functionality. Not a complete
solution.

DISCUSSION

Buffer overflows are one of the best known types of security problem. The best
solution is enforced run-time bounds checking of array access, but many C/C++
programmers assume thisis too costly or do not have the technology available
to them. Even this problem only addresses failures in access control — as an
out-of-bounds accessis still an exception condition and can lead to an availabil-
ity problem if not addressed.

Some platforms are introducing mitigating technologies at the compiler or OS
level. All such technologiesto date address only a subset of buffer overflow
problems and rarely provide complete protection against even that subset. It is
more common to make the workload of an attacker much higher — for exam-
ple, by leaving the attacker to guess an unknown value that changes every pro-
gram execution.

EXAMPLES

There are many real-world Examples of buffer overflows, including many pop-
ular “industrial” applications, such as E-mail servers (Sendmail) and web serv-
ers (Microsoft 1S Server).

The CLASP Application Security Process 109

5.2.1.11

5.2.2

5221

5.2.2.2

5.2.2.3

In code, hereisasimple, if contrived example:

voi d exanpl e(char *s) {
char buf[1024];
strcpy(buf, s);

}

int main(int argc, char **argv) {
exanpl e(argv[1]);
}

Since argv[1] can be of any length, more than 1024 characters can be copied
into the variable buf.

RELATED PROBLEMS
* Stack overflow

* Heap overflow

* Integer overflow

“Write-what-where” condition

OVERVIEW

Any condition where the attacker has the ability to write an arbitrary valueto an
arbitrary location, often as the result of abuffer overflow.

CONSEQUENCES

* Access control (memory and instruction processing): Clearly, write-what-
where conditions can be used to write data to areas of memory outside the
scope of apolicy. Also, they almost invariably can be used to execute
arbitrary code, which isusually outside the scope of aprogram’simplicit
security policy.

* Availability: Many memory accesses can lead to program termination,
such as when writing to addresses that are invalid for the current process.

* Other: When the consegquence is arbitrary code execution, this can often
be used to subvert any other security service.

EXPOSURE PERIOD

* Requirements. At this stage, one could specify an environment that
abstracts memory access, instead of providing asingle, flat address space.

110

The CLASP Application Security Process

5.2.2.4

5.2.25

5.2.2.6

5.2.2.7

5.2.2.8

5.2.2.9

* Design: Many write-what-where problems are buffer overflows, and mit-
igating technologies for this subset of problems can be chosen at this
time.

¢ Implementation: Any number of simple implementation flaws may result
in awrite-what-where condition.

PLATFORM
e Languages. C, C++, Fortran, Assembly

* Operating platforms: All, although partial preventative measures may be
deployed depending on environment.

REQUIRED RESOURCES
Any

SEVERITY
Very High

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

* Pre-design: Use alanguage that provides appropriate memory abstrac-
tions.

* Design: Integrate technologiesthat try to prevent the consequences of this
problems.

* Implementation: Take note of mitigations provided for other flawsin this
taxonomy that lead to write-what-where conditions.

* Operational: Use OS-level preventative functionality integrated after the
fact. Not a complete solution.

DISCUSSION

When the attacker has the ability to write arbitrary datato an arbitrary location
in memory, the consequences are often arbitrary code execution. If the attacker
can overwrite a pointer’s worth of memory (usually 32 or 64 bits), he can redi-
rect afunction pointer to his own malicious code.

Even when the attacker can only modify a single byte using awrite-what-where
problem, arbitrary code execution can be possible. Sometimes this is because

The CLASP Application Security Process 111

5.2.2.10

the same problem can be exploited repeatedly to the same effect. Other times it
is because the attacker can overwrite security-critical application-specific data
— such as aflag indicating whether the user is an administrator.

EXAMPLES

The classic example of awrite-what-where condition occurs when the account-
ing information for memory allocations is overwritten in a particular fashion.

Hereis an example of potentially vulnerable code:

#defi ne BUFSI ZE 256

int main(int argc, char **argv) {
char *bufl = (char *) mall oc(BUFSI ZE) ;
char *buf2 = (char *) mall oc(BUFSI ZE) ;

strcpy(bufl, argv[1]);
free(buf2);
}

Vulnerability in this case is dependent on memory layout. The call to strcpy()
can be used to write past the end of bufl, and, with atypical layout, can over-
write the accounting information that the system keeps for buf2 when it is allo-
cated. Thisinformation is usually kept before the allocated memory. Note that
— if the allocation header for buf2 can be overwritten — buf2 itself can be
overwritten as well.

The alocation header will generally keep alinked list of memory “chunks”.
Particularly, there may be a“previous’ chunk and a“next” chunk. Here, the
previous chunk for buf2 will probably be buf1, and the next chunk may be null.
When the freg() occurs, most memory allocators will rewrite the linked list
using data from buf2. Particularly, the “next” chunk for buf1 will be updated
and the “previous’ chunk for any subsequent chunk will be updated. The
attacker can insert amemory address for the “next” chunk and avalue to write
into that memory address for the “previous’ chunk.

This could be used to overwrite a function pointer that gets dereferenced later,
replacing it with amemory address that the attacker has legitimate access to,
where he has placed malicious code, resulting in arbitrary code execution.

There are some significant restrictions that will generally apply to avoid causing
acrash in updating headers, but this kind of condition generally resultsin an
exploit.

112

The CLASP Application Security Process

5.2.2.11 RELATED PROBLEMS
» Buffer overflow
* Format string vulnerabilities

5.2.3 Stack overflow

5.2.3.1 OVERVIEW
A stack overflow condition is a buffer overflow condition, where the buffer
being overwritten is alocated on the stack (i.e., isalocal variable or, rarely, a
parameter to a function).

5.2.3.2 CONSEQUENCES

* Availability: Buffer overflows generally lead to crashes. Other attacks
leading to lack of availability are possible, including putting the program
into an infinite loop.

* Access control (memory and instruction processing): Buffer overflows
often can be used to execute arbitrary code, which is usually outside the
scope of aprogram’simplicit security policy.

* Other: When the consequence is arbitrary code execution, this can often
be used to subvert any other security service.

5.2.3.3 EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Design: Mitigating technol ogies such as safe string libraries and con-
tainer abstractions could be introduced.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

5.2.3.4 PLATFORM
e Languages. C, C++, Fortran, Assembly

* Operating platforms: All, although partial preventative measures may be
deployed depending on environment.

5.2.35 REQUIRED RESOURCES
Any

The CLASP Application Security Process 113

5.2.3.6

5.2.3.7

5.2.3.8

5.2.3.9

5.2.3.10

SEVERITY
Very high

LIKELIHOOD OF EXPLOIT
Very high

AVOIDANCE AND MITIGATION

* Pre-design: Use alanguage or compiler that performs automatic bounds
checking.

* Design: Use an abstraction library to abstract away risky APIs. Not a
complete solution.

* Pre-design through Build: Compiler-based canary mechanisms such as
StackGuard, ProPolice and the Microsoft Visual Studio /GS flag. Unless
this provides automatic bounds checking, it is not a complete solution.

¢ Operational: Use OS-level preventative functionality. Not a complete
solution.

DISCUSSION

There are generally several security-critical data on an execution stack that can
lead to arbitrary code execution. The most prominent is the stored return
address, the memory address at which execution should continue once the cur-
rent function is finished executing. The attacker can overwrite this value with
some memory address to which the attacker al so has write access, into which he
places arbitrary code to be run with the full privileges of the vulnerable pro-
gram.

Alternately, the attacker can supply the address of an important call, for instance
the POSIX system() call, leaving arguments to the call on the stack. Thisis
often called areturn into libc exploit, since the attacker generally forces the pro-
gram to jump at return time into an interesting routine in the C standard library
(libc).

Other important data commonly on the stack include the stack pointer and
frame pointer, two valuesthat indicate offsets for computing memory addresses.
Modifying those values can often be leveraged into a “write-what-where” con-
dition.

EXAMPLES

While the buffer overflow example above counts as a stack overflow, it is possi-
bleto have even simpler, yet till exploitable, stack based buffer overflows:

114

The CLASP Application Security Process

5.2.3.11

524

5.24.1

5.2.4.2

5.2.4.3

#defi ne BUFSI ZE 256

int main(int argc, char **argv) {

}

char buf [BUFSI ZE] ;

strcpy(buf, argv[1]);

RELATED PROBLEMS

Parent categories. Buffer overflow

Subcategories: return address overwrite, stack pointer overwrite, frame
pointer overwrite.

Can be: Function pointer overwrite, array indexer overwrite, write-what-
where condition, etc.

Heap overflow

OVERVIEW

A heap overflow condition is a buffer overflow, where the buffer that can be
overwritten is alocated in the heap portion of memory, generally meaning that
the buffer was allocated using a routine such as the POSIX malloc() call.

CONSEQUENCES

Availahility: Buffer overflows generally lead to crashes. Other attacks
leading to lack of availability are possible, including putting the program
into an infinite loop.

Access control (memory and instruction processing): Buffer overflows
often can be used to execute arbitrary code, which is usually outside the
scope of aprogram’simplicit security policy.

Other: When the consequence is arbitrary code execution, this can often
be used to subvert any other security service.

EXPOSURE PERIOD

Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

Design: Mitigating technol ogies such as safe string libraries and con-
tainer abstractions could be introduced.

Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

The CLASP Application Security Process 115

5.2.44

5.2.45

5.2.4.6

5.2.4.7

5.2.4.8

5.2.4.9

5.2.4.10

PLATFORM
e Languages. C, C++, Fortran, Assembly

* Operating platforms: All, although partial preventative measures may be
deployed depending on environment.

REQUIRED RESOURCES
Any

SEVERITY
Very High

LIKELIHOOD OF EXPLOIT
e Availability: Very High
* Access control (instruction processing): High

AVOIDANCE AND MITIGATION

* Pre-design: Use alanguage or compiler that performs automatic bounds
checking.

* Design: Use an abstraction library to abstract away risky APIs. Not a
complete solution.

* Pre-design through Build: Canary style bounds checking, library changes
which ensure the validity of chunk data, and other such fixes are possible,
but should not be relied upon.

e Operational: Use OS-level preventative functionality. Not a complete
solution.

DISCUSSION

Heap overflows are usually just as dangerous as stack overflows. Besides
important user data, heap overflows can be used to overwrite function pointers
that may be living in memory, pointing it to the attacker’s code.

Even in applications that do not explicitly use function pointers, the run-time
will usually leave many in memory. For example, object methodsin C++ are
generally implemented using function pointers. Even in C programs, thereis
often a global offset table used by the underlying runtime.

EXAMPLES
While the buffer overflow example above counts as a stack overflow, it is possi-
bleto have even simpler, yet till exploitable, stack-based buffer overflows:

116

The CLASP Application Security Process

5.2.4.11

525

5251

5.2.5.2

5.25.3

5.25.4

#defi ne BUFSI ZE 256

int main(int argc, char **argv) {
char *buf;

buf = (char *)nmal | oc(BUFSI ZE);
strcpy(buf, argv[1]);

}

RELATED PROBLEMS

¢ Write-what-where

Buffer underwrite

OVERVIEW

A buffer underwrite condition occurs when a buffer isindexed with a negative
number, or pointer arithmetic with a negative value results in a position before
the beginning of the valid memory location.

CONSEQUENCES

* Availability: Buffer underwrites will very likely result in the corruption
of relevant memory, and perhaps instructions, leading to a crash.

* Access Control (memory and instruction processing): If the memory cor-
rupted memory can be effectively controlled, it may be possible to exe-
cute arbitrary code. If the memory corrupted is data rather than
instructions, the system will continue to function with improper changes,
ones made in violation of a policy, whether explicit or implicit.

* Other: When the consegquence is arbitrary code execution, this can often
be used to subvert any other security service.

EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

PLATFORM
e Languages. C, C++, Assembly
¢ Operating Platforms: All

The CLASP Application Security Process 117

5.2.5,5

5.2.5.6

5.2.5.7

5.2.5.8

5.2.5.9

5.2.5.10

5.2.6

5.2.6.1

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Implementation: Sanity checks should be performed on all cal culated val-
ues used asindex or for pointer arithmetic.

EXAMPLES
The following is an example of code that may result in a buffer underwrite,
should find() returns a negative value to indicate that ch is not found in srcBuf:

int main() {
strncpy(dest Buf, &srcBuf[find(srcBuf, ch)], 1024);

}

If the index to srcBuf is somehow under user control, thisis an arbitrary write-
what-where condition.

RELATED PROBLEMS

* Buffer Overflow (and related issues)
* Integer Overflow

* Signed-to-unsigned Conversion Error
¢ Unchecked Array Indexing

Wrap-around error

OVERVIEW

Wrap around errors occur whenever avalue isincriminated past the maximum
value for its type and therefore “wraps around” to avery small, negative, or
undefined value.

118

The CLASP Application Security Process

5.2.6.2 CONSEQUENCES

* Availability: Wrap-around errors generally lead to undefined behavior,
infinite loops, and therefore crashes.

* Integrity: If the value in question isimportant to data (as opposed to
flow), smple data corruption has occurred. Also, if the wrap around
resultsin other conditions such as buffer overflows, further memory cor-
ruption may occur.

* Access control (instruction processing): A wrap around can sometimes
trigger buffer overflows which can be used to execute arbitrary code.
Thisis usually outside the scope of a program’s implicit security policy.

5.2.6.3 EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Design: If the flow of the system, or the protocols used, are not well
defined, it may make the possibility of wrap-around errors more likely.

* Implementation: Many logic errors can lead to this condition.

5.2.6.4 PLATFORM
e Language: C, C++, Fortran, Assembly
* Operating System: Any

5.2.6.5 REQUIRED RESOURCES
Any

5.2.6.6 SEVERITY
High

5.2.6.7 LIKELIHOOD OF EXPLOIT
Medium

5.2.6.8 AVOIDANCE AND MITIGATION

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Design: Provide clear upper and lower bounds on the scale of any proto-
cols designed.

* Implementation: Place sanity checks on all incremented variablesto
ensure that they remain within reasonable bounds.

The CLASP Application Security Process 119

5.2.6.9

5.2.6.10

5.2.6.11

527

52.7.1

5.2.7.2

DISCUSSION

Due to how addition is performed by computers, if a primitive isincremented
past the maximum value possible for its storage space, the system will fail to
recognize this, and therefore increment each bit as if it still had extra space.

Because of how negative numbers are represented in binary, primitives inter-
preted as signed may “wrap” to very large negative values.

EXAMPLES
See the Examples section of the problem type Integer overflow for an example
of wrap-around errors.

RELATED PROBLEMS
* Integer overflow
* Unchecked array indexing

Integer overflow

OVERVIEW
An integer overflow condition exists when an integer, which has not been prop-
erly sanity checked isused in the determination of an offset or size for memory
alocation, copying, concatenation, or similarly. If the integer in question is
incremented past the maximum possible value, it may wrap to become avery
small, or negative number, therefore providing a very incorrect value.

CONSEQUENCES

* Availahility: Integer overflows generally lead to undefined behavior and
therefore crashes. In the case of overflowsinvolving loop index variables,
thelikelihood of infinite loopsis aso high.

* Integrity: If the value in question isimportant to data (as opposed to
flow), simple data corruption has occurred. Also, if the integer overflow
has resulted in a buffer overflow condition, data corruption will most
likely take place.

* Access control (instruction processing): Integer overflows can sometimes
trigger buffer overflows which can be used to execute arbitrary code.
Thisis usually outside the scope of a program’simplicit security policy.

120

The CLASP Application Security Process

5.2.7.3 EXPOSURE PERIOD
* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Design: Mitigating technol ogies such as safe string libraries and con-
tainer abstractions could be introduced. (Thiswill only prevent the transi-
tion from integer overflow to buffer overflow, and only in some cases.)

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

5.2.7.4 PLATFORM
e Languages. C, C++, Fortran, Assembly
¢ Operating platforms: All

5275 REQUIRED RESOURCES
Any

5.2.7.6 SEVERITY
High

5.2.7.7 LIKELIHOOD OF EXPLOIT
Medium

5.2.7.8 AVOIDANCE AND MITIGATION

* Pre-design: Use alanguage or compiler that performs automatic bounds
checking.

* Design: Use of sanity checks and assertions at the object level. Ensure
that all protocols are strictly defined, such that all out of bounds behavior
can be identified ssimply.

* Pre-design through Build: Canary style bounds checking, library changes
which ensure the validity of chunk data, and other such fixes are possible
but should not be relied upon.

52.7.9 DISCUSSION
Integer overflows are for the most part only problematic in that they lead to
issues of availability. Common instances of this can be found when primitives
subject to overflow are used as aloop index variable.

In some situations, however, it is possible that an integer overflow may lead to
an exploitable buffer overflow condition. In these circumstances, it may be pos-

The CLASP Application Security Process 121

5.2.7.10

5.2.7.11

5.2.8

5.2.8.1

5.2.8.2

sible for the attacker to control the size of the buffer as well as the execution of
the program.

Recently, a number of integer overflow-based, buffer-overflow conditions have
surfaced in prominent software packages. Due to this fact, the relatively diffi-
cult to exploit condition is now more well known and therefore more likely to
be attacked. The best strategy for mitigation includes: a multi-level strategy
including the strict definition of proper behavior (to restrict scale, and therefore
prevent integer overflows long before they occur); frequent sanity checks; pref-
erably at the object level; and standard buffer overflow mitigation techniques.

EXAMPLES

Integer overflows can be complicated and difficult to detect. The following
exampleis an attempt to show how an integer overflow may lead to undefined
looping behavior:

short int bytesRec = O;
char buf [SOVEBI GNUM ;

whi | e(byt esRec < MAXGET) {
byt esRec += get From nput (buf +byt esRec) ;
}

In the above case, it is entirely possible that bytesRec may overflow, continu-
oudly creating alower number than MAXGET and also overwriting the first
MAXGET-1 bytes of buf.

RELATED PROBLEMS

» Buffer overflow (and related vulnerabilities): Integer overflows are often
exploited only by creating buffer overflow conditions to take advantage
of.

Integer coercion error

OVERVIEW

Integer coercion refersto a set of flaws pertaining to the type casting, extension,
or truncation of primitive data types.

CONSEQUENCES

* Availahility: Integer coercion often leads to undefined states of execution
resulting in infinite loops or crashes.

122

The CLASP Application Security Process

* Access Control: In some cases, integer coercion errors can lead to
exploitable buffer overflow conditions, resulting in the execution of arbi-
trary code.

* Integrity: Integer coercion errors result in an incorrect value being stored
for the variable in question.

5.2.8.3 EXPOSURE PERIOD

* Requirements specification: A language which throws exceptions on
ambiguous data casts might be chosen.

* Design: Unnecessary casts are brought about through poor design of
function interaction

* Implementation: Lack of knowledge on the effects of data castsisthe pri-
mary cause of this flaw

5.2.8.4 PLATFORM
e Language: C, C++, Assembly
e Platform: All

5.2.8.5 REQUIRED RESOURCES
Any

5.2.8.6 SEVERITY
High

5.2.8.7 LIKELIHOOD OF EXPLOIT
Medium

5.2.8.8 AVOIDANCE AND MITIGATION

* Requirements specification: A language which throws exceptions on
ambiguous data casts might be chosen.

* Design: Design objects and program flow such that multiple or complex
casts are unnecessary

* Implementation: Ensure that any data type casting that you must used is
entirely understood in order to reduce the plausibility of error in use.

5.2.8.9 DISCUSSION

Several flaws fall under the category of integer coercion errors. For the most
part, these errorsin and of themselves result only in availability and data integ-

The CLASP Application Security Process 123

5.2.8.10

5.2.8.11

5.2.9

5.29.1

5.2.9.2

5.2.9.3

5.2.9.4

5.2.9.5

5.2.9.6

5.2.9.7

rity issues. However, in some circumstances, they may result in other, more
complicated security related flaws, such as buffer overflow conditions.

EXAMPLES

See the Examples section of the problem type Unsigned to signed conversion
error for an example of integer coercion errors.

RELATED PROBLEMS

* Signed to unsigned conversion error
* Unsigned to signed conversion error
e Truncation error

e Sign-extension error

Truncation error

OVERVIEW

Truncation errors occur when aprimitiveis cast to aprimitive of asmaller size
and dataislost in the conversion.

CONSEQUENCES
* Integrity: The true value of the dataislost and corrupted datais used.

EXPOSURE PERIOD

* Implementation: Truncation errors almost exclusively occur at imple-
mentation time.

PLATFORM
e Languages. C, C++, Assembly
¢ Operating platforms: All

REQUIRED RESOURCES
Any

SEVERITY
Low

LIKELIHOOD OF EXPLOIT
Low

124

The CLASP Application Security Process

5.2.9.8

5.2.9.9

5.2.9.10

5.2.9.11

AVOIDANCE AND MITIGATION

* Implementation: Ensure that no casts, implicit or explicit, take place that
move from alarger size primitive or asmaller size primitive.

DISCUSSION

When aprimitiveis cast to a smaller primitive, the high order bits of the large
value are lost in the conversion, resulting in a non-sense value with no relation
to the original value. This value may be required as an index into a buffer, a
loop iterator, or Simply necessary state data. In any case, the value cannot be
trusted and the system will be in an undefined state.

While this method may be employed viably to isolate the low bits of avalue,
this usageisrare, and truncation usually implies that an implementation error
has occurred.

EXAMPLES
This example, while not exploitable, shows the possible mangling of values
associated with truncation errors:

#i ncl ude <stdio. h>

int main() {
i nt intPrimtive;
short shortPrimtive;

intPrimtive = (int)(~((int)0) N (1 << (sizeof(int)*8-1)));
shortPrimtive = intPrimtive;

printf("Int MAXINT: %\ nShort MAXI NT: %d\n",
intPrimtive, shortPrimtive);
return (0);

}

The above code, when compiled and run, returns the following output:

Int MAXI NT: 2147483647
Short MAXINT: -1

A frequent paradigm for such a problem being exploitable is when the truncated
valueis used as an array index, which can happen implicitly when 64-bit values
are used asindexes, asthey are truncated to 32 bits.

RELATED PROBLEMS
* Signed to unsigned conversion error

The CLASP Application Security Process 125

* Unsigned to signed conversion error
* Integer coercion error
e Sign extension error

5.2.10 Sign extension error

5.2.10.1 OVERVIEW
If one extends a signed number incorrectly, if negative numbers are used, an
incorrect extension may result.

5.2.10.2 CONSEQUENCES

* Integrity: If one attempts to sign extend a negative variable with an
unsigned extension algorithm, it will produce an incorrect result.

* Authorization: Sign extension errors — if they are used to collect infor-
mation from smaller signed sources — can often create buffer overflows
and other memory based problems.

5.2.10.3 EXPOSURE PERIOD

* Requirements section: The choice to use alanguage which provides a
framework to deal with this could be used.

e Implementation: A logical flaw of this kind might lead to any number of
other flaws.

5.2.10.4 PLATFORM
¢ Languages: C or C++
¢ Operating platforms:; Any

5.2.10.5 REQUIRED RESOURCES
Any

5.2.10.6 SEVERITY
High

5.2.10.7 LIKELIHOOD OF EXPLOIT
High

126 The CLASP Application Security Process

5.2.10.8

5.2.10.9

5.2.10.10

5.2.10.11

5211

52111

5.2.11.2

AVOIDANCE AND MITIGATION
* Implementation: Use asign extension library or standard function to
extend signed numbers.

* Implementation: When extending signed numbersfill in the new bitswith
0if thesign bitis0 or fill the new bitswith 1 if the sign bitis 1.

DISCUSSION

Sign extension errors — if they are used to collect information from smaller
signed sources — can often create buffer overflows and other memory based
problems.

EXAMPLES
InC:
struct fakeint {
short fO;
short zeros;
b
struct fakeint strange;
struct fakeint strange2;

strange. f 0=- 240;
strange2. f 0=240;

strange2. zer 0s=0;
strange. zer 0s=0;

printf("%l %\ n", strange. f0, strange);
printf("% %\ n", strange2.fO0, strange2);

RELATED PROBLEMS

Signed to unsigned conversion error

OVERVIEW

A signed-to-unsigned conversion error takes place when a signed primitive is
used as an unsigned value, usually as a size variable.

CONSEQUENCES

* Availability: Incorrect sign conversions generally lead to undefined
behavior, and therefore crashes.

* Integrity: If apoor cast |ead to a buffer overflow or similar condition,
dataintegrity may be affected.

The CLASP Application Security Process 127

5.2.11.3

5.2.11.4

5.2.11.5

5.2.11.6

5.2.11.7

5.2.11.8

* Access contral (instruction processing): Improper signed-to-unsigned
conversions without proper checking can sometimes trigger buffer over-
flows which can be used to execute arbitrary code. Thisisusually outside
the scope of a program’simplicit security policy.

EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Design: Accessor functions may be designed to mitigate some of these
logical issues.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack, or misuse, of mitigating technologies.

PLATFORM
e Languages. C, C++, Fortran, Assembly
* Operating platforms: All

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Requirements specification: Choose alanguage which is not subject to
these casting flaws.

* Design: Design object accessor functionsto implicitly check values for
valid sizes. Ensure that all functions which will be used asasize are
checked previousto use as a size. If the language permits, throw excep-
tions rather than using in-band errors.

¢ Implementation: Error check the return values of all functions. Be aware
of implicit casts made, and use unsigned variables for sizesif at al possi-
ble.

128

The CLASP Application Security Process

5.2.11.9

5.2.11.10

5.2.11.11

DISCUSSION

Often, functions will return negative valuesto indicate a failure state. In the
case of functions which return values which are meant to be used as sizes, nega-
tive return values can have unexpected results. If these values are passed to the
standard memory copy or allocation functions, they will implicitly cast the neg-
ative error-indicating value to alarge unsigned value.

In the case of allocation, this may not be an issue; however, in the case of mem-
ory and string copy functions, this can lead to abuffer overflow condition which
may be exploitable.

Also, if the variables in question are used as indexes into a buffer, it may result
in a buffer underflow condition.

EXAMPLES

In the following example, it is possible to request that memcpy move a much
larger segment of memory than assumed:

int returnChunkSi ze(void *) {
/* if chunk info is valid, return the size of usable menory,
* else, return -1 to indicate an error
*/

}
int main() {
nmencpy(dest Buf, srcBuf, (returnChunkSize(destBuf)-1));

}

If returnChunkSize() happens to encounter an error, and returns -1, memcpy
will assume that the value is unsigned and therefore interpret it as MAXINT-1,
therefore copying far more memory than is likely available in the destination
buffer.

RELATED PROBLEMS
» Buffer overflow (and related conditions)
» Buffer underwrite

The CLASP Application Security Process 129

5.2.12

5.2.12.1

5.2.12.2

5.2.12.3

5.2.12.4

5.2.12.5

5.2.12.6

5.2.12.7

Unsigned to signed conversion error

OVERVIEW

An unsigned-to-signed conversion error takes place when alarge unsigned
primitive is used as an signed value — usually as a size variable.

CONSEQUENCES

* Availability: Incorrect sign conversions generally lead to undefined
behavior, and therefore crashes.

* Integrity: If apoor cast lead to a buffer underwrite, data integrity may be
affected.

* Access control (instruction processing): Improper unsigned-to-signed
conversions, often create buffer underwrite conditions which can be used
to execute arbitrary code. Thisisusually outside the scope of a program’s
implicit security policy.

EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Design: Accessor functions may be designed to mitigate some of these
logical issues.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

PLATFORM
e Languages: C, C++, Fortran, Assembly
¢ Operating platforms: All

REQUIRED RESOURCES

Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Low to Medium

130

The CLASP Application Security Process

5.2.12.8

5.2.12.9

5.2.12.10

5.2.12.11

AVOIDANCE AND MITIGATION

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Design: Ensure that interacting functions retain the same types and that
only safe type casts must occur. If possible, use intelligent marshalling
routines to translate between objects.

¢ Implementation: Use out-of-data band channels for transmitting error
messages if unsigned size values must be transmitted. Check all errors.

¢ Build: Pay attention to compiler warnings which may alert you to
improper type casting.

DISCUSSION

Although less frequent an issue than signed-to-unsigned casting, unsigned-to-
signed casting can be the perfect precursor to dangerous buffer underwrite con-
ditionsthat allow attackersto move down the stack where they otherwise might
not have access in anormal buffer overflow condition.

Buffer underwrites occur frequently when large unsigned values are cast to
signed values, and then used as indexes into a buffer or for pointer arithmetic.

EXAMPLES

While not exploitable, the following program is an excellent example of how
implicit casts, while not changing the value stored, significantly changesits use:

#i ncl ude <stdio. h>

int main() {
int val ue;
value = (int)(~((int)0) ~ (1 << (sizeof(int)*8)));

printf("Mx unsigned int: % %$x\nNow signed: %$d %d$x\n",
val ue);
return (0);
}

The above code produces the follow ng output:
Max unsigned int: 4294967295 ffffffff
Now signed: -1 ffffffff

Note how the hex value remains unchanged.

RELATED PROBLEMS
e Buffer underwrite

The CLASP Application Security Process 131

5.2.13 Unchecked array indexing

52.13.1 OVERVIEW
Unchecked array indexing occurs when an unchecked valueis used as an index
into a buffer.

5.2.13.2 CONSEQUENCES

* Availability: Unchecked array indexing will very likely result in the cor-
ruption of relevant memory and perhaps instructions, leading to a crash,
if the values are outside of the valid memory area

* Integrity: If the memory corrupted is data, rather than instructions, the
system will continue to function with improper values.

* Access Control: If the memory corrupted memory can be effectively con-
trolled, it may be possible to execute arbitrary code, as with a standard
buffer overflow.

5.2.13.3 EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

5.2.13.4 PLATFORM
¢ Languages. C, C++, Assembly
¢ Operating Platforms: All

5.2.13.5 REQUIRED RESOURCES
Any

5.2.13.6 SEVERITY
Medium

5.2.13.7 LIKELIHOOD OF EXPLOIT
Medium

5.2.13.8 AVOIDANCE AND MITIGATION

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

132 The CLASP Application Security Process

5.2.13.9

5.2.13.10

5.2.13.11

5.2.14

5.2.14.1

5.2.14.2

* Implementation: Include sanity checksto ensure the validity of any val-
ues used as index variables. In loops, use greater-than-or-equal-to, or
less-than-or-equal -to, as opposed to simply greater-than, or less-than
compare statements.

DISCUSSION

Unchecked array indexing, depending on its instantiation, can be responsible
for any number of related issues. Most prominent of these possible flawsisthe
buffer overflow condition. Due to this fact, consequences range from denial of
service, and data corruption, to full blown arbitrary code execution

The most common condition situation leading to unchecked array indexing is
the use of loop index variables as buffer indexes. If the end condition for the
loop is subject to aflaw, the index can grow or shrink unbounded, therefore
causing a buffer overflow or underflow. Another common situation leading to
this condition is the use of afunction’sreturn value, or the resulting value of a
calculation directly as an index in to a buffer.

EXAMPLES

RELATED PROBLEMS

» Buffer Overflow (and related issues)

¢ Buffer Underwrite

¢ Signed-to-Unsigned Conversion Error
e Write-What-Where

Miscalculated null termination

OVERVIEW

Miscal culated null termination occurs when the placement of anull character at
the end of abuffer of characters (or string) is misplaced or omitted.

CONSEQUENCES

¢ Confidentiality: Information disclosure may occur if strings with mis-
placed or omitted null characters are printed.

e Availability: A randomly placed null character may put the system into an
undefined state, and therefore make it prone to crashing.

* Integrity: A misplaced null character may corrupt other datain memory

The CLASP Application Security Process 133

5.2.14.3

5.2.14.4

5.2.14.5

5.2.14.6

5.2.14.7

5.2.14.8

* Access Control: Should the null character corrupt the process flow, or
effect aflag controlling access, it may lead to logical errors which allow
for the execution of arbitrary code.

EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Implementation: Precise knowledge of string manipulation functions may
prevent thisissue

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Implementation: Ensurethat all string functions used are understood fully
asto how they append null characters. Also, be wary of off-by-one errors
when appending nulls to the end of strings.

DISCUSSION

Miscal culated null termination is acommon issue, and often difficult to detect.
The most common symptoms occur infrequently (in the case of problems result-
ing from “safe” string functions), or in odd ways characterized by data corrup-
tion (when caused by off-by-one errors).

The case of an omitted null character isthe most dangerous of the possible
issues. Thiswill almost certainly result in information disclosure, and possibly a
buffer overflow condition, which may be exploited to execute arbitrary code.

Asfor misplaced null characters, the biggest issueis a subset of buffer over-
flow, and write-what-where conditions, where data corruption occurs from the
writing of anull character over valid data, or even instructions. These logic
issues may result in any number of security flaws.

134

The CLASP Application Security Process

5.2.14.9

5.2.14.10

5.2.15

5.2.15.1

5.2.15.2

EXAMPLES

While the following exampleis not exploitable, it provides a good example of
how nulls can be omitted or misplaced, even when “safe’ functions are used:

#i ncl ude <stdio. h>
#i ncl ude <string. h>

int main() {
char longString[] = "Cellular bananul ar phone";
char shortString[16];

strncpy(shortString, longString, 16);

printf("The last character in shortString is: % %$x\n",
short String[15]);

return (0);

}

The above code gives the following output:

The | ast character in shortString is: | 6c¢

So, the shortString array does not end in aNULL character, even though the
“safe” string function strncpy() was used.

RELATED PROBLEMS
» Buffer overflow (and related issues)

* Write-what-where: A subset of the problem in some cases, in which an
attacker may write a null character to asmall range of possible addresses.

Improper string length checking

OVERVIEW
Improper string length checking takes place when wide or multi-byte character
strings are mistaken for standard character strings.

CONSEQUENCES

* Access control: Thisflaw isexploited most frequently when it resultsin a
buffer overflow condition, which leads to arbitrary code execution.

* Availahility: Evenif the flaw remains unexploded, the probability that the

process will crash due to the writing of data over arbitrary memory may
resultin acrash.

The CLASP Application Security Process 135

5.2.15.3 EXPOSURE PERIOD
* Requirements specification: A language which is not subject to this flaw
may be chosen.

* Implementation: Misuse of string functions at implementation timeisthe
most common cause of this problem.

e Build: Compile-time mitigation techniques may serve to complicate
exploitation.

5.2.15.4 PLATFORM
¢ Language: C, C++, Assembly
e Platform: All

5.2.15.5 REQUIRED RESOURCES
Any

5.2.15.6 SEVERITY
High

5.2.15.7 LIKELIHOOD OF EXPLOIT
High

5.2.15.8 AVOIDANCE AND MITIGATION

* Requirements specification: A language which is not subject to this flaw
may be chosen.

* Implementation: Ensure that if wide or multi-byte strings are in use that
all functions which interact with these strings are wide and multi-byte
character compatible, and that the maximum character size istaken into
account when memory is allocated.

e Build: Use of canary-style overflow prevention techniques at compile
time may serve to complicate exploitation but cannot mitigate it fully; nor
will thistechnique have any effect on process stability. Thisis not a com-
plete mitigation technique.

5.2.15.9 DISCUSSION
There are several ways in which improper string length checking may result in
an exploitable condition. All of these however involve the introduction of buffer
overflow conditions in order to reach an exploitable state.

136 The CLASP Application Security Process

5.2.15.10

Thefirst of these issues takes place when the output of awide or multi-byte
character string, string-length function is used as a size for the allocation of
memory. While thiswill result in an output of the number of charactersin the
string, note that the characters are most likely not asingle byte, asthey are with
standard character strings. So, using the size returned as the size sent to new or
malloc and copying the string to this newly allocated memory will result in a
buffer overflow.

Another common way these strings are misused involves the mixing of standard
string and wide or multi-byte string functions on a single string. Invariably, this
mismatched information will result in the creation of a possibly exploitable
buffer overflow condition.

Again, if alanguage subject to these flaws must be used, the most effective mit-
igation technique isto pay careful attention to the code at implementation time
and ensure that these flaws do not occur.

EXAMPLES

The following example would be exploitable if any of the commented incorrect
malloc calls were used.

#i ncl ude <stdio. h>
#i ncl ude <strings. h>
#i ncl ude <wchar. h>

int main() {
wchar _t wideString[] = L"The spazzy orange tiger junped " \
“over the tawny jaguar.";
wchar _t *newStri ng;

printf("Strlen() output: %\ nWslen() output: %\ n",
strlen(w deString), wcslen(w deString));

/* Very wrong for obvious reasons //
newString = (wchar_t *) malloc(strlen(w deString));
*/

/* Wong because wi de characters aren't 1 byte long! //
newString = (whar_t *) malloc(wesl en(w deString));

*/

/* correct! */

newString = (whar_t *) malloc(weslen(w deString) *

si zeof (wchar _t));

[* o0

The CLASP Application Security Process 137

The output from the printf() statement would be:
Strlen() output: O
Wslen() output: 53
5.2.1511 RELATED PROBLEMS
* Buffer overflow (and related issues)

5.2.16 Covert storage channel

5.2.16.1 OVERVIEW

The existence of a covert storage channel in a communications channel may
release information which can be of significant use to attackers.

5.2.16.2 CONSEQUENCES

* Confidentiality: Covert storage channels may provide attackers with
important information about the system in question.

5.2.16.3 EXPOSURE PERIOD

* Implementation: The existence of datain a covert storage channel is
largely aflaw caused by implementors.

5.2.16.4 PLATFORM
e Languages: All
* Operating platforms: All

5.2.16.5 REQUIRED RESOURCES

Network proximity: Some ability to sniff network traffic would be required to
capitalize on this flaw.

5.2.16.6 SEVERITY
Medium

5.2.16.7 LIKELIHOOD OF EXPLOIT
High

5.2.16.8 AVOIDANCE AND MITIGATION

* Implementation: Ensure that all reserved fields are set to zero before mes-
sages are sent and that no unnecessary information is included.

138 The CLASP Application Security Process

5.2.16.9

5.2.16.10

5.2.16.11

5.2.17

52.17.1

5.2.17.2

DISCUSSION
Covert storage channels occur when out-of-band data is stored in messages for
the purpose of memory reuse. If these messages or packets are sent with the
unnecessary data still contained within, it may tip off malicious listeners asto
the process that created the message.

With this information, attackers may learn any number of things, including the
hardware platform, operating system, or algorithms used by the sender. This
information can be of significant value to the user in launching further attacks.

EXAMPLES

An excellent example of covert storage channelsin awell known applicationis
the ICMP error message echoing functionality. Due to ambiguitiesin the ICMP
RFC, many | Pimplementati ons use the memory within the packet for storage or
calculation.

For this reason, certain fields of certain packets — such as ICMP error packets
which echo back parts of received messages — may contain flaws or extra
information which betrays information about the identity of the target operating
system.

Thisinformation is then used to build up evidence to decide the environment of
the target. Thisisthefirst crucial step in determining if agiven systemisvul-
nerable to a particular flaw and what changes must be made to malicious code
to mount a successful attack.

RELATED PROBLEMS

Failure to account for default case in switch

OVERVIEW

The failure to account for the default case in switch statements may lead to
complex logical errors and may aid in other, unexpected security-related condi-
tions.

CONSEQUENCES

* Undefined: Depending on thelogical circumstances involved, any conse-
guences may result: e.g., issues of confidentiality, authentication, authori-
zation, availability, integrity, accountability, or non-repudiation.

The CLASP Application Security Process 139

5.2.17.3

5.2.17.4

5.2.17.5

5.2.17.6

5.2.17.7

5.2.17.8

5.2.17.9

5.2.17.10

EXPOSURE PERIOD

* Implementation: This flaw isasimplelogic issue, introduced entirely at
implementation time.

PLATFORM
* Language: Any
e Patform: Any

REQUIRED RESOURCES
Any

SEVERITY
Undefined.

LIKELIHOOD OF EXPLOIT
Undefined.

AVOIDANCE AND MITIGATION

* Implementation: Ensure that there are no unaccounted for cases, when
adjusting flow or values based on the value of agiven variable. In switch
statements, this can be accomplished through the use of the default 1abel.

DISCUSSION

This flaw represents a common problem in software development, in which not
all possible values for avariable are considered or handled by a given process.
Because of this, further decisions are made based on poor information, and cas-
cading failure results.

This cascading failure may result in any number of security issues, and consti-
tutes asignificant failurein the system. In the case of switch style statements,
the very simple act of creating a default case can mitigate this situation, if done
correctly.

Often however, the default cause is used simply to represent an assumed option,
as opposed to working as asanity check. Thisis poor practice and in some cases
is as bad as omitting a default case entirely.

EXAMPLES
In general, asafe switch statement has this form:

switch (value) {

140

The CLASP Application Security Process

5.2.17.11

5.2.18

5.2.18.1

5.2.18.2

5.2.18.3

5.2.18.4

5.2.18.5

case 'A':
printf("A\n");
br eak;
case 'B':
printf("B'\n");
br eak;
defaul t:
printf("Neither A nor B\n");
}

This is because the assumption cannot be made that all possible cases are
accounted for. A good practiceis to reserve the default case for error handling.

RELATED PROBLEMS

e Undefined: A logical flaw of this kind might lead to any number of other
flaws.

Null-pointer dereference

OVERVIEW

A null-pointer dereference takes place when a pointer with avalue of NULL is
used as though it pointed to avalid memory area.

CONSEQUENCES

¢ Availability: Null-pointer dereferences invariably result in the failure of
the process.

EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Implementation: Proper sanity checks at implementation time can serve
to prevent null-pointer dereferences

PLATFORM
e Languages. C, C++, Assembly
» Platforms: All

REQUIRED RESOURCES
Any

The CLASP Application Security Process 141

5.2.18.6

5.2.18.7

5.2.18.8

5.2.18.9

5.2.18.10

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Implementation: If al pointers that could have been modified are sanity-
checked previousto use, nearly all null-pointer dereferences can be pre-
vented.

DISCUSSION

Null-pointer dereferences, while common, can generally be found and corrected
in asimply way. They will always result in the crash of the process — unless
exception handling (on some platforms) in invoked, and even then, little can be
done to salvage the process.

EXAMPLES

Null-pointer dereference issue can occur through a number of flaws, including
race conditions, and simple programming omissions. While there are no com-
plete fixes aside from contentious programming, the following steps will go a
long way to ensure that null-pointer dereferences do not occur.

Before using a pointer, ensure that it is not equal to NULL:

if (pointerl !'= NULL) {
/* make use of pointerl */
[* .00

}

When freeing pointers, ensure they are not set to NULL, and be sure to set them
to NULL oncethey are freed:

if (pointerl !'= NULL) {
free(pointerl);
pointerl = NULL;

}

If you are working with a multi-threaded or otherwise asynchronous environ-
ment, ensure that proper locking APIs are used to lock before the if statement;
and unlock when it has finished.

142

The CLASP Application Security Process

5.2.18.11 RELATED PROBLEMS
* Miscalculated null termination
e State synchronization error

5.2.19 Using freed memory

5.2.19.1 OVERVIEW

The use of heap allocated memory after it has been freed or deleted leads to
undefined system behavior and, in many cases, to awrite-what-where condi-
tion.

5.2.19.2 CONSEQUENCES

* Integrity: The use of previously freed memory may corrupt valid data, if
the memory areain question has been allocated and used properly else-
where.

e Availability: If chunk consolidation occur after the use of previously
freed data, the process may crash when invalid datais used as chunk
information.

* Access Control (instruction processing): If malicious datais entered
before chunk consolidation can take place, it may be possible to take
advantage of awrite-what-where primitive to execute arbitrary code.

5.2.19.3 EXPOSURE PERIOD

* Implementation: Use of previously freed memory errors occur largely at
implementation time.

5.2.19.4 PLATFORM
¢ Languages. C, C++, Assembly
¢ Operating Platforms: All

5.2.19.5 REQUIRED RESOURCES
Any

5.2.19.6 SEVERITY
Very High

5.2.19.7 LIKELIHOOD OF EXPLOIT
High

The CLASP Application Security Process 143

5.2.19.8

5.2.19.9

5.2.19.10

AVOIDANCE AND MITIGATION

¢ Implementation: Ensuring that all pointers are set to NULL once they
memory they point to has been freed can be effective strategy. The utili-
zation of multiple or complex data structures may lower the useful ness of
this strategy.

DISCUSSION

The use of previously freed memory can have any number of adverse conse-
guences — ranging from the corruption of valid data to the execution of arbi-
trary code, depending on the instantiation and timing of the flaw.

The simplest way data corruption may occur involves the system’s reuse of the
freed memory. In this scenario, the memory in question is allocated to another
pointer validly at some point after it has been freed. The original pointer to the
freed memory is used again and points to somewhere within the new allocation.
Asthe datais changed, it corrupts the validly used memory; thisinduces unde-
fined behavior in the process.

If the newly allocated data chancesto hold a class, in C++ for example, various
function pointers may be scattered within the heap data If one of these function
pointersis overwritten with an address to valid shellcode, execution of arbitrary
code can be achieved.

EXAMPLES
The following example

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>

#define BUFSI ZERL 512
#define BUFSI ZER2 ((BUFSI ZERL/2) - 8)

int main(int argc, char **argv) {
char *buf 1R1,;
char *buf 2R1;
char *buf 2R2;
char *buf 3R2;

buf 1R1
buf 2R1

(char *) mall oc(BUFSI ZERL) ;
(char *) mal |l oc(BUFSI ZERL) ;

free(buf2R1);

buf 2R2 = (char *) mall oc(BUFSI ZER2) ;

144

The CLASP Application Security Process

buf 3R2 = (char *) mall oc(BUFSI ZER2) ;

strncpy(buf 2R1, argv[1l], BUFSIZER1-1);
free(buf 1R1);
free(buf 2R2);
free(buf3R2);
}

5.2.19.11 RELATED PROBLEMS

» Buffer overflow (in particular, heap overflows): The method of exploita-
tion is often the same, as both constitute the unauthorized writing to heap
memory.

* Write-what-where condition: The use of previously freed memory can
result in awrite-what-where in several ways.

5.2.20 Doubly freeing memory

5.2.20.1 OVERVIEW

Freeing or deleting the same memory chunk twice may — when combined with
other flaws — result in awrite-what-where condition.

5.2.20.2 CONSEQUENCES

¢ Access control: Doubly freeing memory may result in a write-what-
where condition, allowing an attacker to execute arbitrary code.

5.2.20.3 EXPOSURE PERIOD

* Requirements specification: A language which handles memory alloca-
tion and garbage collection automatically might be chosen.

¢ Implementation: Double frees are caused most often by lower-level logi-
cal errors.

5.2.20.4 PLATFORM
e Language: C, C++, Assembly
e Operating system: All

5.2.20.5 REQUIRED RESOURCES
Any

5.2.20.6 SEVERITY
High

The CLASP Application Security Process 145

5.2.20.7 LIKELIHOOD OF EXPLOIT
Low to Medium

5.2.20.8 AVOIDANCE AND MITIGATION

¢ Implementation: Ensure that each allocation is freed only once. After
freeing a chunk, set the pointer to NULL to ensure the pointer cannot be
freed again. In complicated error conditions, be sure that clean-up rou-
tines respect the state of allocation properly. If the language is object ori-
ented, ensure that object destructors delete each chunk of memory only
once.

5.2.20.9 DISCUSSION
Doubly freeing memory can result in roughly the same write-what-where condi-
tion that the use of previously freed memory will.

52.20.10 EXAMPLES
While contrived, this code should be exploitable on Linux distributions which
do not ship with heap-chunk check summing turned on.

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>

#define BUFSI ZE1 512
#define BUFSI ZE2 ((BUFSI ZE1/2) - 8)

int main(int argc, char **argv) {
char *buf 1R1;
char *buf 2R1;
char *buf 1R2;

buf 1R1
buf 2R1

(char *) mall oc(BUFSI ZE2) ;
(char *) mal |l oc(BUFSI ZE2) ;

free(buf 1R1);
free(buf2R1);

buf 1IR2 = (char *) nmall oc(BUFSI ZE1);
strncpy(buf 1R2, argv[1], BUFSIZEl-1);

free(buf 2R1);
free(buf1R2);

}

5.2.20.11 RELATED PROBLEMS
¢ Using freed memory

146 The CLASP Application Security Process

5221

52211

5.2.21.2

5.2.21.3

5.2.21.4

5.2.215

5.2.21.6

5.2.21.7

5.2.21.8

5.2.21.9

5.2.21.10

¢ Write-what-where

Invoking untrusted mobile code

OVERVIEW
This process will download external source or binaries and executeit.

CONSEQUENCES
Unspecified.

EXPOSURE PERIOD

Implementation: Thisflaw isasimplelogic issue, introduced entirely at imple-
mentation time.

PLATFORM
Languages. Javaand C++

Operating platform: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

¢ Implementation: Avoid doing this without proper cryptographic safe-
guards.

DISCUSSION

Thisis an unsafe practice and should not be performed unless one can use some
type of cryptographic protection to assure that the mobile code has not been
altered.

EXAMPLES
In Java:

URL[] classURLs= new URL[]{new URL(“file:subdir/")};
URLC assLoader |oader = nwe URLC assLoader (cl assURLS);

The CLASP Application Security Process 147

Cl ass | oadedC ass = O ass. forNane(“l oadMe”, true, |oader);

522111 RELATED PROBLEMS
* Cross-site scripting

5.2.22 Cross-site scripting

52.22.1 OVERVIEW
Cross-site scripting attacks are an instantiation of injection problems, in which
malicious scripts are injected into the otherwise benign and trusted web sites.

5.2.22.2 CONSEQUENCES

e Confidentiality: The most common attack performed with cross-site
scripting involves the disclosure of information stored in user cookies.

* Access control: In some circumstancesit may be possibleto run arbitrary
code on avictim’'s computer when cross-site scripting is combined with
other flaws

5.2.22.3 EXPOSURE PERIOD

e Implementation: If bulletin-board style functionality is present, cross-site
scripting may only be deterred at implementation time.

5.2.22.4 PLATFORM
¢ Language: Any
* Platform: All (requires interaction with aweb server supporting dynamic
content)

5.2.22.5 REQUIRED RESOURCES
Any

5.2.22.6 SEVERITY
Medium

5.2.22.7 LIKELIHOOD OF EXPLOIT
Medium

5.2.22.8 AVOIDANCE AND MITIGATION

¢ Implementation: Use awhite-list style parsing routine to ensure that no
posted content contains scripting tags.

148 The CLASP Application Security Process

5.2.22.9

5.2.22.10

5.2.22.11

5.2.23

5.2.23.1

5.2.23.2

DISCUSSION

Cross-site scripting attacks can occur wherever an untrusted user has the ability
to publish content to a trusted web site. Typically, amalicious user will craft a
client-side script, which — when parsed by a web browser — performs some
activity (such as sending al site cookiesto a given E-mail address).

If theinput is unchecked, this script will be loaded and run by each user visiting
the web site. Since the site requesting to run the script has access to the cookies
in question, the malicious script does also.

There are several other possible attacks, such as running “Active X” controls
(under Microsoft Internet Explorer) from sites that a user perceives as trustwor-
thy; cookie theft is however by far the most common.

All of these attacks are easily prevented by ensuring that no script tags— or for
good measure, HTML tags at all — are allowed in data to be posted publicly.

EXAMPLES

Cross-site scripting attacks may occur anywhere that possibly malicious users
are allowed to post unregul ated material to atrusted web site for the consump-
tion of other valid users.

The most common example can be found in bulletin-board web sites which pro-
vide web based mailing list-style functionality.

RELATED PROBLEMS
* Injection problems
* Invoking untrusted mobile code

Format string problem

OVERVIEW

Format string problems occur when a user has the ability to control or write
completely the format string used to format datain the printf style family of C/
C++ functions.

CONSEQUENCES

e Confidentially: Format string problems allow for information disclosure
which can severely ssimplify exploitation of the program.

The CLASP Application Security Process 149

5.2.23.3

5.2.23.4

5.2.235

5.2.23.6

5.2.23.7

5.2.23.8

5.2.23.9

* Access Control: Format string problems can result in the execution of
arbitrary code.

EXPOSURE PERIOD

* Requirements specification: A language might be chosen that is not sub-
ject to thisissue.

* Implementation: Format string problems are largely introduced at imple-
mentation time.

e Build: Several format string problems are discovered by compilers

PLATFORM
¢ Language: C, C++, Assembly
e Patform: Any

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Very High

AVOIDANCE AND MITIGATION

* Requirements specification: Choose alanguage which is not subject to
this flaw.

* Implementation: Ensurethat all format string functions are passed a static
string which cannot be controlled by the user and that the proper number
of arguments are always sent to that function aswell. If at all possible, do
not use the %n operator in format strings.

¢ Build: Heed the warnings of compilers and linkers, since they may alert
you to improper usage.

DISCUSSION

Format string problems are a classic C/C++ issue that are now rare due to the
ease of discovery. The reason format string vulnerabilities can be exploited is
due to the %n operator. The %n operator will write the number of characters,
which have been printed by the format string therefore far, to the memory
pointed to by its argument.

150

The CLASP Application Security Process

5.2.23.10

5.2.23.11

5.2.24

5.2.24.1

5.2.24.2

Through skilled creation of aformat string, a malicious user may use values on
the stack to create awrite-what-where condition. Once thisis achieved, he can
execute arbitrary code.

EXAMPLES

The following example is exploitable, due to the printf() call in the printWrap-
per() function. Note: The stack buffer was added to make exploitation more
simple.

#i ncl ude <stdio. h>

voi d printWapper(char *string) {
printf(string);
}

int main(int argc, char **argv) ({
char buf[5012];
mencpy(buf, argv[1], 5012);
print Wapper (argv[1]);
return (0);

}
RELATED PROBLEMS

* Injection problem
* Write-what-where

Injection problem (‘data’ used as something else)

OVERVIEW

Injection problems span awide range of instantiations. The basic form of this
flaw involves the injection of control-plane datainto the data-plane in order to
alter the control flow of the process.

CONSEQUENCES

* Confidentiality: Many injection attacks involve the disclosure of impor-
tant information — in terms of both data sensitivity and usefulnessin fur-
ther exploitation

* Authentication: In some casesinjectable codecontrols authentication; this
may |lead to remote vulnerability

* Access Control: Injection attacks are characterized by the ability to sig-
nificantly change the flow of a given process, and in some cases, to the
execution of arbitrary code.

The CLASP Application Security Process 151

* Integrity: Datainjection attacks lead to loss of dataintegrity in nearly all
cases as the control-plane data injected is always incidental to data recall
or writing.

* Accountahility: Often the actions performed by injected control code are
unlogged.

5.2.24.3 EXPOSURE PERIOD

* Requirements specification: A language might be chosen which is not
subject to these issues.

* Implementation: Many logic errors can contribute to these i ssues.

5.2.24.4 PLATFORM
¢ Languages. C, C++, Assembly, SQL
* Patforms. Any

5.2.24.5 REQUIRED RESOURCES
Any

5.2.24.6 SEVERITY
High

5.2.24.7 LIKELIHOOD OF EXPLOIT
Very High

5.2.24.8 AVOIDANCE AND MITIGATION

* Requirements specification: A language might be chosen which is not
subject to these issues.

¢ Implementation: As so many possibleimplementations of this flaw exist,
it isbest to simply be aware of the flaw and work to ensurethat al control
characters entered in data are subject to black-list style parsing.

5.2.24.9 DISCUSSION
Injection problems encompass awide variety of issues— all mitigated in very
different ways. For this reason, the most effective way to discuss these flawsis
to note the distinct features which classify them asinjection flaws.

The most important issueto noteisthat all injection problems share onethingin
common — i.e., they allow for theinjection of control plane data into the user-
controlled data plane. This means that the execution of the process may be

152 The CLASP Application Security Process

5.2.24.10

5.2.24.11

5.2.25

5.2.25.1

5.2.25.2

5.2.25.3

5.2.25.4

atered by sending code in through legitimate data channel's, using no other
mechanism. While buffer overflows, and many other flaws, involve the use of
some further issue to gain execution, injection problems need only for the data
to be parsed.

The most classing instantiations of this category of flaw are SQL injection and
format string vulnerabilities.

EXAMPLES

Injection problems describe alarge subset of problems with varied instantia-
tions. For an example of one of these problems, see the section Format string
problem.

RELATED PROBLEMS
* SQL injection

e Format String problem
e Command injection

Command injection

OVERVIEW

Command injection problems are a subset of injection problem, in which the
processistricked into calling external processes of the attackers choice through
the injection of control-plane datainto the data plane.

CONSEQUENCES

* Access control: Command injection allows for the execution of arbitrary
commands and code by the attacker.

EXPOSURE PERIOD

* Design: It may be possible to find alternate methods for satisfying func-
tional requirements than calling external processes. Thisis minimal.

* Implementation: Exposure for thisissue is limited almost exclusively to
implementation time. Any language or platform is subject to this flaw.

PLATFORM
¢ Language: Any
e Patform: Any

The CLASP Application Security Process 153

5.2.25.5

5.2.25.6

5.2.25.7

5.2.25.8

5.2.25.9

5.2.25.10

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Very High

AVOIDANCE AND MITIGATION

* Design: If at all possible, use library calls rather than external processes
to recreate the desired functionality

¢ Implementation: Ensure that all external commands called from the pro-
gram are statically created, or — if they must take input from a user —
that the input and final line generated are vigorously white-list checked.

* Runtime: Run time policy enforcement may be used in awhite-list fash-
ion to prevent use of any non-sanctioned commands.

DISCUSSION
Command injection is acommon problem with wrapper programs. Often, parts
of the command to be run are controllable by the end user. If amalicious user
injects a character (such as a semi-colon) that delimits the end of one command
and the beginning of another, he may then be able to insert an entirely new and
unrelated command to do whatever he pleases.

The most effective way to deter such an attack is to ensure that the input pro-
vided by the user adheres to strict rules asto what characters are acceptable. As
always, white-list style checking is far preferable to black-list style checking.

EXAMPLES

The following code is wrapper around the UNIX command cat which prints the
contents of afile to standard out. It isaso injectable:

#i ncl ude <stdio. h>
#i ncl ude <uni std. h>

int main(int argc, char **argv) ({
char cat[] = "cat ";
char *command;
size_t commandLengt h;

conmmandLength = strlen(cat) + strlen(argv[l1l]) + 1;

154

The CLASP Application Security Process

command = (char *) mall oc(commandLengt h);
strncpy(command, cat, commandLength);
strncat (command, argv[1l], (commandLength - strlen(cat)));

syst em(conmand) ;
return (0);

}
Used normally, the output is simply the contents of the file requested:
$./catWapper Story.txt

When | ast we left our heroes...

However, if we add a semicolon and another command to the end of thisline,
the command is executed by catWrapper with no complaint:

$./catWapper Story.txt; Is
VWhen | ast we left our heroes...

Story.txt doubFree. c nul | poi nter.c
unstosig. c WV a.out*

format.c strlen.c useFr ee*

cat W apper * msnull.c str-

I ength.c useFree. c comandi nj ection. c
nodefaul t.c trunc.c wr it eWhat Where. c

If catWrapper had been set to have a higher privilege level than the standard
user, arbitrary commands could be executed with that higher privilege.

522511 RELATED PROBLEMS
* Injection problem

5.2.26 SQL injection

5.2.26.1 OVERVIEW
SQL injection attacks are another instantiation of injection attack, in which
SQL commands are injected into data-plane input in order to effect the execu-
tion of predefined SQL commands.

5.2.26.2 CONSEQUENCES

* Confidentiality: Since SQL databases generally hold sensitive data, l0ss
of confidentiality is afrequent problem with SQL injection vulnerabili-
ties.

The CLASP Application Security Process 155

5.2.26.3

5.2.26.4

5.2.26.5

5.2.26.6

5.2.26.7

5.2.26.8

e Authentication: If poor SQL commands are used to check user names and
passwords, it may be possible to connect to a system as another user with
no previous knowledge of the password.

¢ Authorization: If authorization information is held in a SQL database, it
may be possible to change this information through the successful exploi-
tation of a SQL injection vulnerability.

* Integrity: Just asit may be possibleto read sensitive information, it isalso
possible to make changes or even delete this information with a SQL
injection attack.

EXPOSURE PERIOD

* Requirements specification: A non-SQL style database which is not sub-
ject to this flaw may be chosen.

* Implementation: If SQL isused, all flawsresulting in SQL injection
problems must be mitigated at the implementation level.

PLATFORM
* Language: SQL
¢ Platform: Any (requiresinteraction with a SQL database)

REQUIRED RESOURCES
Any

SEVERITY
Medium to High

LIKELIHOOD OF EXPLOIT
Very High

AVOIDANCE AND MITIGATION

* Requirements specification: A non-SQL style database which is not sub-
ject to this flaw may be chosen.

* Implementation: Use vigorous white-list style checking on any user input
that may be used in a SQL command. Rather than escape meta-charac-
ters, it is safest to disallow them entirely. Reason: Later use of data that
has been entered in the database may neglect to escape meta-characters
before use.

156

The CLASP Application Security Process

5.2.26.9 DISCUSSION

SQL injection has become a common issue with database-driven web sites. The
flaw is easily detected, and easily exploited, and as such, any site or software
package with even aminimal user base is likely to be subject to an attempted
attack of thiskind.

Essentially, the attack is accomplished by placing a meta character into data
input to then place SQL commands in the control plane, which did not exist
there before. This flaw depends on the fact that SQL makes no real distinction
between the control and data planes.

5.2.26.10 EXAMPLES
In SQL:

select id, firstnane, lastname fromwiters

If one provided:

Firstnane: evil’ex

Last name: Newmran

the query string becomes:

select id, firstnane, |lastname from authors where fornane =
“evil’ex’ and surnane = newran’

which the database attemptsto run as

Incorrect syntax near al’ as the database tried to execute evil.

The above SQL statement could be Coded in Java as:

String firstName requests. get Paranmeters(“firstNane”);

String | asttName requests. get Paranmeters(“firstNane”);
PreparedSt atement writersAdd = conn. prepareSt atenment (“ SELECT i d
FROM writers WHERE firstnane=firstName");

In which some of the same problems exist.

5.2.26.11 RELATED PROBLEMS
* Injection problems

The CLASP Application Security Process 157

5.2.27

5.2.27.1

5.2.27.2

5.2.27.3

5.2.27.4

5.2.27.5

5.2.27.6

5.2.27.7

Deserialization of untrusted data

OVERVIEW
Datawhich is untrusted can not be trusted to be well formed.

CONSEQUENCES

Availability: If afunction is making an assumption on when to terminate,
based on a sentry in a string, it could easily never terminate.

Authorization: Potentially code could make assumptions that information
in the deserialized object about the data is valid. Functions which make
this dangerous assumption could be expl oited.

EXPOSURE PERIOD

Requirements specification: A deserialization library could be used
which provides a cryptographic framework to seal serialized data.

Implementation: Not using the safe deserialization/serializing data fea-
tures of alanguage can create data integrity problems.

Implementation: Not using the protection accessor functions of an object
can cause data integrity problems

Implementation: Not protecting your objects from default overloaded
functions— which may provide for raw output streams of objects— may
cause data confidentiality problems.

Implementation: Not making fields transient can often may cause data
confidentiality problems.

PLATFORM

Languages. C,C++/Java
Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

158

The CLASP Application Security Process

5.2.27.8

5.2.27.9

5.2.27.10

AVOIDANCE AND MITIGATION

* Requirements specification: A deserialization library could be used
which provides a cryptographic framework to seal serialized data.

¢ Implementation: Use the signing features of a language to assure that
deserialized data has not been tainted.

* Implementation: When deserializing data populate a new object rather
than just deserializing, the result is that the data flows through safe input
validation and that the functions are safe.

* Implementation: Explicitly define final readObject() to prevent deserial-
ization.

An example of thisis:

private final void readOoject (CbjectlnputStreamin)
throws java.io.|OException {
throw new java.io.| OExcepti on("Cannot be deserialized");

}

¢ Implementation: Make fields transient to protect them from deseriaiza
tion.

DISCUSSION

It is often convenient to serialize objects for convenient communication or to
save them for later use. However, deserialized data or code can often be modi-
fied without using the provided accessor functionsif it does not use cryptogra-
phy to protect itself. Furthermore, any cryptography would still be client-side
security — which is of course a dangerous security assumption.

An attempt to serialize and then deserialize a class containing transient fields
will result in NULLs where the non-transient data should be. Thisis an excel-
lent way to prevent time, environment-based, or sensitive variables from being
carried over and used improperly.

EXAMPLES
In Java:

try {
File file = new Fil e("object.obj");
bj ectl nput Stream in = new Obj ect | nput St rean(new
FilelnputStream(file));
j avax.sw ng. JButton button = (javax.sw ng.JButton)
in.readObj ect();
in.close();

The CLASP Application Security Process 159

byte[] bytes = getBytesFronFile(file);

in = new bj ect | nput St reanm(new Byt eArrayl nput Strean(bytes));
button = (javax.sw ng.JButton) in.readObject();

in.close();

}

5.2.27.11 RELATED PROBLEMS

5.3 Environmental problems

53.1 Reliance on data layout

53.1.1 OVERVIEW
Assumptions about protocol data or data stored in memory can be invalid,
resulting in using data in ways that were unintended.

53.1.2 CONSEQUENCES
Access control (including confidentiality and integrity): Can result in unin-
tended modifications or information leaks of data.

53.1.3 EXPOSURE PERIOD
Design: This problem can arise when a protocol leaves room for interpretation
and isimplemented by multiple parties that need to interoperate.
Implementation: This problem can arise by not understanding the subtleties
either of writing portable code or of changes between protocol versions.

53.1.4 PLATFORM
Protocol errors of this nature can happen on any platform. Invalid memory lay-
out assumptions are possible in languages and environments with asingle, flat
memory space, such as C/C++ and Assembly.

53.1.5 REQUIRED RESOURCES
Any

53.1.6 SEVERITY
Medium to High

53.1.7 LIKELIHOOD OF EXPLOIT

Low

160

The CLASP Application Security Process

5.3.1.8

5.3.1.9

5.3.1.10

5.3.1.11

5.3.2

53.2.1

AVOIDANCE AND MITIGATION

* Design and Implementation: In flat address space situations, never allow
computing memory addresses as offsets from another memory address.

* Design: Fully specify protocol layout unambiguously, providing a struc-
tured grammar (e.g., a compilable yacc grammar).

* Testing: Test that the implementation properly handles each case in the
protocol grammar.

DISCUSSION
When changing platforms or protocol versions, data may move in unintended
ways. For example, some architectures may place local variables a and b right
next to each other with a on top; some may place them next to each other with b
on top; and others may add some padding to each. This ensured that each vari-
ableisaligned to a proper word size.

In protocol implementations, it is common to offset relative to another field to
pick out aspecific piece of data. Exceptional conditions— often involving new
protocol versions— may add corner cases that lead to the data layout changing
in an unusual way. The result can be that an implementation accesses a particu-
lar part of a packet, treating data of one type as data of another type.

EXAMPLES
InC:

voi d exanple() {
char a;
char b;
*(& + 1) = 0;
}

Here, b may not be one byte past a. It may be one byte in front of a. Or, they
may have three bytes between them because they get aligned to 32-bit bound-
aries.

RELATED PROBLEMS

Relative path library search

OVERVIEW

Certain functions perform automatic path searching. The method and results of
this path searching may not be as expected. Example: WinExec will use the

The CLASP Application Security Process 161

5.3.2.2

5.3.2.3

5.3.24

5.3.2.5

5.3.2.6

5.3.2.7

5.3.2.8

5.3.2.9

5.3.2.10

space character as a delimiter, finding “ C:\Program.exe” as an acceptable result
for asearch for “ C:\Program Files\Foo\Bar.exe".

CONSEQUENCES

* Authorization: Thereisthe potential for arbitrary code execution with
privileges of the vulnerable program.

EXPOSURE PERIOD

e Implementation: This flaw isasimple logic issue, introduced entirely at
implementation time.

PLATFORM
¢ Languages: Any
¢ Operating platforms. Any

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

* Implementation: Use other functions which require explicit paths. Mak-
ing use of any of the other readily available functions which require
explicit pathsis a safe way to avoid this problem.

DISCUSSION

If amalicious individual has access to the file system, it is possible to elevate
privileges by inserting such afile as“ C:\Program.exe” to be run by a privileged
program making use of WinExec.

EXAMPLES
In C\C++:

U NT errCode = W nExec(

"C:\\ Program Fi | es\\ Foo\\ Bar",
SW SHOW

)i

162

The CLASP Application Security Process

5.3.2.11

5.3.3

5.3.3.1

5.3.3.2

5.3.3.3

5.3.34

5.3.3.5

5.3.3.6

5.3.3.7

5.3.3.8

5.3.3.9

RELATED PROBLEMS

Relying on package-level scope

OVERVIEW

Java packages are not inherently closed; therefore, relying on them for code
security is not agood practice.

CONSEQUENCES

* Confidentiality: Any datain a Java package can be accessed outside of
the Java framework if the package is distributed.

* Integrity: The datain a Java class can be modified by anyone outside of
the Java framework if the packages is distributed.

EXPOSURE PERIOD

Design through Implementation: This flaw isastyle issue, so it isimportant to
not allow direct access to variables and to protect objects.

PLATFORM
¢ Languages: Java
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Design through Implementation: Data should be private static and final
whenever possible. Thiswill assure that your code is protected by instan-
tiating early, preventing access and tampering.

DISCUSSION
The purpose of package scopeisto prevent accidental access. However, this
protection provides an ease-of -software-devel opment feature but not a security
feature, unlessit is sealed.

The CLASP Application Security Process 163

5.3.3.10

5.3.3.11

53.4

5.3.4.1

5.3.4.2

5.3.4.3

5.3.4.4

5.3.4.5

EXAMPLES
In Java:

package mat h;
public class Lebesgue inplenments |ntegration{

public final Static String youAreHi di ngThi sFuncti on(functionTol n-
tegrate){
return ...;

}

RELATED PROBLEMS

Insufficient entropy in PRNG

OVERVIEW

The lack of entropy available for, or used by, a PRNG can be a stability and
security threat.

CONSEQUENCES

e Availahility: If a pseudo-random number generator isusing alimited
entropy source which runsout (if the generator fails closed), the program
may pause or crash.

e Authentication: If a PRNG isusing alimited entropy source which runs
out, and the generator fails open, the generator could produce predictable
random numbers. Potentially aweak source of random numbers could
weaken the encryption method used for authentication of users. In this
case, potentially a password could be discovered.

EXPOSURE PERIOD

* Design through Implementation: It isimportant — if oneis utilizing ran-
domness for important security — to use the best random numbers avail-
able.

PLATFORM
¢ Languages: Any
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

164

The CLASP Application Security Process

5.3.4.6

5.3.4.7

5.3.4.8

5.3.4.9

5.3.4.10

5.3.4.11

5.3.5

5.3.5.1

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

¢ Implementation: Perform FIPS 140-1 tests on datato catch obvious
entropy problems.

* Implementation: Consider a PRNG which re-seeds itself, as needed from
a high quality pseudo-random output, like hardware devices.

DISCUSSION

When deciding which PRNG to use, ook at its sources of entropy. Depending
on what your security needs are, you may need to use a random number genera-
tor which always uses strong random data— i.e., arandom number generator
which attempts to be strong but will fail in aweak way or will always provide
some middle ground of protection through techniques like re-seeding. Gener-
ally something which always provides a predictable amount of strength is pref-
erable and should be used.

EXAMPLES
In C/C++ or Java

while (1){
i f (OnConnection()){
if (PRNG(...)){

//use the random bytes

}
else (PRNG...)) {

// cancel the program

}
}

RELATED PROBLEMS

Failure of TRNG

OVERVIEW

True random number generators generally have alimited source of entropy and
therefore can fail or block.

The CLASP Application Security Process 165

5.3.5.2

5.3.5.3

5.3.54

5.3.5.5

5.3.5.6

5.3.5.7

5.3.5.8

5.3.5.9

5.3.5.10

CONSEQUENCES

* Availability: A program may crash or block if it runs out of random num-
bers.

EXPOSURE PERIOD
* Requirements specification: Choose an operating system which is aggres-
sive and effective at generating true random numbers.

e Implementation: Thistype of failureisalogical flaw which can be exac-
erbated by alack of or the misuse of mitigating technologies.

PLATFORM
¢ Languages: Any
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Low to Medium

AVOIDANCE AND MITIGATION

* Implementation: Rather than failing on alack of random numbers, it is
often preferable to wait for more numbers to be created.

DISCUSSION

Therate at which true random numbers can be generated is limited.It isimpor-
tant that one uses them only when they are needed for security.

EXAMPLES
InC:

while (1){
if (connection){
i f (hwRandon()){
//use the random bytes
}
el se (hwRandom()) {
// cancel the program

166

The CLASP Application Security Process

5.3.5.11

5.3.6

5.3.6.1

5.3.6.2

5.3.6.3

5.3.6.4

5.3.6.5

5.3.6.6

5.3.6.7

5.3.6.8

}
}

RELATED PROBLEMS

Publicizing of private data when using inner classes

OVERVIEW

Java byte code has no notion of an inner class; therefore inner classes provide
only a package-level security mechanism. Furthermore, the inner class gets
access to the fields of its outer class even if that classis declared private.

CONSEQUENCES

* Confidentiality: “Inner Classes’ data confidentiality aspects can often be
overcome.

EXPOSURE PERIOD
Implementation: Thisisasimplelogica flaw created at implementation time.

PLATFORM
¢ | anguages: Java
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Implementation: Using sealed classes protects object-oriented encapsula-
tion paradigms and therefore protects code from being extended in
unforeseen ways.

* Implementation: Inner Classes do not provide security. Warning: Never
reduce the security of the object from an outer class, going to an inner
class. If your outer classisfinal or private, ensure that your inner classis
private as well.

The CLASP Application Security Process 167

5.3.6.9 DISCUSSION
A common misconception by Java programmers is that inner classes can only
be accessed by outer classes. Inner classes main function isto reduce the size
and complexity of code. This can be trivialy broken by injecting byte code into
the package. Furthermore, since an inner class has accessto al fieldsin the
outer class— even if the outer classis private — potentially access to the outer
classesfields could be accidently compromised.

5.3.6.10 EXAMPLES
In Java:

private class Secure(){
private password="nypassword"
public class Insecure(){...}

}

5.3.6.11 RELATED PROBLEMS

5.3.7 Trust of system event data

53.7.1 OVERVIEW
Security based on event locations are insecure and can be spoofed.

5.3.7.2 CONSEQUENCES

* Authorization: If one trusts the system-event information and executes
commands based on it, one could potentially take actions based on a
spoofed identity.

5.3.7.3 EXPOSURE PERIOD

* Design through Implementation: Trusting unauthenticated information
for authentication is a design flaw.

5.3.7.4 PLATFORM
¢ Languages: Any
¢ Operating platforms: Any

5.3.7.5 REQUIRED RESOURCES
Any

5.3.7.6 SEVERITY
High

168 The CLASP Application Security Process

5.3.7.7

5.3.7.8

5.3.7.9

5.3.7.10

5.3.7.11

5.3.8

5.3.8.1

5.3.8.2

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

* Design through Implementation: Never trust or rely any of the informa-
tion in an Event for security.

DISCUSSION

Events are a messaging system which may provide control datato programslis-
tening for events. Events often do not have any type of authentication frame-
work to allow them to be verified from atrusted source.

Any application, in Windows, on a given desktop can send a message to any
window on the same desktop. There is no authentication framework for these
messages. Therefore, any message can be used to manipulate any process on the
desktop if the process does not check the validity and safeness of those mes-

Ssages.

EXAMPLES
In Java:

public void actionPerformed(ActionEvent e) {
i f (e.getSource()==button)
System out.println(“print out secret information”);

RELATED PROBLEMS

Resource exhaustion (file descriptor, disk space, sockets, ...)

OVERVIEW

Resource exhaustion is a simple denial of service condition which occurs when
the resources necessary to perform an action are entirely consumed, therefore
preventing that action from taking place.

CONSEQUENCES

* Availability: The most common result of resource exhaustion is denial-
of-service.

* Access control: In some casesit may be possibleto force asystem to “fail
open” in the event of resource exhaustion.

The CLASP Application Security Process 169

5.3.8.3

5.3.8.4

5.3.8.5

5.3.8.6

5.3.8.7

5.3.8.8

5.3.8.9

EXPOSURE PERIOD

Design: Issuesin system architecture and protocol design may make sys-
tems more subject to resource-exhaustion attacks.

Implementation: Lack of low level consideration often contributes to the
problem.

PLATFORM

Languages: All
Platforms: All

REQUIRED RESOURCES
Any

SEVERITY
Low to medium

LIKELIHOOD OF EXPLOIT
Very high

AVOIDANCE AND MITIGATION

Design: Design throttling mechanisms into the system architecture.

Design: Ensure that protocols have specific limits of scale placed on
them.

Implementation: Ensure that all failuresin resource allocation place the
system into a safe posture.

Implementation: Fail safely when aresource exhaustion occurs.

DISCUSSION

Resource exhaustion issues are generally understood but are far more difficult
to successfully prevent. Resources can be exploited simply by ensuring that the
target machine must do much more work and consume more resources in order
to service arequest than the attacker must do to initiate a request.

Prevention of these attacks requires either that the target system:

either recognizes the attack and denies that user further accessfor a
given amount of time;

or uniformly throttles all requests in order to make it more difficult to
consume resources more quickly than they can again be freed.

170

The CLASP Application Security Process

5.3.8.10

Thefirst of these solutionsis an issuein itself though, since it may allow attack-
ersto prevent the use of the system by a particular valid user. If the attacker
impersonates the valid user, he may be able to prevent the user from accessing
the server in question.

The second solution is simply difficult to effectively institute — and even when
properly done, it does not provide afull solution. It simply makes the attack
reguire more resources on the part of the attacker.

The final concern that must be discussed about issues of resource exhaustion is
that of systemswhich “fail open.” This means that in the event of resource con-
sumption, the system failsin such away that the state of the system — and pos-
sibly the security functionality of the system — is compromised. A prime
example of this can be found in old switches that were vulnerable to “macof”
attacks (so named for atool developed by Dugsong). These attacks flooded a
switch with random I P and MAC address combinations, therefore exhausting
the switch’s cache, which held the information of which port corresponded to
which MAC addresses. Once this cache was exhausted, the switch would fail in
an insecure way and would begin to act simply as a hub, broadcasting al traffic
on al ports and alowing for basic sniffing attacks.

EXAMPLES
In Java:

cl ass Worker inplenents Executor {

public void execute(Runnable r) {

try {

}

catch (InterruptedException ie) { // postpone response
Thread. current Thread().interrupt();

}
}

public Worker (Channel ch, int nworkers) {

}

protected void activate() {
Runnabl e 1 oop = new Runnabl e() {
public void run() {
try {
for (;;) {

Runnable r = ..

The CLASP Application Security Process 171

5.3.8.11

5.3.9

5.3.9.1

5.3.9.2

5.3.9.3

5.3.94

5.3.9.5

r.run();

}
}
catch (InterruptedException ie) {...}

}
I
new Thread(l oop).start();

}
In O C++:

int main(int argc, char *argv[]) {
sock=socket (AF_I NET, SOCK_STREAM 0);
while (1) {
newsock=accept (sock, ...);
printf("A connection has been accepted\n");
pid = fork();
}

There are no limits to runnables/forks. Potentially an attacker could cause
resource problems very quickly.

RELATED PROBLEMS

Information leak through class cloning

OVERVIEW

Cloneable classes are effectively open classes since data cannot be hidden in
them.

CONSEQUENCES

* Confidentiality: A classwhich can be cloned can be produced without
executing the constructor.

EXPOSURE PERIOD

* Implementation: Thisis a style issue which needs to be adopted through-
out the implementation of each class.

PLATFORM
¢ Languages: Java
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

172

The CLASP Application Security Process

5.3.9.6 SEVERITY

Medium
5.3.9.7 LIKELIHOOD OF EXPLOIT
Medium
5.3.9.8 AVOIDANCE AND MITIGATION
* Implementation: Make classes uncloneable by defining a clone function
like:

public final void clone() throws java.lang. C oneNot Support edExcep-
tion {

t hrow new j ava. | ang. Cl oneNot Support edExcepti on();
}

* Implementation: If you do make your classes clonable, ensure that your
clone method is final and throw super.clone().

5.3.9.9 DISCUSSION
Classes which do no explicitly deny cloning can be cloned by any other class
without running the constructor. Thisis, of course, dangerous since numerous
checks and security aspects of an object areoften taken care of in the construc-
tor.

5.3.9.10 EXAMPLES
public class Conedient

{
public Conedient()
//throws java.l ang. Cl oneNot Support edExcepti on
{
Teacher t1 = new Teacher ("guddu", "22, nagar road");
/l...1] Due sone stuff to renove the teacher.
Teacher t2 = (Teacher)t1.clone();
System out. println(t2.nane);

}
public static void nain(String args[])
{
new CloneClient();
}

}

cl ass Teacher inplenments C oneable

{
public Qoject clone() {

try { return super.clone();

The CLASP Application Security Process 173

} catch (java.lang. d oneNot Support edException e) {
t hrow new Runti neException(e.toString());
}
}
public String name;
public String clas;
public Teacher(String nane, String cl as)

{
thi s. nane = nane;
this.clas = clas;
}
}
5.3.9.11 RELATED PROBLEMS
5.3.10 Information leak through serialization

5.3.10.1 OVERVIEW

Serializable classes are effectively open classes since data cannot be hidden in
them.

5.3.10.2 CONSEQUENCES

* Confidentiality: Attacker can write out the classto a byte stream in which
they can extract the important data from it.

5.3.10.3 EXPOSURE PERIOD

* Implementation: Thisis a style issue which needs to be adopted through-
out the implementation of each class.

5.3.10.4 PLATFORM
* Languages: Java, C++
¢ Operating platforms: Any

5.3.10.5 REQUIRED RESOURCES

Any

5.3.10.6 SEVERITY
High

5.3.10.7 LIKELIHOOD OF EXPLOIT
High

174 The CLASP Application Security Process

5.3.10.8

5.3.10.9

5.3.10.10

5.3.10.11

53.11

5.3.11.1

5.3.11.2

5.3.11.3

53.114

AVOIDANCE AND MITIGATION

* Implementation: In Java, explicitly define final writeObject() to prevent
serialization. Thisisthe recommended solution. Define the writeObject()
function to throw an exception explicitly denying serialization.

* Implementation: Make sure to prevent serialization of your objects.

DISCUSSION

Classes which do no explicitly deny serialization can be serialized by any other
class which can then in turn use the data stored inside it.

EXAMPLES
cl ass Teacher

{

private String name;
private String clas;
public Teacher(String nane, String cl as)

{
/l...1]Check the database for the nane and address
this. Set Name() = nane
this.Setclas() = clas

}

RELATED PROBLEMS

Overflow of static internal buffer

OVERVIEW
A non-final static field can be viewed and edited in dangerous ways.

CONSEQUENCES
* Integrity: The object could potentially be tampered with.
* Confidentiality: The object could potentially allow the object to be read.

EXPOSURE PERIOD

* Design through Implementation: Thisisasimplelogical issue which can
be easily remedied through simple protections.

PLATFORM
* Languages: Java, C++

The CLASP Application Security Process 175

¢ Operating platforms: Any

5.3.11.5 REQUIRED RESOURCES
Any
5.3.11.6 SEVERITY
Medium
5.3.11.7 LIKELIHOOD OF EXPLOIT
High
5.3.11.8 AVOIDANCE AND MITIGATION
* Design through Implementation: Make any static fields private and final.
5.3.11.9 DISCUSSION
Non-find fields, which are not public can be read and written to by arbitrary
Java code.
5.3.11.10 EXAMPLES
In C++:
public int password r = 45;
In Java:
static public String r;
Thisisauninitiated static class which can be accessed without a get-accessor
and changed without a set-accessor.
5.3.11.11 RELATED PROBLEMS
54 Synchronization and timing errors
5.4.1 State synchronization error
5.4.1.1 OVERVIEW

State synchronization refers to a set of flaws involving contradictory states of
execution in a process which result in undefined behavior.

176

The CLASP Application Security Process

54.1.2

54.1.3

54.1.4

5.4.1.5

5.4.1.6

5.4.1.7

54.1.8

54.1.9

CONSEQUENCES

* Undefined: Depending on the nature of the state of corruption, any of the
listed consequences may result.

EXPOSURE PERIOD
* Design: Design flaws may be to blame for out-of-sync states, but thisis
the rarest method.

* Implementation: Most likely, state-synchronization errors occur due to
logical flaws and race conditions introduced at implementation time.

* Runtime: Hardware, operating system, or interaction with other pro-
grams may lead to this error.

PLATFORM
e Languages: All
¢ Operating platforms: All

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Medium to High

AVOIDANCE AND MITIGATION

* Implementation: Pay attention to asynchronous actions in processes; and
make copious use of sanity checksin systems that may be subject to syn-
chronization errors.

DISCUSSION
The class of synchronization errorsislarge and varied, but all rely on the same
essential flaw. The state of the system is not what the process expectsit to be at
agiven time.

Obvioudly, the range of possible symptomsis enormous, as is the range of pos-
sible solutions. The flaws presented in this section are some of the most difficult
to diagnose and fix. It is more important to know how to characterize specific
flaws than to gain information about them.

The CLASP Application Security Process 177

5.4.1.10 EXAMPLES
In C/C++:

static void print(char * string) {
char * word;
int counter;
fflush(stdout);
for(word = string; counter = *word++;) putc(counter, stdout);

}

int main(void) {
pid_t pid,
if((pid =fork()) < 0) exit(-2);
else if(pid == 0) print("child");
el se print("parent\n");
exit(0);

In Java:

cl ass read{
private int |count;
private int rcount;
private int wcount;

public void getRead(){
while ((lcount == -1) || (wcount !=0));
| count ++;

public void getWite(){
while ((lcount == -0);
| count - -;
| count =-1;

public void killLocks(){
if (lcount==0) return;
else if (lcount == -1) |count++;
el se I count--;

}
}
5.4.1.11 RELATED PROBLEMS
5.4.2 Covert timing channel
5.4.2.1 OVERVIEW
Unintended information about data gets |eaked through observing the timing of
events.

178 The CLASP Application Security Process

5.4.2.2 CONSEQUENCES
¢ Confidentiality: Information leakage.

5.4.2.3 EXPOSURE PERIOD
* Design: Protocols usually have timing difficultiesimplicit in their design.
* Implementation: Sometimesatiming covert channel can be dependent on

implementation strategy. Example: Using conditionals may leak informa-
tion, but using table lookup will not.

5.4.2.4 PLATFORM
Any

5.4.2.5 REQUIRED RESOURCES
Any

5.4.2.6 SEVERITY
Medium

5.4.2.7 LIKELIHOOD OF EXPLOIT
Medium

5.4.2.8 AVOIDANCE AND MITIGATION

* Design: Whenever possible, specify implementation strategies that do not
introduce time variances in operations.

* Implementation: Often one can artificially manipulate the time which
operations take or — when operations occur — can remove information
from the attacker.

5.4.2.9 DISCUSSION
Sometimes simply knowing when data is sent between parties can provide a
malicious user with information that should be unauthorized.

Other times, externally monitoring the timing of operations can reveal sensitive
data. For example, some cryptographic operations can leak their internal state if
the time it takes to perform the operation changes, based on the state. In such
cases, it is good to switch algorithms or implementation techniques. It is also
reasonableto add artificial stallsto make the operation take the same amount of
raw CPU timein all cases.

The CLASP Application Security Process 179

5.4.2.10

5.4.2.11

543

5431

54.3.2

EXAMPLES
In Python:

def validate_password(actual _pw, typed_pw):
if len(actual _pw) <> len(typed_pw):

return 0

for i in len(actual _pw):
if actual _pwi] <> typed_pwi]:
return 0

return 1

In this example, the attacker can observe how long an authentication takes when
the user types in the correct password. When the attacker tries his own values,
he can first try strings of various length. When he finds a string of the right
length, the computation will take a bit longer because the for loop will run at
least once.

Additionally, with this code, the attacker can possibly learn one character of the
password at atime, because when he guesses the first character right, the com-
putation will take longer than when he guesses wrong. Such an attack can break
even the most sophisticated password with afew hundred guesses.

Note that, in this example, the actual password must be handled in constant
time, asfar asthe attacker is concerned, even if the actual password is of an
unusual length. Thisisone reason why it is good to use an algorithm that,
among other things, stores a seeded cryptographic one-way hash of the pass-
word, then compare the hashes, which will always be of the same length.

RELATED PROBLEMS
* Storage covert channel

Symbolic name not mapping to correct object

OVERVIEW
A constant symbolic reference to an object is used, even though the underlying
object changes over time.

CONSEQUENCES

* Access control: The attacker can gain access to otherwise unauthorized
resources.

180

The CLASP Application Security Process

5.4.3.3

5.4.3.4

5.4.35

5.4.3.6

5.4.3.7

5.4.3.8

5.4.3.9

5.4.3.10

5.4.3.11

544

54.4.1

» Authorization: Race conditions such as this kind may be employed to
gain read or write access to resources not normally readable or writable
by the user in question.

* Integrity: The resource in question, or other resources (through the cor-
rupted one) may be changed in undesirable ways by a malicious user.

e Accountability: If afile or other resource iswritten in this method, as
opposed to a valid way, logging of the activity may not occur.

* Non-repudiation: In some cases it may be possible to delete files that a
malicious user might not otherwise have accessto — such aslog files.

EXPOSURE PERIOD
PLATFORM

REQUIRED RESOURCES
SEVERITY

LIKELIHOOD OF EXPLOIT
AVOIDANCE AND MITIGATION

DISCUSSION
See more specific instances.

EXAMPLES
See more specific instances.

RELATED PROBLEMS
¢ Time of check, time of use race condition

e Comparing classes by name

Time of check, time of use race condition

OVERVIEW
Time-of-check, time-of-use race conditions occur when between thetimein
which a given resource is checked, and the time that resource is used, a change
occurs in the resource to invalidate the results of the check.

The CLASP Application Security Process 181

5.4.4.2

5.4.4.3

54.4.4

54.45

5.4.4.6

54.4.7

5.4.4.8

CONSEQUENCES

* Access control: The attacker can gain access to otherwise unauthorized
resources.

» Authorization: race conditions such as this kind may be employed to gain
read or write access to resources which are not normally readable or writ-
able by the user in question.

* Integrity: The resource in question, or other resources (through the cor-
rupted one), may be changed in undesirable ways by a malicious user.

* Accountability: If afile or other resource iswritten in this method, as
opposed to in avalid way, logging of the activity may not occur.

* Non-repudiation: In some cases it may be possible to delete filesamali-
cious user might not otherwise have accessto, such aslog files.

EXPOSURE PERIOD

* Design: Strong locking methods may be designed to protect against this
flaw.

* Implementation: Use of system APIs may prevent check, use race condi-
tions.

PLATFORM
¢ Languages: Any
» Platforms: All

REQUIRED RESOURCES
e Some access to the resource in question

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Low to Medium

AVOIDANCE AND MITIGATION
* Design: Ensure that some environmental |ocking mechanism can be used
to protect resources effectively.

* Implementation: Ensure that locking occurs before the check, as opposed
to afterwards, such that the resource, as checked, isthe same asit iswhen
inuse.

182

The CLASP Application Security Process

5.4.4.9

5.4.4.10

5.4.4.11

545

5451

545.2

5.4.5.3

DISCUSSION
Time-of-check, time-of-use race conditions occur when aresourceis checked
for aparticular value, that value is changed, then the resource is used, based on
the assumption that the value is still the same as it was at check time.

Thisisabroad category of race condition encompassing binding flaws, locking
race conditions, and others.

EXAMPLES
In C/C++:

struct stat *sb;

Istat(“...”,sh);
// it has not been updated since the last tinme it was read
printf(“stated file\n");
if (sb->st_ntinmespec==...)
print(“Now updating things\n");
updat eThi ngs();
}

Potentially the file could have been updated between the time of the check and
the Istat, especialy since the printf has latency.

RELATED PROBLEMS
e State synchronization error

Comparing classes by name

OVERVIEW

The practice of determining an object’s type, based on its name, is dangerous
since malicious code may purposely reuse class names in order to appear
trusted.

CONSEQUENCES

e Authorization: If a program trusts, based on the name of the object, to
assume that it is the correct object, it may execute the wrong program.

EXPOSURE PERIOD

¢ Implementation: Thisflaw isasimplelogic issue, introduced entirely at
implementation time.

The CLASP Application Security Process 183

5454

5455

5.4.5.6

5457

5.4.5.8

5.4.5.9

5.4.5.10

545.11

5.4.6

5.4.6.1

5.4.6.2

PLATFORM
¢ Languages: Java
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

* Implementation: Use class equivalency to determine type. Rather than
use the class name to determine if an object is of agiven type, use the get-
Class() method, and == operator.

DISCUSSION

If the decision to trust the methods and data of an object is based on the name of
aclass, it is possible for malicious users to send objects of the same name as
trusted classes and thereby gain the trust afforded to known classes and types.

EXAMPLES

if (inputC ass.getd ass().getNane().equal s(“TrustedC assNane”)) {
/1 Do something assunming you trust inputd ass
I

}

RELATED PROBLEMS

Race condition in switch

OVERVIEW

If the variable which is switched on is changed while the switch statement is
till in progress undefined activity may occur.

CONSEQUENCES
e Undefined: Thisflaw will result in the system state going out of sync.

184

The CLASP Application Security Process

5.4.6.3

5.4.6.4

5.4.6.5

5.4.6.6

5.4.6.7

5.4.6.8

5.4.6.9

5.4.6.10

EXPOSURE PERIOD
* Implementation: Variable locking is the purview of implementors.

PLATFORM
* Languages: All that allow for multi-threaded activity
* Operating platforms: All

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Implementation: Variables that may be subject to race conditions should
be locked for the duration of any switch statements.

DISCUSSION

Thisissueis particularly important in the case of switch statementsthat involve
fall-through style case statements — ie., those which do not end with break.

If the variable which we are switching on change in the course of execution, the
actions carried out may place the state of the processin a contradictory state or
even result in memory corruption.

For this reason, it isimportant to ensure that all variablesinvolved in switch
statements are locked before the statement starts and are unlocked when the
statement ends.

EXAMPLES
In C/C++:

#i ncl ude <sys/types. h>
#i ncl ude <sys/stat. h>

int main(argc, argv) {
struct stat *sb;
time_t timer;

The CLASP Application Security Process 185

| stat ("bar.sh", sb);

printf("%\n", sb->st_ctine);

switch(sb->st_ctinme % 2){
case 0: printf("One option\n"); break;
case 1: printf("another option\n"); break;
default: printf("huh\n"); break;

}

return O;
}
5.4.6.11 RELATED PROBLEMS
* Race condition in signal handler
¢ Race condition within a thread

5.4.7 Race condition in signal handler

54.7.1 OVERVIEW

Race conditions occur frequently in signal handlers, since they are asynchro-
nous actions. These race conditions may have any number of root-causes and
symptoms.

5.4.7.2 CONSEQUENCES

* Authorization: It may be possible to execute arbitrary code through the
use of awrite-what-where condition.

* Integrity: Signal race conditions often result in data corruption.

54.7.3 EXPOSURE PERIOD

* Requirements specification: A language might be chosen which is not
subject to this flaw.

* Design: Signal handlers with complicated functionality may result in this
issue.

¢ Implementation: The use of any non-reentrant functionality or global
variablesin asignal handler might result in this race conditions.

5.4.7.4 PLATFORM
e Languages. C, C++, Assembly
¢ Operating platforms: All

186 The CLASP Application Security Process

5.4.7.5

5.4.7.6

5.4.7.7

5.4.7.8

5.4.7.9

5.4.7.10

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Requirements specification: A language might be chosen, which is not
subject to this flaw, through a guarantee of reentrant code.

* Design: Design signal handlersto only set flags rather than perform com-
plex functionality.

* Implementation: Ensure that non-reentrant functions are not found in sig-
nal handlers. Also, use sanity checksto ensure that state is consistent be
performing asynchronous actions which effect the state of execution.

DISCUSSION
Signal race conditions are acommon issue that have only recently been seen as
exploitable. Theseissues occur when non-reentrant functions, or state-sensitive
actions occur in the signal handler, where they may be called at any time. If
these functions are called at an inopportune moment — such as while a non-
reentrant function is aready running —, memory corruption occurs that may be
exploitable.

Another signal race condition commonly found occurs when freeis called
within asignal handler, resulting in adouble free and therefore a write-what-
where condition. Thisis a perfect example of asignal handler taking actions
which cannot be accounted for in state. Even if agiven pointer isset to NULL
after it has been freed, arace condition still exists between the time the memory
was freed and the pointer was set to NULL. Thisis especialy prudent if the
same signal handler has been set for more than one signal — since it means that
the signal handler itself may be reentered.

EXAMPLES

#i ncl ude <signal . h>
#i ncl ude <sysl og. h>
#i ncl ude <string. h>
#i ncl ude <stdlib. h>

The CLASP Application Security Process 187

54.7.11

5.4.8

5.4.8.1

5.4.8.2

5.4.8.3

void *global 1, *gl obal 2;
char *what ;

void sh(int dummy) {
sysl og(LOG_NOTI CE, "%\ n", what) ;
free(gl obal 2);
free(global 1);
sl eep(10);
exit(0);
}

int main(int argc, char* argv[]) {
what =ar gv[1] ;
gl obal 1=strdup(argv[2]);
gl obal 2=nmal | oc(340);
si gnal (SI GHUP, sh) ;
si gnal (SI GTERM sh) ;
sl eep(10);
exit(0);
}

RELATED PROBLEMS

* Doubly freeing memory

¢ Using freed memory

* Unsafe function call from a signal handler
¢ Write-what-where

Unsafe function call from a signal handler

OVERVIEW

There are several functions which — under certain circumstances, if used in a
signal handler — may result in the corruption of memory, allowing for exploita-
tion of the process.

CONSEQUENCES

* Access control: It may be possible to execute arbitrary code through the
use of awrite-what-where condition.

* Integrity: Signal race conditions often result in data corruption.

EXPOSURE PERIOD

* Requirements specification: A language might be chosen which is not
subject to this flaw.

188

The CLASP Application Security Process

5.4.8.4

5.4.8.5

5.4.8.6

5.4.8.7

5.4.8.8

5.4.8.9

* Design: Signa handlers with complicated functionality may result in this
issue.

¢ Implementation: The use of any number of non-reentrant functions will
result in thisissue.

PLATFORM
e Languages. C, C++, Assembly
e Platforms: All

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Low

AVOIDANCE AND MITIGATION

* Requirements specification: A language might be chosen, which is not
subject to this flaw, through a guarantee of reentrant code.

* Design: Design signal handlersto only set flags rather than perform com-
plex functionality.

* Implementation: Ensure that non-reentrant functions are not found in sig-
nal handlers. Also, use sanity checksto ensure that state is consistently
performing asynchronous actions which effect the state of execution.

DISCUSSION

Thisflaw isasubset of race conditions occuring in signal handler callswhichis
concerned primarily with memory corruption caused by calls to non-reentrant
functionsin signal handlers.

Non-reentrant functions are functions that cannot safely be called, interrupted,
and then recalled before the first call has finished without resulting in memory
corruption. The function call syslog() is an example of this. In order to perform
its functionality, it allocates a small amount of memory as “scratch space.” If
sysog() is suspended by asignal call and the signal handler calls syslog(), the
memory used by both of these functions enters an undefined, and possibly,
exploitable state.

The CLASP Application Security Process 189

5.4.8.10 EXAMPLESC

See Race condition in signal handler, for an example usage of free() in asignal
handler which is exploitable.

5.4.8.11 RELATED PROBLEMS
* Race condition in signal handler
* Write-what-where

5.4.9 Failure to drop privileges when reasonable

54.9.1 OVERVIEW

Failing to drop privileges when it is reasonable to do so results in a lengthened
time during which exploitation may result in unnecessarily negative conse-
quences.

5.4.9.2 CONSEQUENCES

* Access control: An attacker may be able to access resources with the ele-
vated privilege that he should not have been able to access. Thisis partic-
ularly likely in conjunction with another flaw — e.g., a buffer overflow.

5.4.9.3 EXPOSURE PERIOD

» Design: Privilege separation decisions should be made and enforced at
the architectural design phase of development.

5.4.9.4 PLATFORM
¢ Languages: Any
» Platforms: All

5.4.9.5 REQUIRED RESOURCES
Any

5.4.9.6 SEVERITY
High

5.4.9.7 LIKELIHOOD OF EXPLOIT
Undefined.

190 The CLASP Application Security Process

5.4.9.8

5.4.9.9

5.4.9.10

5.4.9.11

AVOIDANCE AND MITIGATION

* Design: Ensure that appropriate compartmentalization is built into the
system design and that the compartmentalization servesto allow for and
further reinforce privilege separation functionality. Architects and
designers should rely on the principle of least privilege to decide when it
is appropriate to use and to drop system privileges.

DISCUSSION

The failure to drop system privileges when it is reasonable to do so is not a vul-
nerability by itself. It does, however, serve to significantly increase the Severity
of other vulnerabilities. According to the principle of least privilege, access
should be allowed only when it is absolutely necessary to the function of a
given system, and only for the minimal necessary amount of time.

Any further allowance of privilege widens the window of time during which a
successful exploitation of the system will provide an attacker with that same

privilege.

If at al possible, limit the allowance of system privilege to small, simple sec-
tions of code that may be called atomically.

EXAMPLES
In C/C++:

setui d(0);

// Do sone inportant stuff
//setuid(ol d_uid);

/1 Do some non privlidged stuff.

In Java:

met hod() {
AccessControl | er.doPrivil eged(new Privil egedAction() {
public oject run() {
//lnsert all code here
}
s
}

RELATED PROBLEMS
¢ All problems with the consequence of “ Access control.”

The CLASP Application Security Process 191

5.4.10

5.4.10.1

5.4.10.2

5.4.10.3

5.4.10.4

5.4.10.5

5.4.10.6

5.4.10.7

5.4.10.8

Race condition in checking for certificate revocation

OVERVIEW

If the revocation status of a certificateis not checked before each privilege
reguiring action, the system may be subject to arace condition, in which their
certificate may be used beforeit is checked for revocation.

CONSEQUENCES

¢ Authentication: Trust may be assigned to an entity who is not who it
claimsto be.

* Integrity: Datafrom an untrusted (and possibly malicious) source may be
integrated.

¢ Confidentiality: Date may be disclosed to an entity impersonating a
trusted entity, resulting in information disclosure.

EXPOSURE PERIOD

* Design: Checksfor certificate revocation should beincluded in the design
of asystem

* Design: One can choose to use alanguage which abstracts out this part of
the authentication process.

PLATFORM
* Languages. Languages which do not abstract out this part of the process.
¢ Operating platforms: All

REQUIRED RESOURCES
Minor trust: Users must attempt to interact with the malicious system.

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Design: Ensure that certificates are checked for revoked status before
each use of a protected resource

192

The CLASP Application Security Process

5.4.10.9

5.4.10.10

5.4.10.11

54.11

54.11.1

54.11.2

5.4.11.3

DISCUSSION

If acertificate is revoked after theinitia check, all subsequent actions taken
with the owner of the revoked certificate will loose all benefits guaranteed by
the certificate. In fact, it isalmost certain that the use of arevoked certificate
indicates malicious activity.

If the certificate is checked before each access of aprotected resource, the delay
subject to a possible race condition becomes almost negligible and significantly
reduces the risk associated with this issue.

EXAMPLES
In C/C++:

if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
foo=SSL_get _veryify_result(ssl);
i f (X509_V_OK==f 00)
//do stuff
foo=SSL_get _veryify_result(ssl);
//do more stuff w thout the check.

RELATED PROBLEMS
* Failuretofollow chain of trust in certificate validation
* Failureto validate host-specific certificate data

* Failureto validate certificate expiration

 Failureto check for certificate revocation

Mutable objects passed by reference

OVERVIEW

Sending non-cloned mutabl e data as an argument may result in that data being
altered or deleted by the called function, thereby putting the calling function
into an undefined state.

CONSEQUENCES

* Integrity: Potentially data could be tampered with by another function
which should not have been tampered with.

EXPOSURE PERIOD

* Implementation: Thisflaw isasimplelogic issue, introduced entirely at
implementation time.

The CLASP Application Security Process 193

54.11.4

5.4.11.5

5.4.11.6

5.4.11.7

5.4.11.8

54.11.9

5.4.11.10

PLATFORM
¢ Languages. C/C++ or Java
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

¢ Implementation: Pass in data which should not be alerted as constant or
immutable.

* Implementation: Clone al mutable data before returning references to it.
Thisisthe preferred mitigation. Thisway — regardless of what changes
are made to the data— avalid copy is retained for use by the class.

DISCUSSION

In situations where unknown code is called with references to mutable data,
this external code may possibly make changes to the data sent. If this data was
not previously cloned, you will be left with modified data which may, or may
not, be valid in the context of execution.

EXAMPLES
In C\C++:

private:
int foo.
conpl exType bar;
String baz;
ot herC ass external d ass;

public:
void doStuff() {
ext ernal Cl ass. doQt her St uf f (f oo, bar, baz)

}

In this example, bar and baz will be passed by reference to doOther Stuff()
which may change them.

194

The CLASP Application Security Process

5.4.12

54.12.1

54.12.2

5.4.12.3

5.4.12.4

5.4.12.5

5.4.12.6

5.4.12.7

5.4.12.8

5.4.12.9

RELATED PROBLEMS

Passing mutable objects to an untrusted method

OVERVIEW

Sending non-cloned mutable data as a return value may result in that data being
altered or deleted by the called function, thereby putting the class in an unde-
fined state.

CONSEQUENCES

* Access Control / Integrity: Potentially data could be tampered with by
another function which should not have been tampered with.

EXPOSURE PERIOD

e Implementation: Thisflaw isasimplelogic issue, introduced entirely at
implementation time.

PLATFORM
¢ Languages: C,C++ or Java
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Implementation: Pass in data which should not be aerted as constant or
immutable.

* Implementation: Clone al mutable data before returning references to it.

Thisisthe preferred mitigation. Thisway, regardless of what changes are
made to the data, avalid copy isretained for use by the class.

DISCUSSION

In situations where functions return references to mutable data, it is possible
that this external code ,which called the function, may make changesto the data

The CLASP Application Security Process 195

5.4.12.10

54.12.11

5.4.13

5.4.13.1

5.4.13.2

5.4.13.3

sent. If this data was not previoudly cloned, you will be left with modified data
which may, or may not, be valid in the context of the classin question.

EXAMPLES
In C\C++:

private:
ext ernal C ass foo;

public:
void doStuff() {
/1..1/Mdify foo
return foo;

}

In Java:

public class foo {
private external Cl ass bar = new external O ass();
public doStuff(...){

/1..//Mdify bar

return bar;

}

RELATED PROBLEMS

Accidental leaking of sensitive information through
error messages

OVERVIEW
Server messages need to be parsed before being passed on to the user.

CONSEQUENCES

* Confidentiality: Often thiswill either reveal sensitive information which
may be used for alater attack or private information stored in the server.

EXPOSURE PERIOD

* Implementation: Thisflaw isasimplelogic issue, introduced entirely at
implementation time.

e Build: It isimportant to adequately set read privileges and otherwise
operationally protect the log.

196

The CLASP Application Security Process

5.4.13.4

5.4.13.5

5.4.13.6

5.4.13.7

5.4.13.8

5.4.13.9

5.4.13.10

PLATFORM

e Languages: Any; it is especially prevalent, however, when dealing with
SQL or languages which throw errors.

¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
High
AVOIDANCE AND MITIGATION

* Implementation: Any error should be parsed for dangerous revelations.

* Build: Debugging information should not make its way into aproduction
release.

DISCUSSION

Thefirst thing an attacker may use — once an attack has failed — to stage the
next attack isthe error information provided by the server.

SQL Injection attacks generally probe the server for information in order to
stage a successful attack.

EXAMPLES
In Java:

try {
[

} catch (Exception e) {
System out. println(e);

}

Here you are passing much more data than is needed.

Another exampleis passing the SQL exceptions to a WebUser without filtering.

The CLASP Application Security Process 197

54.13.11

5.4.14

54.14.1

5.4.14.2

5.4.14.3

5.4.14.4

5.4.14.5

5.4.14.6

5.4.14.7

5.4.14.8

RELATED PROBLEMS

Accidental leaking of sensitive information through sent data

OVERVIEW

The accidental leaking of sensitive information through sent data refers to the
transmission of datawhich is either sensitive in and of itself or useful in the fur-
ther exploitation of the system through standard data channels.

CONSEQUENCES

* Confidentiality: Dataleakage results in the compromise of data confiden-
tiality.

EXPOSURE PERIOD

* Requirements specification: Information output may be specified in the
reguirements documentation.

* Implementation: The final decision asto what datais sent is made at
implementation time.

PLATFORM
e Languages: All
e Platforms: All

REQUIRED RESOURCES
Any

SEVERITY
Low

LIKELIHOOD OF EXPLOIT
Undefined.

AVOIDANCE AND MITIGATION

* Requirements specification: Specify data output such that no sensitive
datais sent.

* Implementation: Ensure that any possibly sensitive data specified in the
requirementsis verified with designersto ensure that it is either a calcu-
lated risk or mitigated elsewhere.

198

The CLASP Application Security Process

5.4.14.9

5.4.14.10

5.4.14.11

5.4.15

54.15.1

5.4.15.2

5.4.15.3

5.4.15.4

5.4.15.5

5.4.15.6

DISCUSSION

Accidental data leakage occursin several places and can essentially be defined
as unnecessary data leakage. Any information that is not necessary to the func-
tionality should be removed in order to lower both the overhead and the possi-
bility of security sensitive data being sent.

EXAMPLES
The following is an actual mysqgl error statement:

War ni ng: nysql _pconnect ():

Access deni ed for user: 'root @ocal host' (Using password: Nlnj4) in
/usr/local /ww w -data/includes/database.inc on |line 4

RELATED PROBLEMS

* Accidental leaking of sensitive information through error messages

* Accidental leaking of sensitive information through data queries

Accidental leaking of sensitive information through data queries

OVERVIEW

When trying to keep information confidential, an attacker can often infer some
of theinformation by using statistics.

CONSEQUENCES

¢ Confidentiality: Sensitive information may possibly be through data que-
ries accidentally.

EXPOSURE PERIOD

* Design: Proper mechanismsfor preventing thiskind of problem generally
need to be identified at the design level.

PLATFORM

Any; particularly systems using relational databases or object-relational data-
bases.

REQUIRED RESOURCES
Any

SEVERITY
Medium

The CLASP Application Security Process 199

5.4.15.7

5.4.15.8

5.4.15.9

5.4.15.10

54.15.11

5.4.16

5.4.16.1

5.4.16.2

5.4.16.3

5.4.16.4

5.4.16.5

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION
Thisisacomplex topic. See the book Translucent Databases for a good discus-
sion of best practices.

DISCUSSION

In situations where data should not be tied to individual users, but alarge num-
ber of users should be able to make queries that “ scrub” the identity of users, it
may be possible to get information about a user — e.g., by specifying search
terms that are known to be unique to that user.

EXAMPLES
See the book Translucent Databases for examples.

RELATED PROBLEMS

Race condition within a thread

OVERVIEW

If two threads of execution use aresource simultaneously, there exists the possi-
bility that resources may be used while invalid, in turn making the state of exe-
cution undefined.

CONSEQUENCES

* Integrity: Themain problem isthat — if alock is overcome — data could
be altered in abad state.

EXPOSURE PERIOD

* Design: Use alanguage which provides facilities to easily use threads
safely.

PLATFORM

¢ Languages: Any language with threads

¢ Operating platforms: All

REQUIRED RESOURCES
Any

200

The CLASP Application Security Process

5.4.16.6 SEVERITY
High

5.4.16.7 LIKELIHOOD OF EXPLOIT
Medium

5.4.16.8 AVOIDANCE AND MITIGATION

5.4.16.9 DISCUSSION
* Design: Uselocking functionality. Thisis the recommended solution.

Implement some form of locking mechanism around code which alters or
reads persistent data in a multi-threaded environment.

* Design: Create resource-locking sanity checks. If no inherent locking
mechanisms exist, use flags and signals to enforce your own blocking
scheme when resources are being used by other threads of execution.

5.4.16.10 EXAMPLES
In C/C++:

int foo = 0;
int storenun(int num

{
static int counter = O;
count er ++;
if (num > foo)
foo = num
return foo;
}
In Java

public classRace {
static int foo = O;

public static void main() {
new Threader().start();
foo = 1;

}

public static class Threader extends Thread {
public void run() {
System out. println(foo);
}
}
}

The CLASP Application Security Process 201

5.4.16.11

5.4.17

54.17.1

5.4.17.2

5.4.17.3

5.4.17.4

5.4.17.5

5.4.17.6

5.4.17.7

5.4.17.8

5.4.17.9

RELATED PROBLEMS

Reflection attack in an auth protocol

OVERVIEW

Simple authentication protocols are subject to reflection attacks if a malicious
user can use the target machine to impersonate a trusted user.

CONSEQUENCES

¢ Authentication: The primary result of reflection attacks is successful
authentication with a target machine — as an impersonated user.

EXPOSURE PERIOD

* Design: Protocol design may be employed more intelligently in order to
remove the possibility of reflection attacks.

PLATFORM
¢ Languages: Any
¢ Platforms: All

REQUIRED RESOURCES
Any

SEVERITY
Medium to High

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Design: Usedifferent keysfor the initiator and responder or of adifferent
type of challenge for the initiator and responder.

DISCUSSION

Reflection attacks capitalize on mutual authentication schemesin order to trick
the target into revealing the secret shared between it and another valid user.

In a basic mutual-authentication scheme, a secret is known to both the valid
user and the server; this allows them to authenticate. In order that they may ver-
ify this shared secret without sending it plainly over the wire, they utilize a Dif-

202

The CLASP Application Security Process

5.4.17.10

54.17.11

fie-Hellman-style scheme in which they each pick avalue, then request the hash
of that value as keyed by the shared secret.

In areflection attack, the attacker claimsto be avalid user and requests the hash
of arandom value from the server. When the server returns this value and
reguests its own value to be hashed, the attacker opens another connection to
the server. Thistime, the hash requested by the attacker is the value which the
server requested in the first connection. When the server returns this hashed
value, it is used in the first connection, authenticating the attacker successfully
as the impersonated valid user.

EXAMPLES
In C/C++:

unsi gned char *sinmpl e_di gest (char *al g, char *buf, unsigned int |en,
int *olen) {

const EVP_MD *m

EVP_MD _CTX ctx;

unsi gned char *ret;

OpenSSL_add_al | _di gests();

if (!(m= EVP_get_digestbynane(alg)))
return NULL;

if (!(ret = (unsigned char*)mall oc(EVP_MAX_MD Sl ZE)))
return NULL;

EVP_Digestlnit(&tx, m;

EVP_Di gest Updat e(&ct x, buf, [en);

EVP_Di gest Fi nal (&ctx, ret, ol en);

return ret;

}

unsi gned char *generate_password_and_cnd(char *password_and_cnd) {
si npl e_di gest ("shal", password, strl en(password_and_cnd)...);

}

In Java:

String command = new String(“sonme cnd to execute & the password”)
MessageDi gest encer = MessageDi gest. getlnstance(" SHA");

encer . updat e(comrand. get Byt es(“ UTF-8"));

byte[] digest = encer.digest();

RELATED PROBLEMS
* Using abroken or risky cryptographic algorithm

The CLASP Application Security Process 203

5.4.18

54.18.1

5.4.18.2

5.4.18.3

5.4.18.4

5.4.18.5

5.4.18.6

5.4.18.7

5.4.18.8

5.4.18.9

Capture-replay

OVERVIEW

A capture-relay protocol flaw exists when it is possible for a malicious user to
sniff network traffic and replay it to the server in question to the same effect as
the original message (or with minor changes).

CONSEQUENCES

* Authorization: Messages sent with a capture-relay attack allow accessto
resources which are not otherwise accessible without proper authentica-
tion.

EXPOSURE PERIOD

* Design: Prevention of capture-relay attacks must be performed at thetime
of protocol design.

PLATFORM
e Languages: All
¢ Operating platforms: All

REQUIRED RESOURCES
Network proximity: Some ability to sniff from, and inject messagesinto, a
stream would be required to capitalize on this flaw.

SEVERITY
Medium to High

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

* Design: Utilize some sequence or time stamping functionality along with
achecksum which takes thisinto account in order to ensure that messages
can be parsed only once.

DISCUSSION

Capture-relay attacks are common and can be difficult to defeat without cryp-
tography. They are a subset of network injection attacks that rely listeningin on
previously sent valid commands, then changing them dlightly if necessary and
resending the same commands to the server.

204

The CLASP Application Security Process

5.4.18.10

Since any attacker who can listen to traffic can see sequence numbers, it is nec-
essary to sign messages with some kind of cryptography to ensure that sequence
numbers are not simply doctored along with content.

EXAMPLES
In C/C++:

unsi gned char *sinpl e_di gest (char *al g, char *buf, unsigned int |en,
int *olen) {

const EVP_MD *m

EVP_MD _CTX ctx;

unsi gned char *ret;

OpenSSL_add_al | _di gests();

if (!(m= EVP_get_digestbynane(alg)))
return NULL;

if (!(ret = (unsigned char*)mall oc(EVP_MAX_MD Sl ZE)))
return NULL;

EVP_Digestlnit(&tx, m;

EVP_Di gest Updat e(&ct x, buf, [en);

EVP_Di gest Fi nal (&ctx, ret, ol en);

return ret;

}

unsi gned char *generate_password_and_cnd(char *password_and_cnd) {
si npl e_di gest ("shal", password, strl en(password_and_cnd)...);

}

In Java:

String command = new String(“sonme cnd to execute & the password”)
MessageDi gest encer = MessageDi gest. getlnstance(" SHA");

encer . updat e(comrand. get Byt es(“ UTF-8"));

byte[] digest = encer.digest();

The CLASP Application Security Process 205

5.4.18.11

RELATED PROBLEMS

5.5 Protocol errors
55.1 Failure to follow chain of trust in certificate validation
55.1.1 OVERVIEW

Failure to follow the chain of trust when validating a certificate results in the

trust of a given resource which has no connection to trusted root-certificate enti-

ties.
55.1.2 CONSEQUENCES

* Authentication: Exploitation of this flaw can lead to the trust of data that
may have originated with a spoofed source.

* Accountability: Data, requests, or actions taken by the attacking entity
can be carried out as a spoofed benign entity.

55.1.3 EXPOSURE PERIOD

* Design: Proper certificate checking should be included in the system
design.

e Implementation: If use of SSL (or similar) is simply mandated by design
and requirements, it is the implementor’s job to properly use the API and
all its protections.

5.5.1.4 PLATFORM
e Languages: All
* Platforms: All
55.1.5 REQUIRED RESOURCES

Minor trust: Users must attempt to interact with the malicious system.

5.5.1.6 SEVERITY

Medium

5.5.1.7 LIKELIHOOD OF EXPLOIT

Low

206

The CLASP Application Security Process

5.5.1.8

5.5.1.9

5.5.1.10

55.1.11

AVOIDANCE AND MITIGATION

* Design: Ensure that proper certificate checking isincluded in the system
design.

¢ Implementation: Understand, and properly implement all checks neces-
sary to ensure the integrity of certificate trust integrity.

DISCUSSION

If asystem failsto follow the chain of trust of a certificate to aroot server, the
certificate looses all usefulness as a metric of trust. Essentially, the trust gained
from acertificate is derived from a chain of trust — with a reputable trusted
entity at the end of that list. The end user must trust that reputable source, and
this reputabl e source must vouch for the resource in question through the
medium of the certificate.

In some cases, this trust traverses several entities who vouch for one another.
The entity trusted by the end user is at one end of this trust chain, while the cer-
tificate wielding resource is at the other end of the chain.

If the user receives a certificate at the end of one of these trust chains and then
proceeds to check only that the first link in the chain, no real trust has been
derived, since you must traverse the chain to atrusted source to verify the certif-
icate.

EXAMPLES

if (!(cert = SSL_get _peer(certificate(ssl)) || !host)
foo=SSL_get _veryify_result(ssl);
if ((X509_V_OK==fo0) ||

X509_V_ERR SELF_SI GNED_CERT_| N_CHAI N==f 00))

//do stuff

RELATED PROBLEMS

» Key exchange without entity authentication

* Failureto validate host-specific certificate data

* Failureto validate certificate expiration

¢ Failure to check for certificate revocation

The CLASP Application Security Process 207

5.5.2 Key exchange without entity authentication

55.2.1 OVERVIEW
Performing a key exchange without verifying the identity of the entity being
communicated with will preserve the integrity of the information sent between
the two entities; this will not, however, guarantee the identity of end entity.

55.2.2 CONSEQUENCES

* Authentication: No authentication takes place in this process, bypassing
an assumed protection of encryption

* Confidentiality: The encrypted communication between auser and a
trusted host may be subject to a“man-in-the-middle” sniffing attack

55.2.3 EXPOSURE PERIOD
* Design: Proper authentication should be included in the system design.

* Design: Use alanguage which provides an interface to safely handle this
exchange.

e Implementation: If use of SSL (or similar) is simply mandated by design
and requirements, it is the implementor’s job to properly use the API and
all its protections.

55.2.4 PLATFORM

* Languages. Any language which does not provide a framework for key
exchange.

¢ Operating platforms: All

5.5.2.5 REQUIRED RESOURCES
Any

5.5.2.6 SEVERITY
High

5.5.2.7 LIKELIHOOD OF EXPLOIT
High

5.5.2.8 AVOIDANCE AND MITIGATION

* Design: Ensure that proper authentication isincluded in the system
design.

208 The CLASP Application Security Process

55.2.9

5.5.2.10

55.2.11

5.5.3

55.3.1

5.5.3.2

5.5.3.3

* Implementation: Understand and properly implement all checks neces-
sary to ensure the identity of entitiesinvolved in encrypted communica-
tions.

DISCUSSION

Key exchange without entity authentication may lead to a set of attacks known
as“man-in-the-middle” attacks. These attacks take place through the imperson-
ation of atrusted server by amalicious server. If the user skips or ignores the
failure of authentication, the server may request authentication information
from the user and then use this information with the true server to either sniff
the legitimate traffic between the user and host or smply to log in manually
with the user’s credentials.

EXAMPLES

Many systems have used Diffie-Hellman key exchange without authenticating
the entities exchanging keys, leading to man-in-the-middle attacks. Many peo-
ple using SSL/TLS skip the authentication (often unknowingly).

RELATED PROBLEMS

* Failuretofollow chain of trust in certificate validation
* Failureto validate host-specific certificate data

* Failureto validate certificate expiration

» Failureto check for certificate revocation

Failure to validate host-specific certificate data

OVERVIEW

The failure to validate host-specific certificate data may mean that, while the
certificate read was valid, it was not for the site originally requested.

CONSEQUENCES

* Integrity: The dataread from the system vouched for by the certificate
may not be from the expected system.

* Authentication: Trust afforded to the system in question — based on the
expired certificate — may allow for spoofing or redirection attacks.

EXPOSURE PERIOD

* Design: Certificate verification and handling should be performed in the
design phase.

The CLASP Application Security Process 209

55.34

5.5.3.5

5.5.3.6

5.5.3.7

5.5.3.8

5.5.3.9

5.5.3.10

5.5.3.11

PLATFORM
e Language: All
e Operating platform: All

REQUIRED RESOURCES
Minor trust: Users must attempt to interact with the malicious system.

SEVERITY
High

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

* Design: Check for expired certificates and provide the user with adequate
information about the nature of the problem and how to proceed.

DISCUSSION

If the host-specific data contained in a certificate is not checked, it may be pos-
sible for aredirection or spoofing attack to allow a malicious host with avalid
certificate to provide data, impersonating a trusted host.

While the attacker in question may have avalid certificate, it may simply bea
valid certificate for adifferent site. In order to ensure dataintegrity, we must
check that the certificate is valid and that it pertains to the site that we wish to
access.

EXAMPLES

if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
foo=SSL_get _veryify result(ssl);
if ((X509_V_OK==foo0) ||

X509_V_ERR SUBJECT_| SSUER_M SMATCH==f 00))

//do stuff

RELATED PROBLEMS
¢ Failureto follow chain of trust in certificate validation

* Failureto validate certificate expiration
¢ Failure to check for certificate revocation

210

The CLASP Application Security Process

554

554.1

5.5.4.2

5.5.4.3

55.4.4

55.45

5.5.4.6

55.4.7

55.4.8

5.5.4.9

5.5.4.10

Failure to validate certificate expiration

OVERVIEW

Thefailure to validate certificate operation may result in trust being assigned to
certificates which have been abandoned due to age.

CONSEQUENCES

* Integrity: The dataread from the system vouched for by the expired cer-
tificate may be flawed due to malicious spoofing.

* Authentication: Trust afforded to the system in question — based on the
expired certificate — may allow for spoofing attacks.

EXPOSURE PERIOD

* Design: Certificate expiration handling should be performed in the design
phase.

PLATFORM
e Languages: All
* Platforms: All

REQUIRED RESOURCES
Minor trust: Users must attempt to interact with the malicious system.

SEVERITY
Low

LIKELIHOOD OF EXPLOIT
Low

AVOIDANCE AND MITIGATION

* Design: Check for expired certificates and provide the user with adequate
information about the nature of the problem and how to proceed.

DISCUSSION

When the expiration of a certificate is not taken in to account, no trust has nec-
essarily been conveyed through it; therefore, all benefit of certificateislost.

EXAMPLES
if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
foo=SSL_get _veryify result(ssl);

The CLASP Application Security Process 211

if ((X509_V_OK==foo) || (X509_V_ERRCERT_NOT_YET_VALI D==f 00))
//do stuff
5.5.4.11 RELATED PROBLEMS
* Failuretofollow chain of trust in certificate validation
* Failureto validate host-specific certificate data
* Key exchange without entity authentication
» Failureto check for certificate revocation
e Using akey past its expiration date

5.5.5 Failure to check for certificate revocation

5551 OVERVIEW

If acertificate is used without first checking to ensure it was not revoked, the
certificate may be compromised.

55.5.2 CONSEQUENCES

¢ Authentication: Trust may be assigned to an entity who is not who it
claimsto be.

* Integrity: Datafrom an untrusted (and possibly malicious) source may be
integrated.

¢ Confidentiality: Date may be disclosed to an entity impersonating a
trusted entity, resulting in information disclosure.

5.5.5.3 EXPOSURE PERIOD

* Design: Checksfor certificate revocation should beincluded in the design
of asystem.

* Design: One can choose to use alanguage which abstracts out this part of
authentication and encryption.

5554 PLATFORM

» Languages. Any language which does not abstract out this part of the pro-
cess

¢ Operating platforms: All

5.5.5.5 REQUIRED RESOURCES
Minor trust: Users must attempt to interact with the malicious system.

212 The CLASP Application Security Process

5.5.5.6

5.5.5.7

5.5.5.8

5.5.5.9

5.5.5.10

5.5.5.11

55.6

55.6.1

5.5.6.2

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION
* Design: Ensure that certificates are checked for revoked status.

DISCUSSION

The failure to check for certificate revocation is afar more serious flaw than
related certificate failures. Thisis because the use of any revoked certificateis
almost certainly malicious. The most common reason for certificate revocation
is compromise of the system in question, with the result that no legitimate serv-
erswill be using arevoked certificate, unless they are sorely out of sync.

EXAMPLES
In C/C++:

if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
. without a get_verify results

RELATED PROBLEMS

* Failuretofollow chain of trust in certificate validation

* Failureto validate host-specific certificate data

* Key exchange without entity authentication

* Failureto check for certificate expiration

Failure to encrypt data

OVERVIEW

Thefailure to encrypt data passes up the guarantees of confidentiality, integrity,
and accountability that properly implemented encryption conveys.

CONSEQUENCES

* Confidentiality: Properly encrypted data channels ensure data confidenti-
ality.

* Integrity: Properly encrypted data channels ensure data integrity.
* Accountability: Properly encrypted data channels ensure accountability.

The CLASP Application Security Process 213

5.5.6.3

55.6.4

5.5.6.5

5.5.6.6

5.5.6.7

5.5.6.8

5.5.6.9

EXPOSURE PERIOD

* Requirements specification: Encryption should be a requirement of sys-
temsthat transmit data.

* Design: Encryption should be designed into the system at the architec-
tural and design phases

PLATFORM
¢ Languages: Any
e Operating platform: Any

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Very High

AVOIDANCE AND MITIGATION

* Requirements specification: require that encryption be integrated into the
system.

* Design: Ensure that encryption is properly integrated into the system
design, not simply as a drop-in replacement for sockets.

DISCUSSION

Omitting the use of encryption in any program which transfers data over a net-
work of any kind should be considered on par with delivering the data sent to
each user on the local networks of both the sender and receiver.

Worse, this omission allows for the injection of data into a stream of communi-
cation between two parties — with no means for the victims to separate valid
datafrom invalid.

In this day of widespread network attacks and password collection sniffers, it is
an unnecessary risk to omit encryption from the design of any system which
might benefit from it.

214

The CLASP Application Security Process

5.5.6.10 EXAMPLES
InC:

server.sin_famly = AF_I NET;

hp = get host bynanme(argv[1]);

i f (hp==NULL) error("Unknown host");

mencpy((char *)&server.sin_addr, (char *)hp->h_addr, hp->h_|l ength);

if (argc < 3) port = 80;

el se port = (unsigned short)atoi (argv[3]);

server.sin_port = htons(port);

if (connect(sock, (struct sockaddr *)&server, sizeof server) < 0)
error (" Connecting");

whil e ((n=read(sock, buffer, BUFSI ZE-1))!=-1){
write(dfd, password_buffer,n);

In Java:

try {
URL u = new URL("http://ww.inportantsecretsite.org/");

Ht t pURLConnection hu = (Htt pURLConnecti on) u.openConnection();
hu. set Request Met hod(" PUT") ;

hu. connect () ;

Qut put Stream os = hu. get Qut put St rean() ;

hu. di sconnect () ;

}
catch (I OCexception e) { //...

5.5.6.11 RELATED PROBLEMS

5.5.7 Failure to add integrity check value

55.7.1 OVERVIEW

If integrity check values or “checksums’ are omitted from a protocol, thereis
no way of determining if data has been corrupted in transmission.

55.7.2 CONSEQUENCES
* Integrity: Datathat is parsed and used may be corrupted.

* Non-repudiation: Without achecksum it isimpossible to determineif any
changes have been made to the data after it was sent.

The CLASP Application Security Process 215

55.7.3

55.7.4

55.7.5

5.5.7.6

55.7.7

55.7.8

55.7.9

EXPOSURE PERIOD

* Design: Checksums are an aspect of protocol design and should be han-
died there.

¢ Implementation: Checksums must be properly created and added to the
messages in the correct manner to ensure that they are correct when sent.

PLATFORM
e Languages: All
» Platforms: All

REQUIRED RESOURCES
Network proximity: Some ability to inject messagesinto a stream, or otherwise
corrupt network traffic, would be required to capitalize on this flaw.

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Design: Add an appropriately sized checksum to the protocol, ensuring
that data received may be smply validated beforeit is parsed and used.

* Implementation: Ensure that the checksums present in the protocol design
are properly implemented and added to each message before it is sent.

DISCUSSION

The failure to include checksum functionality in a protocol removes the first
application-level check of datathat can be used. The end-to-end philosophy of
checks states that integrity checks should be performed at the lowest level that
they can be completely implemented. Excluding further sanity checks and input
validation performed by applications, the protocol’s checksum is the most
important level of checksum, sinceit can be performed more completely than at
any previous level and takes into account entire messages, as opposed to single
packets.

Failure to add this functionality to a protocol specification, or in the implemen-
tation of that protocol, needlessly ignores a simple solution for a very signifi-
cant problem and should never be skipped.

216

The CLASP Application Security Process

5.5.7.10 EXAMPLES
In C/C++:

int r,s;

struct hostent *h;

struct sockaddr_in rserv,|serv;

h=get host bynane("127.0. 0. 1");

rserv.sin_fam|y=h->h_addrtype;

mencpy((char *) &rserv.sin_addr.s_addr, h->h_addr_|ist[0]
, h->h_l ength);

rserv.sin_port= htons(1008);

s = socket (AF_I NET, SOCK_DGRAM 0) ;

Iserv.sin_famly = AF_| NET;
| serv.sin_addr.s_addr = htonl (| NADDR_ANY) ;
I serv.sin_port = htons(0);

r = bind(s, (struct sockaddr *) &l serv, sizeof (lserv));
sendt o(s, i nportant _data, strlen(inprotant_data)+1,0
, (struct sockaddr *) &rserv, sizeof(rserv));

In Java:

while(true) {
Dat agr anPacket rp=new Dat agr anPacket (rDat a, r Dat a. | engt h) ;

out Sock. recei ve(rp);

String in = new String(p.getData(),0, rp.getLength());
| net Addr ess | PAddress = rp. get Address();

int port = rp.getPort();

out = secret.getBytes();

Dat agr anPacket sp =new Dat agr anmPacket (out, out. | ength,
| PAddr ess, port);

out Sock. send(sp);

}
}
55.7.11 RELATED PROBLEMS
* Failureto check integrity check value

5.5.8 Failure to check integrity check value

5.5.8.1 OVERVIEW
If integrity check values or “checksums’ are not validated before messages are
parsed and used, there is no way of determining if data has been corrupted in
transmission.

The CLASP Application Security Process 217

5.5.8.2

5.5.8.3

5.5.8.4

5.5.8.5

5.5.8.6

5.5.8.7

5.5.8.8

5.5.8.9

CONSEQUENCES

¢ Authentication: Integrity checks usually use a secret key that helps
authenticate the data origin. Skipping integrity checking generally opens
up the possibility that new data from an invalid source can be injected.

* Integrity: Datathat is parsed and used may be corrupted.

* Non-repudiation: Without a checksum check, it isimpossible to deter-
mineif any changes have been made to the data after it was sent.

EXPOSURE PERIOD

* Implementation: Checksums must be properly checked and validated in
the implementation of message receiving.

PLATFORM
e Languages: All
¢ Operating platforms: All

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Implementation: Ensure that the checksums present in messages are prop-
erly checked in accordance with the protocol specification before they are
parsed and used.

DISCUSSION

The failure to validate checksums before use results in an unnecessary risk that
can easily be mitigated with very few lines of code. Since the protocol specifi-
cation describes the algorithm used for calculating the checksum, it isasimple
matter of implementing the calculation and verifying that the calculated check-
sum and the received checksum match.

If this small amount of effort is skipped, the consequences may be far greater.

218

The CLASP Application Security Process

5.5.8.10 EXAMPLES
In C/C++:

sd = socket (AF_I NET, SOCK_DGRAM 0);
serv.sin_famly = AF_I| NET;
serv.sin_addr.s_addr = htonl (| NADDR_ANY) ;
servr.sin_port = htons(1008);
bi nd(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {

nmenset (nmsg, 0x0, MAX_MSQ);

clilen = sizeof(cli);

if (inet_ntoa(cli.sin_addr)==...)
n = recvfron(sd, msg, MAX_MSG O,
(struct sockaddr *) & cli, &clilen);
}
In Java:

whil e(true) {
Dat agr anPacket packet
= new Dat agr anPacket (dat a, dat a. | engt h, | PAddr ess, port);
socket . send(sendPacket) ;

}

55.8.11 RELATED PROBLEMS
* Failureto add integrity check value

5.5.9 Use of hard-coded password

55.9.1 OVERVIEW
The use of a hard-coded password increases the possibility of password guess-
ing tremendously.

55.9.2 CONSEQUENCES

¢ Authentication: If hard-coded passwords are used, it isamost certain that
malicious users will gain access through the account in question.

5.5.9.3 EXPOSURE PERIOD

* Design: For both front-end to back-end connections and default account
settings, alternate decisions must be made at design time.

5.5.9.4 PLATFORM
e Languages: All
¢ Operating platforms: All

The CLASP Application Security Process 219

5.5.9.5

5.5.9.6

5.5.9.7

5.5.9.8

5.5.9.9

REQUIRED RESOURCES
Knowledge of the product or accessto code.

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Very high

AVOIDANCE AND MITIGATION

* Design (for default accounts): Rather than hard code a default username
and password for first time logins, utilize a“first login” mode which
reguires the user to enter a unique strong password.

* Design (for front-end to back-end connections): Three solutions are pos-
sible, although none are complete. The first suggestion involves the use
of generated passwords which are changed automatically and must be
entered at given timeintervals by a system administrator. These pass-
words will be held in memory and only be valid for the time intervals.
Next, the passwords used should be limited at the back end to only per-
forming actions valid to for the front end, as opposed to having full
access. Finally, the messages sent should be tagged and checksummed
with time sensitive values so as to prevent replay style attacks.

DISCUSSION

The use of a hard-coded password has many negative implications — the most
significant of these being a failure of authentication measures under certain cir-
cumstances.

On many systems, a default administration account exists which is set to asim-
ple default password which is hard-coded into the program or device. This hard-
coded password is the same for each device or system of thistype and often is
not changed or disabled by end users. If amalicious user comes across a device
of thiskind, it is asimple matter of looking up the default password (which is
freely available and public on the internet) and logging in with complete access.

In systems which authenticate with a back-end service, hard-coded passwords
within closed source or drop-in solution systems require that the back-end ser-
vice use a password which can be easily discovered. Client-side systems with
hard-coded passwords propose even more of athreat, since the extraction of a
password from a binary is exceedingly simple.

220

The CLASP Application Security Process

5.5.9.10

5.5.9.11

5.5.10

5.5.10.1

5.5.10.2

EXAMPLES
In C\C++:

int VerifyAdm n(char *password) ({

if (strcnp(password, “Mewt”)) {
printf(“lncorrect Password!\n");
return(0)

}

printf(“Entering Diagnostic Mde.\n");
return(l);

}

In Java:

int VerifyAdm n(String password) ({

i f (passwd. Eqaul s(“Mewi ")) {
return(0)

}
// Di agnosti c Mde

return(l);

}

Every instance of this program can be placed into diagnostic mode with the
same password. Even worse is the fact that if this program is distributed as a
binary-only distribution, it is very difficult to change that password or disable
this “functionality.”

RELATED PROBLEMS
¢ Use of hard-coded cryptographic key
* Storing passwords in arecoverable format

Use of hard-coded cryptographic key

OVERVIEW

The use of a hard-coded cryptographic key tremendously increases the possibil-
ity that encrypted data may be recovered

CONSEQUENCES

* Authentication: If hard-coded cryptographic keys are used, it is almost
certain that malicious users will gain access through the account in ques-
tion.

The CLASP Application Security Process 221

5.5.10.3

5.5.10.4

5.5.10.5

5.5.10.6

5.5.10.7

5.5.10.8

5.5.10.9

5.5.10.10

EXPOSURE PERIOD

* Design: For both front-end to back-end connections and default account
settings, alternate decisions must be made at design time.

PLATFORM
e Languages: All
¢ Operating platforms: All

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION
* Design: Prevention schemes mirror that of hard-coded password storage.

DISCUSSION

The main difference between the use of hard-coded passwords and the use of
hard-coded cryptographic keysis the false sense of security that the former con-
veys. Many people believe that ssmply hashing a hard-coded password before
storage will protect the information from malicious users. However, many
hashes are reversible (or at least vulnerable to brute force attacks) — and fur-
ther, many authentication protocols simply request the hash itself, making it no
better than a password.

EXAMPLES
In C\C++:

int VerifyAdm n(char *password) ({
if (strcnp(password,”68af 404b513073584c4b6f 22b6c63e6b”)) {
printf(“Incorrect Password!\n");
return(0)
}

printf(“Entering Diagnostic Mde.\n");
return(l);

}

222

The CLASP Application Security Process

In Java:

int VerifyAdm n(String password) ({

i f (passwd. Eqaul s(“68af 404b513073584c4b6f 22b6c63e6b”)) {
return(0)

}
/1 Di agnostic Mde
return(l);

}

55.10.11 RELATED PROBLEMS
¢ Use of hard-coded password

55.11 Storing passwords in a recoverable format

55.11.1 OVERVIEW
The storage of passwords in arecoverable format makes them subject to pass-
word reuse attacks by malicious users. If a system administrator can recover the
password directly — or use a brute force search on the information available to
him —, he can use the password on other accounts.

55.11.2 CONSEQUENCES
¢ Confidentiality: User’'s passwords may be revealed.

* Authentication: Revealed passwords may be reused el sewhere to imper-
sonate the usersin question.

5.5.11.3 EXPOSURE PERIOD

* Design: The method of password storage and use is often decided at
designtime.

* Implementation: In some cases, the decision of algorithms for password
encryption or hashing may be left to the implementers.

5.5.11.4 PLATFORM
e Languages: All
* Operating platforms: All

55.11.5 REQUIRED RESOURCES
Access to read stored password hashes

The CLASP Application Security Process 223

55.11.6

5.5.11.7

55.11.8

55.11.9

5.5.11.10

55.11.11

SEVERITY
Medium to High

LIKELIHOOD OF EXPLOIT
Very High

AVOIDANCE AND MITIGATION

* Design/ Implementation: Ensure that strong, non-reversible encryptionis
used to protect stored passwords.

DISCUSSION

The use of recoverable passwords significantly increases the chance that pass-
words will be used malicioudly. In fact, it should be noted that recoverable
encrypted passwords provide no significant benefit over plain-text passwords
since they are subject not only to reuse by malicious attackers but also by mali-
ciousinsiders.

EXAMPLES
In C\C++:

int VerifyAdm n(char *password) {

if (strcnp(conpress(password), conpressed_password)) ({
printf(“Incorrect Password!\n");
return(0)

}

printf(“Entering D agnostic Mde.\n");
return(l);

}

In Java:

int VerifyAdm n(String password) {

i f (passwd. Eqaul s(conpress((conpressed_password)) {
return()0)

}
/1 Di agnostic Mde

return(l);
}
RELATED PROBLEMS
¢ Use of hard-coded passwords

224

The CLASP Application Security Process

5.5.12

55.12.1

5.5.12.2

55.12.3

5.5.12.4

5.5.12.5

5.5.12.6

5.5.12.7

5.5.12.8

5.5.12.9

5.5.12.10

Trusting self-reported IP address

OVERVIEW

The use of |P addresses as authentication isflawed and can easily be spoofed by
malicious users.

CONSEQUENCES

¢ Authentication: Malicious users can fake authentication information,
impersonating any | P address

EXPOSURE PERIOD

* Design: Authentication methods are generally chosen during the design
phase of development.

PLATFORM
e Languages: All
¢ Operating platforms: All

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

* Design: Use other means of identity verification that cannot be simply
spoofed.

DISCUSSION

As IP addresses can be easily spoofed, they do not constitute a valid authentica-
tion mechanism. Alternate methods should be used if significant authentication
iS hecessary.

EXAMPLES
In C/C++:

sd = socket (AF_I NET, SOCK_DGRAM 0);
serv.sin_famly = AF_I| NET;

The CLASP Application Security Process 225

5.5.12.11

5.5.13

55.13.1

55.13.2

serv.sin_addr.s_addr = htonl (| NADDR_ANY) ;
servr.sin_port = htons(1008);
bi nd(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {

nmenset (nmsg, 0x0, MAX_MSQ);

clilen = sizeof (cli);

if (inet_ntoa(cli.sin_addr)==...)
n = recvfron{sd, msg, MAX_MsSG O,
(struct sockaddr *) & cli, &clilen);
}
In Java:

whi l e(true) {
Dat agr anPacket rp=new Dat agr anPacket (rDat a, r Dat a. | engt h) ;

out Sock. recei ve(rp);

String in = new String(p.getData(),0, rp.getLength());
| net Addr ess | PAddress = rp. get Address();

int port = rp.getPort();

if ((rp.getAddress()==...) && (in==...)){
out = secret.getBytes();
Dat agr anPacket sp =new Dat agr anmPacket (out, out. | ength,
| PAddr ess, port);
out Sock. send(sp);

}
}
RELATED PROBLEMS
e Trusting self-reported DNS name

e Using referer field for authentication

Trusting self-reported DNS name

OVERVIEW

The use of self-reported DNS names as authentication is flawed and can easily
be spoofed by malicious users.

CONSEQUENCES
Authentication: Malicious users can fake authentication information by provid-
ing false DNS information

226

The CLASP Application Security Process

5.5.13.3

55.13.4

5.5.13.5

5.5.13.6

5.5.13.7

5.5.13.8

5.5.13.9

5.5.13.10

EXPOSURE PERIOD

* Design: Authentication methods are generally chosen during the design
phase of development.

PLATFORM
e Languages: All
* Operating platforms: All

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

* Design: Use other means of identity verification that cannot be simply
spoofed.

DISCUSSION

As DNS names can be easily spoofed or mis-reported, they do not constitute a
valid authentication mechanism. Alternate methods should be used if the signif-
icant authentication is necessary.

In addition, DNS name resolution as authentication would — even if it was a
valid means of authentication — imply atrust relationship with the DNS servers
used, aswell asall of the serversthey refer to.

EXAMPLES
In C/C++:

sd = socket (AF_I NET, SOCK_DGRAM 0);
serv.sin_famly = AF_I NET,;
serv.sin_addr.s_addr = htonl (| NADDR_ANY) ;
servr.sin_port = htons(1008);
bi nd(sd, (struct sockaddr *) & serv, sizeof(serv));
while (1) {

nmenset (nmsg, 0x0, MAX_MSQ);

clilen = sizeof (cli);

h=get host bynanme(i net _ntoa(cli Addr. sin_addr));

The CLASP Application Security Process 227

5.5.13.11

5.5.14

55.14.1

55.14.2

5.5.14.3

if (h->h_name==...)
n = recvfron{sd, msg, MAX_MSG O,
(struct sockaddr *) & cli, &clilen);

}

In Java:

whi l e(true) {
Dat agr anPacket rp=new Dat agr anPacket (rDat a, r Dat a. | engt h) ;

out Sock. recei ve(rp);

String in = new String(p.getData(),0, rp.getLength());
| net Addr ess | PAddress = rp. get Address();

int port = rp.getPort();

if ((rp.getHostName()==...) && (in==...)){
out = secret.getBytes();
Dat agr anPacket sp =new Dat agr anmPacket (out, out. | ength,
| PAddr ess, port);
out Sock. send(sp);

}
}
RELATED PROBLEMS
e Trusting self-reported | P address

* Using referrer field for authentication

Using referrer field for authentication

OVERVIEW

Thereferrer field in HTTP requests can be easily modified and, as such, isnot a
valid means of message integrity checking.

CONSEQUENCES

* Authorization: Actions, which may not be authorized otherwise, can be
carried out asif they were validated by the server referred to.

* Accountability: Actions may be taken in the name of the server referred
to.

EXPOSURE PERIOD

* Design: Authentication methods are generally chosen during the design
phase of development.

228

The CLASP Application Security Process

5.5.14.4

5.5.14.5

5.5.14.6

5.5.14.7

5.5.14.8

5.5.14.9

5.5.14.10

PLATFORM
¢ Languages: All
¢ Operating platforms: All

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Very High

AVOIDANCE AND MITIGATION
* Design: Use other means of authorization that cannot be simply spoofed.

DISCUSSION

Thereferrer fieldin HTML reguests can be simply modified by malicious users,
rendering it useless as a means of checking the validity of the request in ques-
tion. In order to usefully check if agiven action is authorized, some means of
strong authentication and method protection must be used.

EXAMPLES
In C/C++:

sock= socket (AF_I NET, SOCK_STREAM 0)
bi nd(sock, (struct sockaddr *)&server, |en)

while (1)
newsock=accept (sock, (struct sockaddr *)& rom &fronlen);
pi d=fork();
if (pid==0) {
n = read(newsock, buf f er, BUFSI ZE)

if (buffer+...==Referer: http://ww.foo.org/dsaf.htm)
//do stuff
In Java:
public class httpd extends Thread{
Socket cli
public httpd(Socket serv){
cli=serv;

The CLASP Application Security Process 229

start();
}

public static void main(String[]a){

Server Socket serv=new Server Socket (8181);
for(;;){

new h(serv.accept());

public void run(){

try{
Buf f er edReader reader

=new Buf f er edReader (new | nput StreanReader (cli.getl nput-

Stream()));

//if i contains a the proper referer.

Dat aQut put St ream o=
new Dat aQut put St rean{ c. get Qut put Stream());

5.5.14.11 RELATED PROBLEMS
e Trusting self-reported 1P address
* Using referer field for authentication

5.5.15 Using a broken or risky cryptographic algorithm

5.5.15.1 OVERVIEW

The use of abroken or risky cryptographic algorithm is an unnecessary risk that
may result in the disclosure of sensitive information.

5.5.15.2 CONSEQUENCES

* Confidentiaity: The confidentiality of sensitive datamay be compro-
mised by the use of a broken or risky cryptographic algorithm.

* Integrity: The integrity of sensitive data may be compromised by the use
of abroken or risky cryptographic algorithm.

* Accountability: Any accountability to message content preserved by
cryptography may be subject to attack.

5.5.15.3 EXPOSURE PERIOD

* Design: The decision asto what cryptographic algorithm to utilize is gen-
erally made at design time.

230 The CLASP Application Security Process

5.5.15.4 PLATFORM
¢ Languages: All
¢ Operating platforms: All

5.5.15.5 REQUIRED RESOURCES
Any

5.5.15.6 SEVERITY
High

5.5.15.7 LIKELIHOOD OF EXPLOIT
Medium to High

5.5.15.8 AVOIDANCE AND MITIGATION

* Design: Use acryptographic algorithm that is currently considered to be
strong by expertsin the field.

5.5.15.9 DISCUSSION

Since the state of cryptography advances so rapidly, it is common to find algo-
rithms, which previously were considered to be safe, currently considered
unsafe. In some cases, things are discovered, or processing speed increases to
the degree that the cryptographic algorithm provides little more benefit than the
use of no cryptography at all.

5.5.15.10 EXAMPLES
In C/C++:

EVP_des_ech();

In Java:

Ci pher des=Ci pher. getlnstance("DES...);
des.initEncrypt(key2);

55.15.11 RELATED PROBLEMS
* Failureto encrypt data

The CLASP Application Security Process 231

5.5.16 Using password systems

55.16.1 OVERVIEW

The use of password systems as the primary means of authentication may be
subject to several flaws or shortcomings, each reducing the effectiveness of the
mechanism.

5.5.16.2 CONSEQUENCES

* Authentication: The failure of a password authentication mechanism will
almost always result in attackers being authorized as valid users.

5.5.16.3 EXPOSURE PERIOD

* Design: The period of development in which authentication mechanisms
and their protections are devised is the design phase.

5.5.16.4 PLATFORM
e Languages: All
¢ Operating platforms: All

5.5.16.5 REQUIRED RESOURCES
Any

5.5.16.6 SEVERITY
High

5.5.16.7 LIKELIHOOD OF EXPLOIT
Very High

5.5.16.8 AVOIDANCE AND MITIGATION
* Design: Use a zero-knowledge password protocol, such as SRP.
* Design: Ensure that passwords are sorted safely and are not reversible.
* Design: Implement password aging functionality that requires passwords
be changed after a certain point.

¢ Design: Use amechanism for determining the strength of a password and
notify the user of weak password use.

* Design: Inform the user of why password protections arein place, how
they work to protect dataintegrity, and why it isimportant to heed their
warnings.

232 The CLASP Application Security Process

5.5.16.9

5.5.16.10

5.5.16.11

DISCUSSION
Password systems are the simplest and most ubiquitous authentication mecha
nisms. However, they are subject to such well known attacks,and such frequent
compromise that their use in the most simple implementation isnot practical. In
order to protect password systems from compromise, the following should be
noted:

* Passwords should be stored safely to prevent insider attack and to ensure
that — if a system is compromised — the passwords are not retrievable.
Dueto password reuse, thisinformation may be useful in the compromise
of other systems these users work with. In order to protect these pass-
words, they should be stored encrypted, in a non-reversible state, such
that the original text password cannot be extracted from the stored value.

* Password aging should be strictly enforced to ensure that passwords do
not remain unchanged for long periods of time. The longer a password
remainsin use, the higher the probability that it has been compromised.
For this reason, passwords should require refreshing periodically, and
users should be informed of therisk of passwordswhich remainin usefor
too long.

» Password strength should be enforced intelligently. Rather than restrict
passwords to specific content, or specific length, users should be encour-
aged to use upper and lower case letters, numbers, and symbolsin their
passwords. The system should also ensure that no passwords are derived
from dictionary words.

EXAMPLES
unsi gned char *check_passwd(char *pl ai ntext){
ct ext =si npl e_di gest ("shal", pl aintext,strlen(plaintext)...);
if (ctext==secret_password())
/1 Log ne in

}

In Java:

String plainText = new String(plainTextln)
MessageDi gest encer = MessageDi gest. getl nstance("SHA");
encer . updat e(pl ai nText | n);
byte[] digest = password. digest();
i f (digest==secret_password())
//1og me in

RELATED PROBLEMS
* Using single-factor authentication

The CLASP Application Security Process 233

5.5.17

55.17.1

55.17.2

55.17.3

5.5.17.4

5.5.17.5

5.5.17.6

5.5.17.7

5.5.17.8

55.17.9

Using single-factor authentication

OVERVIEW
The use of single-factor authentication can lead to unnecessary risk of compro-
mise when compared with the benefits of a dual-factor authentication scheme.

CONSEQUENCES

* Authentication: If the secret in a single-factor authentication scheme gets
compromised, full authentication is possible.

EXPOSURE PERIOD
* Design: Authentication methods are determined at design time.

PLATFORM
e Languages: All
e Operating platform: All

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

* Design: Use multiple independent authentication schemes, which ensures
that — if one of the methods is compromised — the system itself is still
likely safe from compromise.

DISCUSSION

While the use of multiple authentication schemesis simply piling on more com-
plexity on top of authentication, it is inestimably valuable to have such mea-
sures of redundancy.

The use of weak, reused, and common passwords is rampant on the internet.
Without the added protection of multiple authentication schemes, a single mis-
take can result in the compromise of an account. For this reason, if multiple

234

The CLASP Application Security Process

5.5.17.10

55.17.11

5.5.18

55.18.1

5.5.18.2

5.5.18.3

5.5.18.4

schemes are possible and also easy to use, they should be implemented and
required.

EXAMPLES
InC:

unsi gned char *check_passwd(char *plai ntext){
ct ext =si npl e_di gest ("shal", pl ai ntext, strlen(plaintext)...);
if (ctext==secret_password())
/1 Log me in

}

In Java:

String plainText = new String(plainTextln)
MessageDi gest encer = MessageDi gest. getlnstance(" SHA");
encer . updat e(pl ai nText I n);
byte[] digest = password. digest();
i f (digest==secret_password())
//1og me in
RELATED PROBLEMS

¢ Using password systems

Not allowing password aging

OVERVIEW

If no mechanismisin place for managing password aging, users will have no
incentive to update passwords in atimely manner.

CONSEQUENCES

* Authentication: As passwords age, the probability that they are compro-
mised grows.

EXPOSURE PERIOD

* Design: Support for password aging mechanisms must be added in the
design phase of development.

PLATFORM
e Languages: All
* Operating platforms: All

The CLASP Application Security Process 235

5.5.18.5

5.5.18.6

5.5.18.7

5.5.18.8

5.5.18.9

5.5.18.10

55.18.11

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Very Low

AVOIDANCE AND MITIGATION

* Design: Ensure that password aging functionality is added to the design
of the system, including an alert previous to the time the password is con-
sidered obsolete, and useful information for the user concerning the
importance of password renewal, and the method.

DISCUSSION

The recommendation that users change their passwords regularly and do not
reuse passwords is universal among security experts. In order to enforce this, it
is useful to have a mechanism that notifies users when passwords are consid-
ered old and that requests that they replace them with new, strong passwords.

In order for this functionality to be useful, however, it must be accompanied
with documentation which stresses how important this practice is and which
makes the entire process as simple as possible for the user.

EXAMPLES

e A common exampleis not having a system to terminate old employee
accounts.

* Not having a system for enforcing the changing of passwords every cer-
tain period.

RELATED PROBLEMS

e Using password systems

* Allowing password aging

e Using akey past its expiration date

236

The CLASP Application Security Process

5.5.19

5.5.19.1

5.5.19.2

5.5.19.3

5.5.19.4

5.5.19.5

5.5.19.6

5.5.19.7

5.5.19.8

5.5.19.9

Allowing password aging

OVERVIEW

Allowing password aging to occur unchecked can result in the possibility of
diminished password integrity.

CONSEQUENCES

* Authentication: As passwords age, the probability that they are compro-
mised grows.

EXPOSURE PERIOD

* Design: Support for password aging mechanisms must be added in the
design phase of development.

PLATFORM
e Languages: All
¢ Operating platforms: All

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Very Low

AVOIDANCE AND MITIGATION

* Design: Ensure that password aging is limited so that thereis a defined
maximum age for passwords and so that the user is notified several times
leading up to the password expiration.

DISCUSSION

Just as neglecting to include functionality for the management of password
aging is dangerous, so is allowing password aging to continue unchecked. Pass-
words must be given a maximum life span, after which a user is required to
update with a new and different password.

The CLASP Application Security Process 237

5.5.19.10

55.19.11

5.5.20

5.5.20.1

5.5.20.2

5.5.20.3

5.5.20.4

5.5.20.5

5.5.20.6

5.5.20.7

EXAMPLES

e A common exampleis not having a system to terminate old employee
accounts.

* Not having a system for enforcing the changing of passwords every cer-
tain period.

RELATED PROBLEMS
* Not alowing for password aging

Reusing a nonce, key pair in encryption

OVERVIEW
Nonces should be used for the present occasion and only once.

CONSEQUENCES

* Authentication: Potentially areplay attack, in which an attacker could
send the same data twice, could be crafted if nonces are allowed to be
reused. This could allow a user to send a message which masquerades as
avalid message from avalid user.

EXPOSURE PERIOD

* Design: Mitigating technol ogies such as safe string libraries and con-
tainer abstractions could be introduced.

* Implementation: Many traditional techniques can be used to create a new
nonce from different sources.

* Implementation: Reusing nonces nullifies the use of nonces.
PLATFORM

¢ Languages: Any

¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
High

238

The CLASP Application Security Process

5.5.20.8

5.5.20.9

5.5.20.10

AVOIDANCE AND MITIGATION

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

¢ Implementation: Refuse to reuse nonce values.

* Implementation: Use techniques such as requiring incrementing, time
based and/or challenge response to assure uniqueness of nonces.

DISCUSSION
Nonces, are often bundled with a key in a communication exchange to produce
anew session key for each exchange.

EXAMPLES
In C/C++:

#i ncl ude <openssl/sha. h>
#i ncl ude <stdio. h>

#i ncl ude <string. h>

#i ncl ude <menory. h>

int main(){
char *paragraph = NULL;
char *data = NULL;
char *nonce = “bad"“;
char *password = “secret”;

parsi ze=strl en(nonce) +strl en(password);

par agr aph=(char *) mal | oc(para_si ze);

st rncpy(par agraph, nonce, strl en(nonce));
strcpy(paragraph, password, strl en(password));

dat a=(unsi gned char*) nmal | oc(20);
SHAL((const unsi gned char*) paragraph, parsi ze, (unsi gned
char*)data);

free(paragraph);
free(data);

/1 Do sonmething with data//
return O;

}

In Java:

String command = new String(“sone comuand to execute”)
MessageDi gest nonce = MessageDi gest. getl nstance("SHA");
nonce. updat e(String. val ueX (“bad nonce”);

byte[] nonce = nonce. digest();

The CLASP Application Security Process 239

5.5.20.11

55.21

55.21.1

5.5.21.2

5.5.21.3

55.21.4

5.5.215

5.5.21.6

5.5.21.7

5.5.21.8

MessageDi gest password = MessageDi gest. getlnstance("SHA");
passwor d. updat e(nonce + “secretPassword”);

byte[] digest = password. digest();

//do sonethign with digest//

RELATED PROBLEMS

Using a key past its expiration date

OVERVIEW

The use of a cryptographic key or password past its expiration date diminishes

its safety significantly.

CONSEQUENCES
* Authentication: The cryptographic key in question may be compromised,
providing amalicious user with amethod for authenticating as the victim.

EXPOSURE PERIOD

* Design: The handling of key expiration should be considered during the
design phase — largely pertaining to user interface design.

* Runtime: Users are largely responsible for the use of old keys.

PLATFORM
e Languages: All
e Platforms: All

REQUIRED RESOURCES
Any

SEVERITY
Low

LIKELIHOOD OF EXPLOIT
Low

AVOIDANCE AND MITIGATION

* Design: Adequate consideration should be put in to the user interface in
order to notify users previous to the key’s expiration, to explain the

240

The CLASP Application Security Process

importance of new key generation and to walk users through the process
as painlessy as possible.

* Run time: Users must heed warnings and generate new keys and pass-
words when they expire.

5.5.21.9 DISCUSSION

While the expiration of keys does not necessarily ensure that they are compro-
mised, it isasignificant concern that keys which remain in use for prolonged
periods of time have a decreasing probability of integrity.

For this reason, it isimportant to replace keys within a period of time propor-
tional to their strength.

55.21.10 EXAMPLES
In C/C++:

if (!(cert = SSL_get_peer(certificate(ssl)) || !host)
foo=SSL_get _veryify_ result(ssl);
if ((X509_V_OK==fo0) || (X509_V_ERRCERT_NOT_YET_VALI D==f 00))
//do stuff

552111 RELATED PROBLEMS
* Failureto check for certificate expiration

5.5.22 Not using arandom IV with CBC mode

55.22.1 OVERVIEW
Not using a arandom initialization vector with Cipher Block Chaining (CBC)
M ode causes algorithms to be susceptible to dictionary attacks.

5.5.22.2 CONSEQUENCES
¢ Confidentiality: If the CBC isnot properly initialized, datawhichis
encrypted can be compromised and therefore be read.
* Integrity: If the CBC isnot properly initialized, encrypted data could be
tampered with in transfer or if it accessible.

* Accountability: Cryptographic based authentication systems could be
defeated.

The CLASP Application Security Process 241

55.22.3

55.22.4

5.5.22.5

5.5.22.6

5.5.22.7

5.5.22.8

5.5.22.9

5.56.22.10

EXPOSURE PERIOD

* Implementation: Many logic errors can lead to this condition if multiple
data streams have a common beginning sequences.

PLATFORM
* Languages: Any
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION
e Integrity: It isimportant to properly initialize CBC operating block
ciphersor there useislost.

DISCUSSION

CBC isthe most commonly used mode of operation for ablock cipher. It solves
electronic code book’s dictionary problems by XORing the ciphertext with
plaintext. If it used to encrypt multiple data streams, dictionary attacks are pos-
sible, provided that the streams have a common beginning sequence.

EXAMPLES
In C/C++:

#i ncl ude <openssl/evp. h>

EVP_CI PHER CTX ct x;
char key[EVP_MAX KEY_LENGTH] ;
char i v[EVP_MAX_| V_LENGTH] ;

RAND_byt es(key, b);

menset (i v, 0, EVP_MAX_ | V_LENGTH) ;
EVP_Encryptlnit(&ctx, EVP_bf cbc(), key,iv);

In Java:

public class SymetricC pher Test {

242

The CLASP Application Security Process

public static void main() {
byte[] text ="Secret".getBytes();
byte[] iv ={0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00} ;

KeyGenerator kg = KeyGenerator.getlnstance("DES");
kg.init(56);
Secret Key key = kg. generateKey();

Ci pher ci pher = Ci pher. getlnstance("DES/ ECB/ PKCS5Paddi ng") ;
| vPar anet er Spec i ps = new | vParanet er Spec(ivV);
ci pher.init (G pher. ENCRYPT_MODE, key, ips);
return cipher. doFi nal (i npBytes);
}
}

55.22.11 RELATED PROBLEMS

5.5.23 Failure to protect stored data from modification

55.23.1 OVERVIEW
Data should be protected from direct modification.

5.5.23.2 CONSEQUENCES
* Integrity: The object could be tampered with.

5.5.23.3 EXPOSURE PERIOD

* Design through Implementation: At design timeit isimportant to reduce
the total amount of accessible data.

¢ Implementation: Most implementation level issues come from alack of
understanding of the language modifiers.

5.5.23.4 PLATFORM
¢ Languages: Java, C++
¢ Operating platforms: Any

5.5.23.5 REQUIRED RESOURCES
Any

5.5.23.6 SEVERITY
Medium

The CLASP Application Security Process 243

5.5.23.7

5.5.23.8

5.5.23.9

5.5.23.10

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Design through Implementation: Use private members, and class acces-
sor methods to their full benefit. Thisis the recommended mitigation.
Make all public members private, and — if external accessis necessary
— use accessor functionsto do input validation on all values.

* Implementation: Data should be private, static, and final whenever possi-
ble This will assure that your code is protected by instantiating early, pre-
venting access and preventing tampering.

¢ Implementation: Use sealed classes. Using sealed classes protects object-
oriented encapsulation paradigms and therefore protects code from being
extended in unforeseen ways.

* Implementation: Use class accessor methods to their full benefit. Use the

accessor functions to do input validation on all values intended for pri-
vate values.

DISCUSSION

One of the main advantages of object-oriented code is the ability to limit access
to fields and other resources by way of accessor functions. Utilize accessor
functions to make sure your objects are well-formed.

Final provides security by only allowing non-mutable objects to be changed
after being set. However, only objects which are not extended can be made
final.

EXAMPLES
In C++:

public:
i nt someNunber Peopl eShoul dnt MessW t h;

In Java:

private class parserProg {
public stringField;

}

Another set of Examples are;

In C/C++:

244

The CLASP Application Security Process

5.5.23.11

55.24

55.24.1

5.5.24.2

5.5.24.3

55.24.4

5.5.24.5

5.5.24.6

private:
i nt someNunber;

public:
void witeNum(int newNunm) {
someNunber = newNum
}

In Java:

public class eggCorns {
private String acorns;
public void m sHear(String nane){
acor ns=nane;

}
}

RELATED PROBLEMS

Failure to provide confidentiality for stored data

OVERVIEW

Non-fina public fields should be avoided, if possible, asthe codeis easily tem-
perable.

CONSEQUENCES
* Integrity: The object could potentially be tampered with.
* Confidentiality: The object could potentially allow the object to be read.

EXPOSURE PERIOD

¢ Implementation: Thisflaw isasimplelogic issue, introduced entirely at
implementation time.

PLATFORM
* Languages: Java, C++
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

The CLASP Application Security Process 245

5.5.24.7

5.5.24.8

5.5.24.9

5.5.24.10

55.24.11

5.6

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

¢ Implementation: Make any non-final field private.

DISCUSSION

If afield isnon-final and public, it can be changed once their value is set by any
function which has access to the class which contains the field.

EXAMPLES
In C++:

public int password r = 45;

In Java:

public String r = new String("M Password");
Now thisfield is readable from any function and can be changed by any func-
tion.

RELATED PROBLEMS

General logic errors

56.1

5.6.1.1

5.6.1.2

5.6.1.3

Ignored function return value

OVERVIEW
If afunctionsreturn value is not checked, it could have failed without any warn-
ing.

CONSEQUENCES

* Integrity: The data which was produced as aresult of afunction could be
in abad state.

EXPOSURE PERIOD

Implementation: Thisflaw isasimple logic issue, introduced entirely at imple-
mentation time.

246

The CLASP Application Security Process

5.6.1.4

5.6.1.5

5.6.1.6

5.6.1.7

5.6.1.8

5.6.1.9

5.6.1.10

5.6.2

5.6.2.1

PLATFORM
e Languages. C or C++
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Low

AVOIDANCE AND MITIGATION
¢ Implementation: Check all functions which return avalue

* Implementation: When designing any function make sure you return a
value or throw an exception in case of an error

e discussion

Important and common functions will return some value about the success of its

actions. Thiswill alert the program whether or not to handle any errors caused

by that function

EXAMPLE
In C/C++:

mal | oc(si zeof (int)*4);
In Java

Although some Java members may use return values to state there status, it is
preferable to use exceptions.

RELATED PROBLEMS

Missing parameter

OVERVIEW

If too few arguments are sent to a function, the function will still pop the
expected number of arguments from the stack. Potentially, a variable number of
arguments could be exhausted in a function as well.

The CLASP Application Security Process 247

5.6.2.2

5.6.2.3

5.6.2.4

5.6.2.5

5.6.2.6

5.6.2.7

5.6.2.8

5.6.2.9

5.6.2.10

CONSEQUENCES

* Authorization: Thereisthe potential for arbitrary code execution with
privileges of the vulnerable program if function parameter list is
exhausted.

* Availability: Potentially a program could fail if it needs more arguments
then are available.

EXPOSURE PERIOD

* Implementation: Thisisasimplelogical flaw created at implementation
time.

PLATFORM
¢ Languages: C or C++
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

¢ Implementation: Forward declare all functions. Thisis the recommended
solution. Properly forward declaration of all used functions will result in
acompiler error if too few arguments are sent to a function.

DISCUSSION
This issue can be simply combated with the use of proper build process.

EXAMPLES

In C or C++:

foo_funct (one, two);

void foo_funct(int one, int two, int three) {
printf(“1) %\n2) %\n3) %\n”, one, two, three);
}

248

The CLASP Application Security Process

5.6.2.11

5.6.3

5.6.3.1

5.6.3.2

5.6.3.3

5.6.3.4

This can be exploited to disclose information with no work whatsoever. In fact,
each timethisfunction isrun, it will print out the next 4 bytes on the stack after
the two numbers sent to it.

Another examplein C/C++ is;
voi d sone_function(int foo, ...) {
int a[3], i;

va_list ap;

va_start(ap, foo);

for (i =0; i < sizeof(a) / sizeof(int); i++)
a[i] = va_arg(ap, int);
va_end(ap);

}

int main(int argc, char *argv[]) {
some_function(17, 42);

}

RELATED PROBLEMS

Misinterpreted function return value

OVERVIEW

If afunction’sreturn value is not properly checked, the function could have
failed without proper acknowledgement.

CONSEQUENCES

* Integrity: The data— which was produced as aresult of an improperly
checked return value of afunction — could be in abad state.

EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that uses exceptions rather than return values to handle status.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack, or misuse, of mitigating technologies.

PLATFORM
¢ Languages: C or C++
¢ Operating platforms: Any

The CLASP Application Security Process 249

5.6.3.5

5.6.3.6

5.6.3.7

5.6.3.8

5.6.3.9

5.6.3.10

5.6.3.11

5.6.4

5.6.4.1

5.6.4.2

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Low

AVOIDANCE AND MITIGATION

* Requirements specification: Use alanguage or compiler that uses excep-
tions and requires the catching of those exceptions.

* Implementation: Properly check all functions which return avalue.

* Implementation: When designing any function make sure you return a
value or throw an exception in case of an error.

DISCUSSION

Important and common functions will return some value about the success of its
actions. Thiswill alert the program whether or not to handle any errors caused
by that function.

EXAMPLES
In C/C++

if (malloc(sizeof(int*4) <0)
perror(“Failure”); //should have checked if the call returned O

RELATED PROBLEMS

Uninitialized variable

OVERVIEW
Using the value of an unitialized variable is not safe.

CONSEQUENCES

* Integrity: Initia variables usually contain junk, which can not be trusted
for consistency. This can cause arace condition if alock variable check
passes when it should not.

250

The CLASP Application Security Process

* Authorization: Strings which do are not initialized are especially danger-
ous, since many functions expect a null at the end — and only at the end
— of astring.

5.6.4.3 EXPOSURE PERIOD
¢ Implementation: Use of unitialized variablesisalogical bug.

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Design: Mitigating technol ogies such as safe string libraries and con-
tainer abstractions could be introduced.

5.6.4.4 PLATFORM
Languages. C/C++

Operating platforms: Any

5.6.4.5 REQUIRED RESOURCES
Any

5.6.4.6 SEVERITY
High

5.6.4.7 LIKELIHOOD OF EXPLOIT
High

5.6.4.8 AVOIDANCE AND MITIGATION

¢ Implementation: Assign all variablesto aninitial variable.

* Pre-design through Build: Most compilers will complain about the use of
unitinlizazed variables if warnings are turned on.

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Design: Mitigating technol ogies such as safe string libraries and con-
tainer abstractions could be introduced.

5.6.4.9 DISCUSSION
Before variables are initialized, they generally contain junk data of what was
left in the memory that the variable takes up. Thisdatais very rarely useful, and
itis generally advised to pre-initialize variables or set them to their first values
early.

The CLASP Application Security Process 251

5.6.4.10

5.6.4.11

5.6.5

5.6.5.1

5.6.5.2

5.6.5.3

5.6.5.4

5.6.5.5

5.6.5.6

5.6.5.7

If one forget — in the C language — to initialize, for example achar *, many of
the simple string libraries may often return incorrect results as they expecting
the null termination to be at the end of a string.

EXAMPLES
In C\C++, or Java

int foo;
voi d bar(){
if (foo==0) /.../
/..
}

RELATED PROBLEMS

Duplicate key in associative list (alist)

OVERVIEW

Associative lists should always have unique keys, since having non-unique keys
can often be mistaken for an error.

CONSEQUENCES
Unspecified.

EXPOSURE PERIOD
* Design: The use of a safe data structure could be used.

PLATFORM

¢ Languages. Although alists generally are used only in languages like
Common Lisp — due to the functionality overlap with hash tables— an
alist could appear in alanguage like C or C++.

¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Low

252

The CLASP Application Security Process

5.6.5.8

5.6.5.9

5.6.5.10

5.6.5.11

5.6.6

5.6.6.1

5.6.6.2

5.6.6.3

AVOIDANCE AND MITIGATION
¢ Design: Use ahash tableinstead of an alist.

* Design: Use an alist which checks the uniqueness of hash keyswith each
entry beforeinserting the entry.

DISCUSSION

A duplicate key entry — if the alist is designed properly — could be used asa
constant time replace function. However, duplicate key entries could be inserted
by mistake. Because of this ambiguity, duplicate key entries in an association
list are not recommended and should not be allowed.

EXAMPLES
In Python:

alist =[]

while (foo()):
#now assune there is a string data with a key basenane
gueue. append(basenane, dat a)

gueue. sort ()

Since basenameis not necessarily unique, this may not sort how onewould like
it to be.

RELATED PROBLEMS

Deletion of data-structure sentinel

OVERVIEW
The accidental deletion of a can cause serious programing logic problems.

CONSEQUENCES

* Availability: Generally thiserror will cause the data structure to not work
properly.

e Authorization: If acontrol character, such asNULL isremoved, one may
cause resource access control problems.

EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Design: Mitigating technol ogies such as safe-string libraries and con-
tainer abstractions could be introduced.

The CLASP Application Security Process 253

5.6.6.4

5.6.6.5

5.6.6.6

5.6.6.7

5.6.6.8

5.6.6.9

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

PLATFORM
e Languages: C, C++, Fortran, Assembly

* Operating platforms: All, although partial preventative measures may be
deployed depending on environment.

REQUIRED RESOURCES
Any

SEVERITY
Very High

LIKELIHOOD OF EXPLOIT
High to Very High

AVOIDANCE AND MITIGATION

* Pre-design: Use alanguage or compiler that performs automatic bounds
checking.

* Design: Use an abstraction library to abstract away risky APIs. Not a
complete solution.

* Pre-design through Build: Compiler-based canary mechanisms such as
StackGuard, ProPolice and the Microsoft Visual Studio /GS flag. Unless
this provides automatic bounds checking, it is not a complete solution.

¢ Operational: Use OS-level preventative functionality. Not a complete
solution.

DISCUSSION
Often times data-structure sentinels are used to mark structure of the data struc-
ture. A common example of thisisthe null character at the end of strings.
Another common exampleis linked lists which may contain a sentinel to mark
theend of thelist.

Itis, of cours,e dangerousto allow thistype of control datato be easily accessa-
ble. Therefore, it isimportant to protect from the deletion or modification out-
side of some wrapper interface which provides safety.

254

The CLASP Application Security Process

5.6.6.10

5.6.6.11

5.6.7

5.6.7.1

5.6.7.2

5.6.7.3

5.6.7.4

5.6.7.5

5.6.7.6

EXAMPLES
In C/C++:

char *foo;

int counter;

f oo=mal | oc(si zeof (char)*10);

for (counter=0;counter!=14; count er ++) {
foo[counter]="a';
printf("%\n",foo0);

}

RELATED PROBLEMS

Addition of data-structure sentinel

OVERVIEW

The accidental addition of adata-structure sentinel can cause serious program-
ing logic problems.

CONSEQUENCES

* Availability: Generally thiserror will cause the data structure to not work
properly by truncating the data.

EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

* Design: Mitigating technol ogies such as safe string libraries and con-
tainer abstractions could be introduced.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

PLATFORM
e Languages. C, C++, Fortran, Assembly

* Operating platforms: All, although partial preventative measures may be
deployed depending on environment.

REQUIRED RESOURCES
Any

SEVERITY
Very High

The CLASP Application Security Process 255

5.6.7.7

5.6.7.8

5.6.7.9

5.6.7.10

LIKELIHOOD OF EXPLOIT
High to Very High

AVOIDANCE AND MITIGATION

* Pre-design: Use alanguage or compiler that performs automatic bounds
checking.

* Design: Use an abstraction library to abstract away risky APIs. Not a
complete solution.

* Pre-design through Build: Compiler-based canary mechanisms such as
StackGuard, ProPolice, and Microsoft Visua Studio /GSflag. Unlessthis
provides automatic bounds checking, it is not a complete solution.

¢ Operational: Use OS-level preventative functionality. Not a complete
solution.

DISCUSSION

Data-structure sentinels are often used to mark structure of the data structure. A
common example of thisisthe null character at the end of strings. Another
common exampleislinked listswhich may contain asentinel to mark the end of
thelist.

Itis, of course dangerous, to alow this type of control datato be easily accessa-
ble. Therefore, it isimportant to protect from the addition or modification out-
side of some wrapper interface which provides safety.

By adding a sentinel, one potentially could cause data to be truncated early.

EXAMPLES
In C/C++:

char *foo;

f oo=mal | oc(si zeof (char)*4);

foo[0]="a";

foo[1]='a';

foo[2] =0;

foo[3]="'c";

printf("% % % % % \n",foo[O],foo[1],foo[2],f00[3]);
printf("%\n",foo);

256

The CLASP Application Security Process

5.6.8

5.6.8.1

5.6.8.2

5.6.8.3

5.6.8.4

5.6.8.5

5.6.8.6

5.6.8.7

5.6.8.8

5.6.8.9

5.6.8.10

Use of sizeof() on a pointer type

OVERVIEW
Running sizeof() on amalloced pointer type will always return the wordsize/8.

CONSEQUENCES

Authoritarian: This error can often cause one to alocate a buffer much smaller
than what is needed and therefore other problems like a buffer overflow can be
caused.

EXPOSURE PERIOD
* Implementation: Thisis entirely an implementation flaw.

PLATFORM
¢ Languages: C or C++
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

¢ Implementation: Unless oneistrying to leverage running sizeof() on a
pointer type to gain some platform independence or if oneis mallocing a
variable on the stack, this should not be done.

DISCUSSION

One can in fact use the sizeof() of a pointer as useful information. An obvious
case isto find out the wordsize on a platform. More often than not, the appear-
ance of sizeof(pointer)

EXAMPLES
In C/C++:

#i ncl ude <stdiob. h>

The CLASP Application Security Process 257

5.6.8.11

5.6.9

5.6.9.1

5.6.9.2

5.6.9.3

5.6.9.4

5.6.9.5

5.6.9.6

5.6.9.7

5.6.9.8

int main(){
voi d *foo;
printf("%\n",sizeof (foo)); //this will return wordsize/4
return O;

}

RELATED PROBLEMS

Unintentional pointer scaling

OVERVIEW

In C and C++, one may often accidentally refer to the wrong memory due to the
semantics of when math operations are implicitly scaled.

CONSEQUENCES
Often results in buffer overflow conditions.

EXPOSURE PERIOD
* Design: Could choose a language with abstractions for memory access.
¢ Implementation: This problem generally is due to a programmer error.

PLATFORM
C and C++.

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION
¢ Design: Use aplatform with high-level memory abstractions.

* Implementation: Always use array indexing instead of direct pointer
manipulation.

¢ Other: Usetechnologies for preventing buffer overflows.

258

The CLASP Application Security Process

5.6.9.9

5.6.9.10

5.6.9.11

5.6.10

5.6.10.1

5.6.10.2

5.6.10.3

5.6.10.4

DISCUSSION

Programmers will often try to index from a pointer by adding a number of
bytes, even though thisiswrong, since C and C++ implicitly scale the operand
by the size of the data type.

EXAMPLES
int *p = x;
char * second_char = (char *)(p + 1);

In this example, second_char is intended to point to the second byte of p. But,
adding 1 to p actually adds sizeof(int) to p, giving aresult that is incorrect (3
bytes off on 32-bit platforms).

If the resulting memory addressisread, this could potentially be an information
leak. If itisawrite, it could be asecurity-criticial write to unauthorized memory
— whether or not it is a buffer overflow.

Note that the above code may also be wrong in other ways, particularly in alit-
tle endian environment.

RELATED PROBLEMS

Improper pointer subtraction

OVERVIEW

The subtraction of one pointer from another in order to determine sizeis depen-
dant on the assumption that both pointers exist in the same memory chunk.

CONSEQUENCES

* Authorization: Thereisthe potential for arbitrary code execution with
privileges of the vulnerable program.

EXPOSURE PERIOD

* Pre-design through Build: The use of tools to prevent these errors should
be used.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

PLATFORM
¢ Languages. C/C++/C#

The CLASP Application Security Process 259

5.6.10.5

5.6.10.6

5.6.10.7

5.6.10.8

5.6.10.9

5.6.11

5.6.11.1

5.6.11.2

5.6.11.3

5.6.11.4

¢ Operating Platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Pre-design through Build: Most static analysis programs should be able
to catch these errors.

* Implementation: Save an index variable. Thisis the recommended solu-
tion. Rather than subtract pointers from one another, use an index vari-
able of the same size as the pointers in question. Use this variable “walk”
from one pointer to the other and calcul ate the difference. Always sanity
check this number.

RELATED PROBLEMS

Using the wrong operator

OVERVIEW
Thisisacommon error given when an operator is used which does not make
sense for the context appears.

CONSEQUENCES
Unspecified.

EXPOSURE PERIOD

* Pre-design through Build: The use of tools to detect this problem isrec-
ommended.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack, of or misuse, of mitigating technologies.

PLATFORM
* Languages: Any

260

The CLASP Application Security Process

5.6.11.5

5.6.11.6

5.6.11.7

5.6.11.8

5.6.11.9

5.6.11.10

5.6.11.11

5.6.12

5.6.12.1

5.6.12.2

¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Low

AVOIDANCE AND MITIGATION

* Pre-design through Build: Most static analysis programs should be able
to catch these errors.

* Implementation: Save an index variable. Thisis the recommended solu-
tion. Rather than subtract pointers from one another, use an index vari-
able of the same size as the pointers in question. Use this variable “walk”
from one pointer to the other and calcul ate the difference.Always sanity
check this number.

DISCUSSION

These types of bugs generally are the result of atypo. Although most of them
can easily be found when testing of the program, it isimportant that one correct
these problems, since they almost certainly will break the code.

EXAMPLES
InC:

char foo;
f oo=a+c;

RELATED PROBLEMS

Assigning instead of comparing

OVERVIEW

In many languages the compare statement is very close in appearance to the
assignment statement and are often confused.

CONSEQUENCES
Unspecified.

The CLASP Application Security Process 261

5.6.12.3 EXPOSURE PERIOD
* Pre-design through Build: The use of tools to detect this problem isrec-
ommended.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack, or misuse, of mitigating technologies.

5.6.12.4 PLATFORM
¢ Languages: C, C++
¢ Operating platforms: Any

5.6.12.5 REQUIRED RESOURCES
Any

5.6.12.6 SEVERITY
High

5.6.12.7 LIKELIHOOD OF EXPLOIT
Low

5.6.12.8 AVOIDANCE AND MITIGATION

* Pre-design: Through Build: Many IDEs and static analysis products will
detect this problem.

¢ Implementation: Place constants on the lft. If one attemptsto assign a
constant with a variable, the compiler will of course produce an error.

5.6.12.9 DISCUSSION
Thisbug is generally as aresult of atypo and usually should cause obvious
problems with program execution. If the comparisonisin an if statement, the if
statement will always return the value of the right-hand side variable.

5.6.12.10 EXAMPLES
void called(int foo){
if (foo=1) printf("foo\n");
}

int main(){

called(2);
return O;

262 The CLASP Application Security Process

5.6.12.11

5.6.13

5.6.13.1

5.6.13.2

5.6.13.3

5.6.13.4

5.6.13.5

5.6.13.6

5.6.13.7

5.6.13.8

5.6.13.9

5.6.13.10

RELATED PROBLEMS

Comparing instead of assigning

OVERVIEW

In many languages, the compare statement is very close in appearance to the
assignment statement; they are often confused.

CONSEQUENCES
Unspecified.

EXPOSURE PERIOD

* Pre-design through Build: The use of tools to detect this problem isrec-
ommended.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack, or misuse, of mitigating technologies.

PLATFORM
¢ Languages: C, C++, Java
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Low

AVOIDANCE AND MITIGATION

* Pre-design: Through Build: Many IDEs and static analysis products will
detect this problem.

DISCUSSION

Thisbug is mainly atypo and usually should cause obvious problems with pro-
gram execution. The assignment will not always take place.

EXAMPLES
In C/C++/Java

The CLASP Application Security Process 263

5.6.13.11

5.6.14

5.6.14.1

5.6.14.2

5.6.14.3

5.6.14.4

5.6.14.5

5.6.14.6

5.6.14.7

5.6.14.8

void called(int foo){
f oo==1;
if (foo==1) printf("foo\n");

int main(){

called(2);
return O;

}

RELATED PROBLEMS

Incorrect block delimitation

OVERVIEW
In some languages, forgetting to explicitly delimit ablock can result in alogic
error that can, in turn, have security implications.

CONSEQUENCES
Thisisagenera logic error — with all the potential consequences that this
entails.

EXPOSURE PERIOD
* Implementation

PLATFORM
C, C++, C#, Java

REQUIRED RESOURCES
Any

SEVERITY
Varies

LIKELIHOOD OF EXPLOIT
Low

AVOIDANCE AND MITIGATION

Implementation: Always use explicit block delimitation and use static-analysis
technologies to enforce this practice.

264

The CLASP Application Security Process

5.6.14.9

5.6.14.10

5.6.14.11

5.6.15

5.6.15.1

5.6.15.2

5.6.15.3

5.6.15.4

5.6.15.5

5.6.15.6

DISCUSSION

In many languages, braces are optional for blocks, and — in a case where
braces are omitted — it is possible to insert alogic error where a statement is
thought to be in ablock but is not. Thisisacommon and well known reliability
error.

EXAMPLES

In this example, when the condition istrue, the intention may be that both x and
y run.

if (condition==true) x;

Y

RELATED PROBLEMS

Omitted break statement

OVERVIEW

Omitting a break statement so that one may fall through is often indistinguish-
able from an error, and therefore should not be used.

CONSEQUENCES
Unspecified.

EXPOSURE PERIOD

* Pre-design through Build: The use of tools to detect this problem isrec-
ommended.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies

PLATFORM
¢ Languages. C/C++/Java
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
High

The CLASP Application Security Process 265

5.6.15.7

5.6.15.8

5.6.15.9

5.6.15.10

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Pre-design through Build: Most static analysis programs should be able
to catch these errors.

* Implementation: The functionality of omitting abreak statement could be
clarified with an if statement. This method is much safer.

DISCUSSION

While most languages with similar constructs automatically run only asingle
branch, C and C++ are different. This has bitten many programmers, and can
lead to critical code executing in situations where it should not.

EXAMPLES
Java
{

int nonth = 8;
switch (nonth) {

case 1. print("January");
case 2: print("February");
case 3: print("March");
case 4. print("April");
case 5: println("My");
case 6: print("June");
case 7: print("July");
case 8: print("August");

case 9: print("Septenber");

case 10: print("COctober");

case 11: print("Novenber");

case 12: print("Decenber");
}

printIn(" is a great nonth");

CIC++:
Isidentical if one replaces print with printf or cout.
Now one might think that if they just tested casel2, it will display that the

respective month “is a great month.” However, if one tested November, one
notice that it would display “November December is a great month.”

266

The CLASP Application Security Process

5.6.15.11

5.6.16

5.6.16.1

5.6.16.2

5.6.16.3

5.6.16.4

5.6.16.5

5.6.16.6

5.6.16.7

5.6.16.8

5.6.16.9

5.6.16.10

RELATED PROBLEMS

Improper cleanup on thrown exception

OVERVIEW

Causing a change in flow, due to an exception, can often leave the code in abad
state.

CONSEQUENCES
* Implementation: The code could be left in abad state.

EXPOSURE PERIOD
* Implementation: Many logic errors can lead to this condition.

PLATFORM
* Languages. Java, C, C# or any language which can throw an exception.
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

¢ Implementation: If one breaks from aloop or function by throwing an
exception, make sure that cleanup happens or that you should exit the
program. Use throwing exceptions sparsely.

DISCUSSION

Often, when functions or |oops become complicated, some level of cleanup in
the beginning to the end is needed. Often, since exceptions can disturb the flow
of the code, one can leave a code block in abad state.

EXAMPLES
In C++/Java:

public class foo {

The CLASP Application Security Process 267

public static final void main(String args[]) {
bool ean returnVal ue;
returnVal ue=doSt uff();
}
public static final boolean doStuff() {
bool ean t hreadLock;
bool ean truthval ue=true;

try {
whi | e(//check sonme condition){
t hr eadLock=t r ue;
/1 do some stuff to truthval ue
t hr eadLock=f al se;
}
} catch (Exception e){
Systemerr.println("You did sonething bad");
if (something) return truthval ue;
}
return truthval ue;
}
}

In this case, you may leave a thread locked accidently.

5.6.16.11 RELATED PROBLEMS

5.6.17 Improper cleanup on thrown exception

5.6.17.1 OVERVIEW
Causing a change in flow, due to an exception, can often leave the code in abad
state.

5.6.17.2 CONSEQUENCES
¢ Undefined.

5.6.17.3 EXPOSURE PERIOD
* Implementation: Thisis an implementation level logical flaw.

5.6.17.4 PLATFORM
* Languages. Java, C, C# or any language which can throw an exception.
¢ Operating platforms: Any

5.6.17.5 REQUIRED RESOURCES
Any

268 The CLASP Application Security Process

5.6.17.6

5.6.17.7

5.6.17.8

5.6.17.9

5.6.17.10

5.6.17.11

5.6.18

5.6.18.1

5.6.18.2

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Implementation: If one breaks from aloop or function due to throwing an
exception, make sure that cleanup happens.

DISCUSSION

Often, when functions or |oops become complicated, some level of cleanup in
the beginning to the end is needed. Often, since exceptions can disturb the flow
of the code, one can leave a code block in abad state.

EXAMPLES
In C++/Java
whi | e(1){
t hr eadLock=t r ue;
/1 Do Stuff
catch (Exception e){
Systemerr.println(“You did sonething bad”);
br eak;

}

treadLock=f al se;
}

In this case you may leave athread locked.

RELATED PROBLEMS

Uncaught exception

OVERVIEW

When an exception is thrown and not caught, the process has given up an
opportunity to decideif a given failure or event is worth a change in execution.

CONSEQUENCES
Undefined.

The CLASP Application Security Process 269

5.6.18.3

5.6.18.4

5.6.18.5

5.6.18.6

5.6.18.7

5.6.18.8

5.6.18.9

EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that isresistant to thisissues.

* Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack, or misuse, of mitigating technologies. Generally this

problem is either caused by using aforeign API or an APl which the pro-
grammer is not familiar with.

PLATFORM
e Languages. Java, C++ , C#, or any language which has exceptions.
¢ Operating platforms: Any

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Requirements Specification: The choice between alanguage which has
named or unnamed exceptions needs to be done. While unnamed excep-
tions exacerbate the chance of not properly dealing with an exception,
named exceptions suffer from the up call version of the weak base class
problem.

* Requirements Specification: A language can be used which requires, at
compile time, to catch all serious exceptions. However, one must make
sure to use the most current version of the API as new exceptions could
be added.

* Implementation: Catch all relevant exceptions. Thisis the recommended
solution. Ensure that all exceptions are handled in such away that you
can be sure of the state of your system at any given moment.

EXAMPLES
In C++:

#i ncl ude <i ostream h>
#i ncl ude <new>

270

The CLASP Application Security Process

5.6.18.10

5.6.19

5.6.19.1

#i ncl ude <stdlib. h>

int

mai n() {
char i nput[100];
int i, n
| ong x|

Requi red resources cout << many nunbers do you want to type
in? "

cin.getline(input, 100);

i = atoi(input);

//here we are purposly not checking to see if this call to

[/ new wor ks

I1try {

I = new | ong [i];
11}

//catch (bad_alloc & ba) {
/1 cout << "Exception:" << endl;
11}
if (1 == NULL)
exit(1);
for (n =0; n<i; n+t+) {
cout << "Enter nunber:
cin.getline(input, 100);
I[n] = atol (input);
}
cout << "You have entered:
for (n =0; n <i; nt+)
cout << I[n] << ", ";
delete[] I;
return O;

In this example, since we do not check if new throws an exception, we can find
strange failures if large values are entered.

RELATED PROBLEMS

Improper error handling

OVERVIEW
Sometimes an error is detected, and bad or no action is taken.

The CLASP Application Security Process 271

5.6.19.2

5.6.19.3

5.6.19.4

5.6.19.5

5.6.19.6

5.6.19.7

5.6.19.8

5.6.19.9

5.6.19.10

CONSEQUENCES
Undefined.

EXPOSURE PERIOD
Implementation: Thisis generally alogical flaw or atypo introduced com-
pletely at implementation time.

PLATFORM
Languages: All

Operating platforms: All

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

Implementation: Properly handle each exception. This is the recommended
solution. Ensure that all exceptions are handled in such away that you can be
sure of the state of your system at any given moment.

DISCUSSION

If afunction returns an error, it isimportant to either fix the problem and try
again, alert the user that an error has happened and | et the program continue, or
alert the user and close and cleanup the program.

EXAMPLES
InC:

f oo=mal | oc(si zeof (char);

//the next line checks to see if malloc failed
if (foo==0) {

//We do nothing so we just ignore the error.

}

In C++ and Java:
whi | e (DoSonet hing()) {

272

The CLASP Application Security Process

try {
/* performmin |oop here */

}
catch (Exception &e){

/* do nothing, but catch so it'll conpile... */
}
}

5.6.19.11 RELATED PROBLEMS

5.6.20 Improper temp file opening

5.6.20.1 OVERVIEW

Tempfile creation should be done in a safe way. To be safe, the temp file func-
tion should open up the temp file with appropriate access control. The temp file
function should also retain this quality, while being resistant to race conditions.

5.6.20.2 CONSEQUENCES

* Confidentidity: If the temporary file can be read, by the attacker, sensi-
tive information may bein that file which could be revealed.

* Authorization: If that file can be written to by the attacker, the file might
be moved into a place to which the attacker does not have access. This
will alow the attacker to gain selective resource access-control privi-

leges.

5.6.20.3 EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
or library that is not susceptible to these issues.

¢ Implementation: If one must use there own tempfile implementation than
many logic errors can lead to this condition.

5.6.20.4 PLATFORM
e Languages: All

* Operating platforms: This problem exists mainly on older operating sys-
tems and should be fixed in newer versions.

5.6.20.5 REQUIRED RESOURCES
Any

5.6.20.6 SEVERITY
High

The CLASP Application Security Process 273

5.6.20.7

5.6.20.8

5.6.20.9

5.6.20.10

LIKELIHOOD OF EXPLOIT
High

AVOIDANCE AND MITIGATION

* Requirements specification: Many contemporary languages have func-
tions which properly handle this condition. Older C temp file functions
are especially susceptible.

* Implementation: Ensure that you use proper file permissions. This can be
achieved by using a safe temp file function. Temporary files should be
writable and readable only by the process which own the file.

* Implementation: Randomize temporary file names. This can also be
achieved by using a safe temp-file function. This will ensure that tempo-
rary fileswill not be created in predictable places.

DISCUSSION

Depending on the data stored in the temporary file, there is the potential for an
attacker to gain an additional input vector which istrusted as non-malicious. It
may be possible to make arbitrary changes to data structures, user information,
or even process ownership.

EXAMPLES
In C\C++:

FI LE *stream
char tenpstring[] = "String to be witten";

if((stream= tnmpfile()) == NULL) {
perror (" Could not open new tenporary file\n");
return (-1);
}
/* wite data to tnmp file */
[* ..
_rmnp();
The tenp file created in the above code is al ways readabl e and
witable by all users.

In Java:

try {
File tenp = File.createTenpFil e("pattern”, ".suffix");

tenp. del eteOnExit();
Buf feredWiter out = new BufferedWiter(new FileWiter(temp));
out.wite("aString");
out.close(); }
catch (I Cexception e) { }

274

The CLASP Application Security Process

5.6.20.11

5.6.21

5.6.21.1

5.6.21.2

5.6.21.3

5.6.21.4

5.6.21.5

5.6.21.6

5.6.21.7

5.6.21.8

Thistemp fileisreadable by all users.

RELATED PROBLEMS

Guessed or visible temporary file

OVERVIEW

On some operating systems, the fact that the temp file exists may be apparent to
any user.

CONSEQUENCES

Confidentiality: Since the file is visible and the application which is using the
temp file could be known, the attacker has gained information about what the
user isdoing at that time.

EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
or library that is not susceptible to these issues.

* Implementation: If one must use his own temp file implementation,
many logic errors can lead to this condition.

PLATFORM
* Languages: All languages which support file input and output.

* Operating platforms. This problem exists mainly on older operating sys-
tems and cygwin.

REQUIRED RESOURCES
Any

SEVERITY
Low

LIKELIHOOD OF EXPLOIT
Low

AVOIDANCE AND MITIGATION

* Requirements specification: Many contemporary languages have func-
tions which properly handle this condition. Older C temp file functions
are especially susceptible.

The CLASP Application Security Process 275

* Implementation: Try to store sensitive tempfilesin adirectory whichis
not world readable — i.e., per user temp files.

¢ Implementation: Avoid using vulnerable temp file functions.

5.6.21.9 DISCUSSION

Since the fileis visible, the application which is using the temp file could be
known. If one has access to list the processes on the system, the attacker has
gained information about what the user is doing at that time. By correlating this
with the applications the user is running, an attacker could potentially discover
what auser’s actions are. From this, higher levels of security could be breached.

5.6.21.10 EXAMPLES
In C\C++:

FI LE *stream
char tenpstring[] = "String to be witten";

if((stream= tnmpfile()) == NULL) {
perror("Could not open new tenporary file\n");
return (-1);
}
/* wite data to tnmp file */
[* ..
_rmnp();
In cygwin and sone ol der unixes one can |s /tnp and see that this
tenp file exists.

In Java:

try {
File tenp = File.createTenpFil e("pattern”, ".suffix");
tenp. del eteOnExit ();
Buf feredWiter out = new BufferedWiter(new FileWiter(temp));
out.wite("aString");
out.close(); }
catch (I OCexception e) { }

Thistemp fileisreadable by all users.

276 The CLASP Application Security Process

5.6.21.11

5.6.22

5.6.22.1

5.6.22.2

5.6.22.3

5.6.22.4

5.6.22.5

5.6.22.6

5.6.22.7

5.6.22.8

RELATED PROBLEMS

Failure to deallocate data

OVERVIEW

If memory is allocated and not freed the process could continue to consume
more and more memory and eventually crash.

CONSEQUENCES

* Availability: If an attacker can find the memory leak, an attacker may be
able to cause the application to leak quickly and therefore cause the appli-
cation to crash.

EXPOSURE PERIOD

* Requirements specification: The choice could be made to use alanguage
that is not susceptible to these issues.

e Implementation: Many logic errors can lead to this condition. It can be
exacerbated by lack of or misuse of mitigating technologies.

PLATFORM
e Languages. C, C++, Fortran, Assembly

* Operating platforms: All, although partial preventative measures may be
deployed depending on environment.

REQUIRED RESOURCES
Any

SEVERITY
Medium

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Pre-design: Use alanguage or compiler that performs automatic bounds
checking.

* Design: Use an abstraction library to abstract away risky APIs. Not a
complete solution.

The CLASP Application Security Process 277

5.6.22.9

5.6.22.10

5.6.22.11

5.6.23

5.6.23.1

* Pre-design through Build: The Boehm-Demers-Weiser Garbage Collector
or valgrind can be used to detect leaksin code. Thisis not a complete
solution asit is not 100% effective.

DISCUSSION

If amemory leak existswithin aprogram, thelonger a program runs, the moreit
encounters the leak scenario and the larger its memory footprint will become.
An attacker could potentially discover that the leak locally or remotely can
cause the leak condition rapidly so that the program crashes.

EXAMPLES
InC:

bar connection(){
foo = malloc(1024);
return foo;

}

endConnection(bar foo){
free(foo);

}
int main() {
whi | e(1)
//thread 1
//On a connection
f oo=connection();

//thread 2
/1 When the connection ends
endConnecti on(fo00)
}
}

Here the problem is that every time a connection is made, more memory isallo-
cated. So if one just opened up more and more connections, eventually the
machine would run out of memory.

RELATED PROBLEMS

Non-cryptographic PRNG

OVERVIEW

The use of Non-cryptographic Pseudo-Random Number Generators (PRNGS)
as asource for security can be very dangerous, since they are predictable.

278

The CLASP Application Security Process

5.6.23.2

5.6.23.3

5.6.23.4

5.6.23.5

5.6.23.6

5.6.23.7

5.6.23.8

5.6.23.9

5.6.23.10

CONSEQUENCES

¢ Authentication: Potentially aweak source of random numbers could
weaken the encryption method used for authentication of users. In this
case, a password could potentially be discovered.

EXPOSURE PERIOD

* Design through Implementation: It isimportant to realize that if oneis
utilizing randomness for important security, one should use the best ran-
dom numbers available.

PLATFORM
¢ Languages: All languages.
e Operating platforms: All platforms.

REQUIRED RESOURCES
Any

SEVERITY
High

LIKELIHOOD OF EXPLOIT
Medium

AVOIDANCE AND MITIGATION

* Design through Implementation:; Use functions or hardware which use a
hardware-based random number generation for all crypto. Thisisthe rec-
ommended solution. Use CyptGenRandom on Windows, or hw_rand() on
Linux.

DISCUSSION

Often a pseudo-random number generator (PRNG) is not designed for cryptog-
raphy. Sometimes a mediocre source of randomnessis sufficient or preferable
for algorithms which use random numbers. Weak generators generally take less
processing power and/or do not use the precious, finite, entropy sourceson a
system.

EXAMPLES
In C\C++:

srand(tinme())
int randNum = rand();

The CLASP Application Security Process 279

In Java:

Random r = new Random()

For a given seed, these “random number” generators will produce areliable
stream of numbers. Therefore, if an attacker knows the seed or can guessiit eas-
ily, hewill be able to reliably guess your random numbers.

5.6.23.11 RELATED PROBLEMS

5.6.24 Failure to check whether privileges were dropped successfully

5.6.24.1 OVERVIEW

If one changes security privileges, one should ensure that the change was suc-
cessful.

5.6.24.2 CONSEQUENCES

* Authorization: If privileges are not dropped, neither are access rights of
the user. Often these rights can be prevented from being dropped.

* Authentication: If privileges are not dropped, in some cases the system
may record actions as the user which is being impersonated rather than
the impersonator.

5.6.24.3 EXPOSURE PERIOD
* Implementation: Properly check all return values.

5.6.24.4 PLATFORM
e Language: C, C++, Java, or any language which can make system calls or
has its own privilege system.

¢ Operating platforms: UNIX, Windows N T, Windows 2000, Windows XP,
or any platform which has access control or authentication.

5.6.24.5 REQUIRED RESOURCES
A process with changed privileges.

5.6.24.6 SEVERITY
Very High

5.6.24.7 LIKELIHOOD OF EXPLOIT
Medium

280 The CLASP Application Security Process

5.6.24.8

5.6.24.9

5.6.24.10

5.6.24.11

AVOIDANCE AND MITIGATION

¢ Implementation: In Windows make sure that the process token has the
SelmpersonatePrivilege(Microsoft Server 2003).

* Implementation: Always check all of your return values.

DISCUSSION

In Microsoft Operating environments that have access control, impersonation is
used so that access checks can be performed on a client identity by a server with
higher privileges. By impersonating the client, the server is restricted to client-
level security — although in different threads it may have much higher privi-
leges.

Code which relies on this for security must ensure that the impersonation suc-
ceeded — i.e,, that a proper privilege demotion happened.

EXAMPLES
In C/C++

bool DoSecureSt uf f (HANDLE hPi pe){ {
bool fDataWitten = false;
| nper sonat eNanmedPi peC i ent (hPi pe) ;
HANDLE hFile = CreateFile(...);
/..l RevertToSelf()/../

}

Since we did not check the return value of ImpersonateNamedPipeClient, we do
not know if the call succeeded.

RELATED PROBLEMS

The CLASP Application Security Process 281

282 The CLASP Application Security Process

APPENDIX A Principles (Key Security Concepts)

1 Insider Threats as the Weak Link

Most development organizations overlook “insider” risks — i.e., those users
with inside access to the application, whether it be in deployment or develop-
ment. For example, when planning for deploymentsit is easy to assume “afire-
wall will be there,” although, even when true, there are many techniques for
circumventing afirewall.

Most devel opment organi zations completely ignore the risks from the guy in the
next cube or on the next floor, the risks from the secretaries and the janitors, the
risks from those who have recently quit or been fired. This, despite yearly num-
bers from the Computer Crime and Security Survey performed by the Computer
Security Institute and the FBI, which shows that over half of all security inci-
dents have aninside angle.

This suggests that trusting the people around you isn’t good enough. Not only
might people be disgruntled or susceptible to bribe that you may not expect, but
people are often susceptible to accidentally giving insider help by falling victim
to social engineering attacks.

Social engineering iswhen an attacker uses hissocial skills (generally involving
deception) to meet his security ends. For example, he may convince technical
support that he is a particular user who has forgotten his password, and get the

The CLASP Application Security Process 283

password changed over the phone. Thisiswhy many people have moved to sys-
tems where passwords can be reset automatically only using a* secret question”
— although secret questions are a bit too repetitive... if someone is being tar-
geted, it is often easy to figure out the mother’s maiden name, the person’s
favorite color, and the name of hisor her pets.

Ethics in Secure-Software Development

Software development organizations should behave ethically as awhole, but
should not expect that their individual components will.

In so far as security goes, it is ethical not to expose a user to security risks that
are known and will not be obvious to the user, without clearly informing the
user of those risks (and preferably, mitigation strategies).

It isalso ethical to provide users with a specific privacy policy for use of their
personal information in atimely manner so that they can act to avoid undesired
use of that information, if they so desire. Additionally, if you change a privacy
policy, the user should be given the explicit choice either to accept the change
or to have his personal data expunged.

Additionally, if you have a system that is compromised on which user data
resides, itisethical to inform users of the breach in privacy. If the dataresidesin
the state of California, thisis required by law. Similar regulations may apply in
other jurisdictions.

Do not expect that all other people on the devel opment team will be ethical.

Insiders play asignificant factor in over 50% of corporate security breaches.
Particularly at risks are those employees that are silently disgruntled or have
recently left the company.

Fundamental Security Goals — Core Security
Services

There are several fundamental security goals that may be required for the
resources in your system. For each resource in your system, you should be
aware of whether and how you are addressing each concern throughout the life-
time of the resource. That is, each resource may have different protection
requirements as it interacts with different resources. For example, user data may

284

The CLASP Application Security Process

3.1

not need to be protected on the user’s machine but may need long-term secure
storage in your database to prevent against possible insider attacks.

The fundamental security goals are: access control, authentication, confidential-
ity, data integrity, availability, accountability, and non-repudiation. In this sec-
tion, we give an overview of each of the goals, explaining important nuances
and discussing the level s within a system at which the concern can be addressed
effectively.

Be aware that mechanisms put in place to achieve each of these services may be
thwarted by unintentional logic errorsin code.

Authorization (access control)

Authorization — also known as access control — is mediating access to
resources on the basis of identity and is generally policy-driven (although the
policy may be implicit). It isthe primary security service that concerns most
software, with most of the other security services supporting it. For example,
access control decisions are generally enforced on the basis of a user-specific
policy, and authentication is the way to establish the user in question. Similarly,
confidentiality isreally a manifestation of access control, specifically the ability
to read data. Since, in computer security, confidentiality is often synonymous
with encryption, it becomes atechnique for enforcing an access-control policy.

Policies that are to be enforced by an access-control mechanism generally oper-
ate on sets of resources; the policy may differ for individual actionsthat may be
performed on those resources (capabilities). For example, common capabilities
for afile on afile system are: read, write, execute, create, and delete. However,
there are other operations that could be considered “ meta-operations’ that are
often overlooked — particularly reading and writing file attributes, setting file
ownership, and establishing access control policy to any of these operations.

Often, resources are overlooked when implementing access control systems.
For example, buffer overflows are afailurein enforcing write-access on specific
areas of memory. Often, abuffer overflow exploit also accessesthe CPU ina
manner that isimplicitly unauthorized as well.

From the perspective of end-users of a system, access control should be manda-
tory whenever possible, as opposed to discretionary. Mandatory access control
means that the system establishes and enforces a policy for user data, and the
user does not get to make his own decisions of who else in the system can
access data. In discretionary access control, the user can make such decisions.

The CLASP Application Security Process 285

3.2

Enforcing a conservative mandatory access control policy can help prevent
operational security errors, where the end user does not understand the implica-
tions of granting particular privileges. It usually keeps the system simpler as
well.

Mandatory access control is also worth considering at the OS level, where the
OS labels data going into an application and enforces an externally defined
access control policy whenever the application attempts to access system
resources. While such technologies are only applicable in afew environments,
they are particularly useful as a compartmentalization mechanism, since— if a
particular application gets compromised — agood MAC system will prevent it
from doing much damage to other applications running on the same machine.

Authentication

In most cases, one wants to establish the identity of either acommunications
partner or the owner, creator, etc. of data. For network connections, it isimpor-
tant to perform authentication at login time, but it is also important to perform
ongoing authentication over the lifetime of the connection; this can easily be
done on a per-message basis without inconveniencing the user. Thisis often
thought of as message integrity, but in most contexts integrity is a side-effect of
necessary re-authentication.

Authentication is a prerequisite for making policy-based access control deci-
sions, since most systems have policies that differ, based on identity.

In reality, authentication rarely establishes identity with absolute certainty. In
most cases, one is authenticating credential s that one expectsto be unique to the
entity, such as a password or a hardware token. But those credentials can be
compromised. And in some cases (particularly in biometrics), the decision may
be based on a metric that has a significant error rate.

Additionally, for data communications, an initial authentication provides assur-
ance at the time the authentication completes, but when the initial authentica-
tion is used to establish authenticity of data through the life of the connection,
the assurance level generally goes down astime goes on. That is, authentication
data may not be “fresh,” such as when the valid user wanders off to eat lunch,
and some other user sits down at the terminal .

In data communication, authentication is often combined with key exchange.
This combination is advantageous since there should be no unauthenticated
messages (including key exchange messages) and since general-purpose data

286

The CLASP Application Security Process

3.21

communication often requires a key to be exchanged. Even when using public
key cryptography where no key needs to be exchanged, it is generally wise to
exchange them because general -purpose encryption using public keys has many
pitfals, efficiency being only one of them.

AUTHENTICATION FACTORS

There are many different techniques (or factors) for performing authentication.
Authentication factors are usually termed strong or weak. The term strong
authentication factor usually implies reasonable cryptographic security levels,
although the terms are often used imprecisely.

Authentication factors fall into these categories:

* Things you know — such as passwords or passphrases. These are usually con-
sidered weak authentication factors, but that is not always the case (such as
when using a strong password protocol such as SRP and alarge, randomly
generated secret). The big problem with this kind of mechanism isthe limited
memory of users. Strong secrets are difficult to remember, so people tend to
share authentication credentials across systems, reducing the overall security.

Sometimes people will take a strong secret and convert it into a “thing you
have” by writing it down. This can lead to more secure systems by ameliorat-
ing the typical problemswith weak passwords; but it introduces new attack
vectors.

* Thingsyou have — such asacredit card or an RSA SecurlD (often referred to
as authentication tokens). One risk common to all such authentication mecha
nismsistoken theft. In most cases, the token may be clonable. In some cases,
the token may be used in away that the actual physical presence is not
required (e.g., online use of credit card doesn’t require the physical card).

* Things you are — referring particularly to biometrics, such asfingerprint,
voiceprint, and retinal scans. In many cases, readers can be fooled or circum-
vented, which provides captured datawithout actually capturing the datafrom
aliving being.

A system can support multiple authentication mechanisms. If only one of a set
of authentication mechanismsis required, the security of the system will gener-
ally be diminished, as the attacker can go after the weakest of al supported
methods.

However, if multiple authentication mechanisms must be satisfied to authenti-
cate, the security increases (the defense-in-depth principle). Thisis abest prac-

The CLASP Application Security Process 287

3.2.2

3.2.3

tice for authentication and is commonly called multi-factor authentication.
Most commonly, this combines multiple kinds of authentication mechanism —
such as using both SecurlD cards and a short PIN or password.

WHO IS AUTHENTICATED?

In atwo-party authentication (by far, the most common case), one may perform
one-way authentication or mutual authentication. In one-way authentication, the
result is that one party has confidence in the identity of the other — but not the
other way around. There may still be a secure channel created as aresullt (i.e.,
there may still be akey exchange).

Mutual authentication cannot be achieved simply with two parallel one-way
authentications, or even two one-way authentications over an insecure medium.
Instead, one must cryptographically tie the two authentications together to
prove there is no attacker involved.

A common case of thisisusing SSL/TLS certificates to validate a server with-
out doing aclient-side authentication. During the server validation, the protocol
performs a key exchange, leaving a secure channel, where the client knows the
identity of the server — if everything was done properly. Then the server can
use the secure channel to establish the identity of the client, perhaps using a
simple password protocol. Thisis a sufficient proof to the server aslong as the
server does not believe that the client would intentionally introduce a proxy, in
which case it may not be sufficient.

AUTHENTICATION CHANNELS

Authentication decisions may not be made at the point where authentication
datais collected. Instead it may be proxied to some other device where a deci-
sion may be made. In some cases, the proxying of datawill be non-obvious. For
example, in astandard client-server application, it is clear that the client will
need to send some sort of authentication information to the server. However, the
server may proxy the decision to athird party, allowing for centralized manage-
ment of accounts over alarge number of resources.

It isimportant to recognize that the channel over which authentication occurs
provides necessary security services. For example, it is common to perform
password authentication over the Internet in the clear. If the password authenti-
cation is not strong (i.e., a zero-knowledge password protocol), it will leak
information, generally making it easy for the attacker to recover the password.
If thereis datathat could possibly be leaked over the channel, it could be com-
promised.

288

The CLASP Application Security Process

3.3

Confidentiality

It is often arequirement that data should be secret to all unauthorized parties,
both when in transit on a network and when being stored, long-term or short-
term.

Confidentiality is often synonymous with encryption, but there is more to confi-
dentiality than merely encrypting datain transit or in storage. For example,
users may have privacy requirements relative to other users, where systems that
use encryption alone will often behave improperly. In particular, in a system
with multiple users — where each user will want to allow some subset of other
usersto see the data, but not others— good mediation is mandatory. Otherwise,
a server that mistakenly ships off data against the wishes of a customer islikely
to encrypt the data but to the wrong entity.

Additionally, confidentiality can be compromised even when properly mediat-
ing access between resources and performing encryption. Potential attackers
may be able to learn important information simply by observing the data you
send. As asimple example, consider a system where Bob asks Alice questions
so that everyone knows in advance, and Alice simply responds “yes’ or “no” to
each of them.

If Alice's responses each go out in asingle packet, and each answer is encoded
in text (particularly, “yes’ and “no”) instead of a single bit, then an attacker can
determine the original plaintext without breaking the encryption algorithm sim-
ply by monitoring the size of each packet. Even if al of the responsesare sent in
asingle packet, clumped together, the attacker can at least determine how many
responses are “yes’ and how many are “no” by measuring the length of the
string.

Example: Assume that there are twenty questions, and the ciphertext is 55 char-
acters. If every answer were “no”, then the ciphertext would be 40 characters
long. Since there are 15 extra characters, and “yes’ is one character longer than
“no,” there must have been 15 “yes’ answers.

Lapsesin confidentiality such as this one that are neither obvious nor protected
by standard encryption mechanisms are called “covert channels.” Another case
of acovert channel occurs when the attacker can gain information simply by
knowing which parties are talking to each other. There, he can often tell by
monitoring the encrypted packets on the wire which have destination addresses.
Even when the destination addresses are encrypted, the attacker may be able to
observe the two endpoints and correlate a particular amount of traffic leaving

The CLASP Application Security Process 289

3.4

3.5

one location with the same amount of traffic arriving at another location at the
sametime.

Covert channels are generally classified as either covert-storage channels or
covert-timing channels. The previous exampleis a classic covert-timing chan-
nel. In covert-storage channels, artifacts of the way datais represented can com-
municate information, much like in our “yes’ and “no” example. Also, when
there are multiple ways of encoding the same information that are valid, it may
be possible for two users to communicate additional unauthorized data by
choosing a particular encoding scheme. This may be a concern, depending on
the application. For example, in an on-line game, it may give two parties away
to communicate detailed data that would constitute cheating and would not be
easy to communicate via other mechanisms; particularly, if the datais complex
data such as game coordinates and is inserted and removed automatically; read-
ing such things over the phone in atimely manner may be impossible.

Data Integrity

In communications and data storage, it is almost always desirable to know that
dataisin theform it was intended to be. Data integrity checking allows one to
make that determination. This generally implies authentication because the
mechanism for determining that data has not been modified requires a secret
possessed by the person who created the data. Proving the data has not changed
in such a caseis all donein the same operation as proving that the data origi-
nated with a particular sender.

For this reason, CLASP treats data integrity as a subset of data authentication.
There are cases where integrity may be a separate service as authentication —
such as at the physical link layer on trusted media, where errors may happen
naturally but will not be security errors. These situations are extremely rarein
software devel opment.

Availability

Most systems that export resources, either directly or otherwise, come with
some implicit understanding that those resources will generally be accessible
(available). If an availability problem is caused malicioudly, it isknown asa
denial of service attack.

Note that data delays can be considered an availability problem. For example,
imagine sending a message that says, “sell 10 shares of MSFT” that an attacker

290

The CLASP Application Security Process

3.6

3.7

delays until the price has plummeted to the point where the user would no
longer want to sell those shares.

Accountability

Users of asystem should generally be accountable for the actions they perform.
In practice, this means that systems should log information on operations that
could potentially require review. For example, financia transactions must
always be tracked in order to abide by Sarbanes-Oxley regulations. For logsto
be used in cases of accountability, they should generally be difficult to forge,
using a message authentication scheme that protects the integrity of logs by
authenticating the entity that performed the logging.

Non-repudiation

In most two-party data communication, the two parties can prove to themselves
whether data comes from an authentic source. But one generally does not have
proof that athird party would find plausible. A message for which the original
sender or some endorser can be established to third partiesis said to be non-
repudiable. This security serviceis generally associated with digital signature
schemes.

Note that legal systems do not have an absolute notion of non-repudiation. Par-
ticularly, inacourt of law, “duress’ isavalid way to repudiate a message. For
example, Alice could sign a message to Bob that Bob uses against Alicein
court, but Alice may have alegitimate duress defense if she was forced to send
the message by someone holding a gun to her head.

Input Validation

If aprogramisliberal in what it accepts, it often risks an attacker finding an
input that has negative security implications. Several major categories of soft-
ware security problems are ultimately input validation problems — including
buffer overflows, SQL injection attacks, and command-injection attacks.

Datainput to a program is either valid or invalid. What defines valid can be
dependent on the semantics of the program. Good security practice is to defini-
tively identify all invalid data before any action on the dataistaken. And, if data
isinvalid, one should act appropriately.

The CLASP Application Security Process 291

4.1

4.2

Where to perform input validation

There are many levels at which one can perform input validation. Common
places include:

e Use— all placesin the code where data (particularly data of external origin)
gets used.

* Unit boundaries— i.e., individual components, modules, or functions;
* Trust boundaries— i.e., on a per-executable basis.
* Protocol parsing — When the network protocol gets interpreted.

» Application entry points — e.g., just before or just after passing datato an
application, such as a validation engine in aweb server for aweb service.

* Network — i.e., atraditional intrusion detection system (IDS).

Validating at use is generally quite error-prone because it is easy to forget to
insert a check. Thisis still true, but less so when validating at unit boundaries.
Going up the line, validation becomes less error prone. However, at higher lev-
s, it gets harder and harder to make accurate checks because there is less and
less context readily available to make a decision with.

At abare minimum, input validation should be performed at unit boundaries,
preferably using a structured technique such as design-by-contract. Validating
at other levels provides defense-in-depth to help handle the case where a check
isforgotten at alower level.

Ways in which data can be invalid

At ahigh level, invalid datais anything that does not meet the strictest possible
definition of valid. It does not just encompass malformed data, it encompasses
missing data and out-of-order data (e.g., data used in a capture-replay attack).

There are four different contexts in which data can be invalid:

* Sender — Dataisinvalidif it did not originate from an authentic source.

» Tokens— Datain network protocols are generally broken up into atomic
units called tokens, which often map to concrete datatypes (e.g., numbers, zip
codes, and strings). Aninvalid token isonethat is an invalid value for all
token types known to a system.

* Syntax — Protocols accept messages as valid based on a protocol syntax,
which isusually defined in terms of tokens. An invalid message is one that
should not be accepted as part of the protocol.

292

The CLASP Application Security Process

4.3

* Semantics — Even when a message satisfies syntax requirements, it may be
semantically invalid.

How to determine input validity

Data validity must be evaluated in each of the four contexts described above.
For example, avalid sender can send bad tokens. Good tokens can be combined
in syntactically invalid ways. And, otherwise valid messages can make no valid
sense in terms of the program’s semantics.

At ahigh-level, there are three approaches to providing data validity:

* Black-listing — Widely considered bad practice in all cases, one validates
based on apolicy that explicitly defines bad values. All other datais assumed
to bevalid, but in practice, it often is not (or should not be).

* White-listing — One validates based on a precise description of what valid
data entails (apolicy). If the policy is correct, this prevents accidentally
allowing maliciously invalid data. The risks are that the policy will not be
correct, which may result not only in allowing bad data but also in disallow-
ing some valid data.

* Cryptographic validation — One uses cryptography to demonstrate validity
of the data.

Handling each input validation context involves a separate strategy:

* The sender can, in the general case, only be validated adequately using cryp-
tographic message authentication.

* Tokens are generally validated using a simple state machine describing valid
tokens (often implemented with regular expressions).

* Syntax is generally validated using a standard language parser, such as a
recursive decent parser or a parser generated by a parser generator.

* Semantics are generally validated at the highest boundary at which al of the
semantic data needed to make a decision is available. M essage-ordering
omission isbest validated cryptographically along with sender authentication.

Protocol-specific semantics are often best validated in the context of a parser
generated from a specification. In this case, semantics should be validated in
the production associated with a single syntactic rule. When not enough
semantic datais available at thislevel, semantic validation is best performed
using a design-by-contract approach.

The CLASP Application Security Process 293

4.4

Actions to perform when invalid data is found
There are three classes of action one can take when invalid data is identified:
¢ Error — Thisincludesfatal errors and non-fatal errors.

* Record — Thisincludes logging errors and sending notifications of errorsto
interested parties.

* Modify — Thisincludesfiltering data or replacing data with default values.

These three classes are orthogonal, meaning that the decision to do any oneis
independent from the others. One can easily perform all three classes of action.

Assume the Network is Compromised

There are many categories of attack that can be launched by attackers with
access to any network media that can see application traffic. Many people
assume wrongly that such attacks are not feasible, assuming that it is “difficult
to get in the middle of network communications,” especially when most com-
munications are from ISP to ISP,

One misconception isthat an attacker actually needsto “bein the middle” for a
network attack to be successful. Ethernet is a shared medium, and it turns out
that attacks can be launched if the bad guy is on one of the shared segments that
will seethetraffic. Generaly, the greatest risk liesin the local networks that the
endpoints use.

Many people think that plugging into a network via a switch will prevent
against the threat on the local network. Unfortunately, that is not true, as
switches can have their traffic intercepted and monitored using a technique
called ARP spoofing. And even if this problem were easily addressed, there are
always attacks on the physical mediathat tend to be easy to perform.

Asfor router infrastructure, remember that most routers run software. For
example, Cisco’s routers run 1OS, an operating system written in C that has had
exploitable conditions found in it in the past. It may occasionally be reasonable
for an attacker to truly be “in the middle.”

Another misconception is that network-level attacks are difficult to perform.
There are tools that easily automate them. For example, “dsniff” will automate
many attacks, including man-in-the-middle eavesdropping and ARP spoofing.

294

The CLASP Application Security Process

WEell known network-level threats include the following:

» Eavesdropping — Even when using cryptography, eavesdropping may be
possible when not performing proper authentication, using a man-in-the-mid-
dle attack.

* Tampering — An attacker can change data on the wire. Even if the datais
encrypted, it may be possible to make significant changes to the data without
being able to decrypt it. Tampering is best thwarted by performing ongoing
message authentication (MACing), provided by most high-level protocols,
such as SSL/TLS.

* Spoofing — Traffic can be forged so that it appears to come from a different
source address than the one from which it actually comes. Thiswill thwart
authentication systems that rely exclusively on IP addresses and/or DNS
names for authentication.

* Hijacking — An extension of spoofing, established connections can be taken
over, allowing the attacker to enter an already established session without
having to authenticate. This can be thwarted with ongoing message authenti-
cation, which is provided by most high-level protocols, such as SSL/TLS.

* Observing — It is possible to give away security-critical information even
when a network connection is confidentiality-protected through encryption.
For example, the mere fact that two particular hosts are talking may give
away significant information, as can the timing of traffic. These are generally
examples of covert channels (non-obvious communication paths), which tend
to be the most difficult problem in the security space.

Minimize Attack Surface

For alarge application, arough yet reliable metric for determining overall risk
is to measure the number of input points that the application has—i.e., attack
surface. The notion is that more points of entry into the application provides
more avenues for an attacker to find a weakness.

Of course, any such metric must consider the accessibility of the input point.
For example, many applications are devel oped for athreat model where the
local environment istrusted. In this case, having alarge number of local input
points such as configuration files, registry keys, user input, etc., should be con-
sidered far |ess worrisome than making several external network connections.

The CLASP Application Security Process 295

Collapsing functionality that previously was spread across several ports onto a
single port does not always help reduce attack surface, particularly when the
single port exports all the same functionality, with an infrastructure that per-
forms basic switching. The effective attack surface isthe same unless the actual
functionality is somehow simplified. Since underlying complexity clearly plays
arole, metrics based on attack surface should not be used as the only means

of analyzing risksin a piece of software.

Secure by Default

A system’s default setting should not expose users to unnecessary risks and
should be as secure as possible. This meansthat all security functionality should
be enabled by default, and all optional features which entail any security risk
should be disabled by default.

It also means that — if there is some sort of failure in the system — the behav-
ior should not cause the system to behave in an insecure manner (the “fail-safe”
principle). For example, if aconnection cannot be established over SSL, it isnot
agood ideato try to establish a plaintext connection.

The“secure-by-default” philosophy does not interact well with usability sinceit
isfar smpler for the user to make immediate use of asystem if al functionality
is enabled. He can make use of functionality which is needed and ignore the
functionality that is not.

However, attackers will not ignore this functionality. A system released with an
insecure default configuration ensures that the vast majority of systems-in-the-
wild are vulnerable. In many circumstances, it can even become difficult to
patch a system before it is compromised.

Therefore, if there are significant security risks that the user is not aready
accepting, you should prefer a secure-by-default configuration. If not, at least
alert the user to the risks ahead of time and point him to documentation on miti-
gation strategies.

Note that, in a secure-by-default system, the user will have to explicitly enable
any functionality that increases his risk. Such operations should be relatively
hidden (e.g., in an “advanced” preference pane) and should make the risksin
disabling the functionality readily apparent.

296

The CLASP Application Security Process

8

Defense-in-Depth

The principle of defense-in-depth is that redundant security mechanisms
increase security. If one mechanism fails, perhaps the other one will still pro-
vide the necessary security. For example, it isnot agood ideato rely on afire-
wall to provide security for an internal-use-only application, as firewalls can
usualy be circumvented by a determined attacker (even if it requires a physical
attack or a social engineering attack of some sort).

Implementing a defense-in-depth strategy can add to the complexity of an appli-
cation, which runs counter to the “simplicity” principle often practiced in secu-
rity. That is, one could argue that new protection functionality adds additional
complexity that might bring new riskswith it. Therisks need to be weighed. For
example, a second mechanism may make no sense when the first mechanismis
believed to be 100% effective; therefore, there is not much reason for introduc-
ing the additional solution, which may pose new risks. But usually the risksin
additional complexity are minimal compared to the risk the protection mecha-
nism seeks to reduce.

Principles for Reducing Exposure

Submarines employ atrick that makes them far lessrisky to inhabit. Assume
that you are underwater on a sub when the hull bursts right by you. You actually
have a reasonable chance of survival, because the ship is broken up into sepa-
rate airtight compartments. If one compartment takes on water, it can be sealed
off from the rest of the compartments.

Compartmentalization is a good principle to keep in mind when designing soft-
ware systems. The basic ideaisto try to contain damage if something does goes
wrong. Another principleisthat of least privilege, which states that privileges
granted to a user should be limited to only those privileges necessary to do what
that user needs to do. For example, least privilege argues that you should not
run your program with administrative privileges, if at all possible. Instead, you
should run it as alesser user with just enough privileges to do the job, and no
more.

Another relevant principle isto minimize windows of vulnerability. This means
that — when risks must be introduced — they should be introduced for as short
atime as possible (a corollary of thisis “insecure bootstrapping”). In the con-
text of privilege, it is could to account for which privileges a user can obtain,

The CLASP Application Security Process 297

10

but only grant them when the situation absolutely merits. That supports the least
privilege principle by granting the user privileges only when necessary, and
revoking them immediately after use.

When the resources you are mitigating access in order to live outside your
application, these principles are usually easier to apply with operational con-
trols than with controls you build into your own software. However, one highly
effective technique for enforcing these principlesisthe notion of privilege sepa-
ration. Theideaisthat an application is broken up into two portions, the privi-
leged core and the main application. The privileged core has as little
functionality as absolutely possible so that it can be well audited. Its only pur-
poses are as follows:

 Authenticate new connections and spawn off unprivileged main processesto
handle those connections.

* Mediate access to those resources which the unprivileged process might legit-
imately get to access. That is, the core listens to requests from the children,
determines whether they are valid, and then executes them on behalf of the
unprivileged process.

This technique compartmentalizes each user of the system into its own process
and completely removes all access to privileges, except for those privileges
absolutely necessary, and then grants those privileges indirectly, only at the
point where it is necessary.

The Insecure Bootstrapping Principle

Insecure bootstrapping is the principle that — if you need to use an insecure
communication channel for anything — you should use it to bootstrap a secure
communication channel so that you do not need to use an insecure channel

again.

For example, SSH is a protocol that provides a secure channel after the client
and server have authenticated each other. Since it does not use a public key
infrastructure the first time the client connects, it generally will not have the
server credentials. The server sends its credentials, and the client just blindly
accepts that they' re the right ones. Clearly, if an attacker can send his own cre-
dentials, he can masquerade as the server or launch a man-in-the-middle attack.

298

The CLASP Application Security Process

But, the SSH client remembers the credentials. If the credentials remain the
same, and the first connection was secure, then subsequent connections are
secure. If the credentials change, then something iswrong — i.e., either an
attack is being waged, or the server credentials have changed — and SSH cli-
entswill generaly aert the user.

Of coursg, it is better not to use an insecure communication channel at all, if it
can be avoided.

The CLASP Application Security Process 299

300 The CLASP Application Security Process

APPENDIX B Templates and Worksheets

This appendix contains supplementary documents that support the CLASP pro-
cess. These documents are meant to be tailored to the individual needs of the
organization.

The CLASP Application Security Process 301

Sample Coding Guidelines

11

1.2

Instructions to manager

Thisworksheet isan example set of coding standards for acompany performing
software development. The guidelines are presented in table format, with a col-
umn left blank. The blank column is meant either for the implementor to take
notes related to the guideline or for an auditor to determine whether the devel-
oper’swork conforms to the coding guidelines.

Many of the guidelines in this worksheet are items that should be addressed at
design time. We leave them in this guidelines document, both for those organi-
zations that have not used CL A SP during the design phase and for those cases
where the implementor finds himself making design decisions.

We encourage you to remove those guidelines that do not apply to your organi-
zation since developers will be more prone to use the document if the number of
irrelevant pieces are minimal.

Instructions to developer

This worksheet enumerates standards for security that you are expected to fol-
low in the course of implementation work. For each guideline, you should keep
notes detailing where in the system the issue is relevant, along with the status of
the guideline — e.g., steps that have been taken in the spirit of the guideline.
Keeping track of this data can help independent security reviewers understand
the security posture of the system much more quickly than they would be able
to do otherwise.

If you believe that there are circumstances that would keep you from following
one of these guidelines, seek approval of your manager.

302

The CLASP Application Security Process

Guideline

Notes

GENERAL

1.

Do not use functionality that might call acom-
mand processor — e.g., system(), popen(),
execp(), Perl's open()). Instead, use functional-
ity that invokes programs without using a com-
mand shell — e.g., execv().

Specify preconditions and postconditions for
each parameter and any fields or global vari-
ables used.

Initialize all variables on alocation.

Do not place sensitive data in containers that
aredifficult or impossible to erase securely
(eg., Stringsin Java).

Erase all sensitive dataimmediately upon use
— including moving from one memory loca-
tion to another. Do not rely on a garbage collec-
tor to do thisfor you.

Do not open files as a privileged user. Instead,
use other identities to compartmentalize.

For any function that can potentially return an
error code (even if through a reference parame-
ter), check the return value and handle it appro-
priately.

Log logins, file access, privilege elevation, and
any financial transactions.

Do not use elevated privilege unless absolutely
necessary — e.g., privileged blocksin Java or
setuid in C/C++.

10.

When writing privileged code, drop privileges
as quickly as possible.

11.

Keep privileged code blocks as short and sim-
ple as possible.

12.

If random numbers are necessary, use system-
level high-quality randomness.

The CLASP Application Security Process

303

Guideline

Notes

13. Minimize callsto other languages, and ensure
that calls to other languages do not subvert
security checksin the system.

14. Do not store security-critical datain client-side
code.

15. Perform code signing on all external software
releases, public or private.

BUILD AND TEST

16. Always compile with all reasonable warnings
enabled and fix any warnings— whether or not
they indicate asignificant problem.

17. Run audit tools on a daily basis and follow any
recommendations identified.

18. Use ageneric lint tool on adaily basisto sup-
plement compiler warnings.

NETWORK USAGE

19. Do not use TCP/IP sockets over loopback.

20. Use thread pools for handling network connec-
tions instead of generating one thread per con-
nection.

21. Ensure all network connections are protected
with confidentiality, integrity, and authentica-
tion mechanisms (including database connec-
tions).

22. For database connections, implement user-
based access control viaa“WHERE” clause.

AUTHENTICATION

23. When using SSL, ensure that the server identity
is established by following atrust chainto a
known root certificate.

24. When using SSL, validate the host information
of the server certificate.

304

The CLASP Application Security Process

Guideline

Notes

25. If weak client authentication is unavoidable,
perform it only over a secure channel.

26. Do not rely upon IP numbers or DNS namesin
establishing identity.

27. Use strong password-based al gorithms when
possible — such as SRP.

28. Provide a mechanism for self-reset and do not
allow for third-party reset.

29. Do not store passwords under any circum-
stances. Instead, use a cryptographically strong
algorithm such as MD5-MCF to protect pass-
words.

30. Rate limit bad password guessesto 10ina5-
minute period.

31. Provide a mechanism for usersto check the
quality of passwords when they set or change
it.

32. Provide a mechanism for enforced password
expiration that is configurable by the customer.

33. Avoid sending authentication information
through E-mail, particularly for existing users.

INPUT VALIDATION

34. Perform input validation at all input entry
points.

35. Perform input validation on any environment
variables that are used.

36. Perform input validation at all entry points to
modules.

37. Use prepared statements for database access.

38. Build accessor APIsto validate requests and to
help enforce access control properties for any
sensitive variables.

The CLASP Application Security Process

305

Guideline

Notes

39. When converting datainto a data structure
(deseridizing), perform explicit validation for
all fields, ensuring that the entire object is
semantically valid.

40. Do not allow spaces or special charactersin
user names.

41. Evaluate any URL encodings before trying to
use the URL.

42. Validate all E-mail addresses, allowing only
basic values.

43. Do not alow arbitrary HTML in itemsthat may
possibly be displayed on aweb page.

44. Detect illegal UTF8 sequences.

FILE SYSTEM

45. Validate all filenames and directories before
use, ensuring that there are no special charac-
ters that might lead to accessing an unintended
file.

46. Use “safe directories” for all file access except
those initiated by the end user — e.g., docu-
ment saving and restoring to a user-chosen
location.

47. Validate the safety of file system accesses
atomically whenever used.

48. Have at least 64 bits of randomnessin al tem-
porary file names.

DOCUMENTATION

49. For all of the input validation pointsin the pro-
gram, specify valid input space in documenta-
tion and comments.

50. Document any operational assumptions made
by the software.

306

The CLASP Application Security Process

Guideline

Notes

OBJECT-ORIENTED PROGRAMMING

51. Specify classinvariants for each field. If no
support for run-time invariant checking is
available, includeinvariant specificationsinthe
class comments.

52. Do not use public variables — use accessors
instead (particularly in mobile code/untrusted
environments).

CRYPTOGRAPHY

53. All protocols and algorithms for authentication
and secure communication should be well vet-
ted by the cryptographic community.

54. Do not use stream ciphers for encryption.

55. Perform Message integrity checking by using a
“combined mode of operation,” or aMAC
based on a block cipher.

56. Do not use key sizes less than 128 hits or cryp-
tographic hash functions with output sizes less
than 160 bits.

UNI X-SPECIFIC

57. Do not use the same signal handler to handle
multiple signals.

58. Do not do 1/0 or call complex functionality
from asignal handler.

WINDOWS-SPECIFIC

59. Do not use Windows user-interface APIs for
windows (even invisible ones) and message
loops from services running with elevated priv-

ileges.

The CLASP Application Security Process

307

Guideline

Notes

C,

C++, PERL, PYTHON, PHP

60.

Avoid use of any functionsthat areinthe RATS
database.

C AND C++

61.

Do not omit types or explicitly circumvent the
type system with liberal use of void * — use
the type checker to the utmost advantage.

62.

Use areasonabl e abstraction for string handling
— such as the standard string classin C++ or
SafeStrin C.

63.

For formatted /O functions, use static format
strings defined at the call site.

64.

When deciding how much memory to allocate,
check for wrap-around conditions and error if
they occur.

65.

Check to see if memory allocation or realloca-
tion fails; abort if it does.

66.

Do not stack-allocate arrays or other large
objects.

67.

Do not create your own variable argument
functions.

68.

Be wary of multi-byte character functionality
— such strings are twice as large as the number
of characters, and sometimes larger.

JAVA MOBILE CODE

69.

Keep privileged code blocks private.

70.

Do not use public static variables, unless also
declared final.

71.

Protect packages against class insertion attacks.

72.

Use the transient keyword when serializing
files, sockets, and other datathat cannot survive
aseridize.

308

The CLASP Application Security Process

Guideline

Notes

73. Have classes define their own deserialization
routines and have them validate under the
assumption that an attacker has modified the
input bytes.

WEB APPLICATIONS

74. Do not pass secret datain forms or URLS.

75. Do not pass secret datain cookies without hav-
ing the server encrypt and integrity-protect the
cookie first.

76. Ensure that session |1Ds are randomly chosen
and contain an adequate security level (64 bits).

77. Do not trust the validity of the “ Referrer”
header or any other HTTP header.

78. Provide reasonabl e time-outs on sessions.

79. Ensure SSL protection for account creation
and any financial transactions, with a publicly
verifiable SSL certificate.

GENERIC MOBILE/UNTRUSTED CODE ENVI

RONMENTS

80. Do not pass around object references beyond
class boundaries. Instead, do a deep copy of
data structures when they are requested.

81. Only make methods public or protected when
absolutely necessary.

The CLASP Application Security Process

309

System Assessment Worksheets

Thisdocument isinspired in part by NIST Specia Publication 800-26: Security
Self-Assessment Guide for Information Technology Systems. This publication
provides a more fine-grained |ook at some of the management issues in devel-
opment. While good for a self-assessment, it is a bit too detailed for many situa-
tions when dealing with a third-party vendor. In addition, it does not capture
some information vital to CLASP.

310

The CLASP Application Security Process

APPLICATION ASSESSMENT OVERVIEW WORKSHEET

INITIATION DATE

COMPLETION DATE

APPLICATION NAME

APPLICATION VERSION

UNIQUE IDENTIFIER

PURPOSE OF
ASSESSMENT

TRUST BOUNDARIES

DESCRIPTION OF
FUNCTIONALITY

LIST OF COMPONENT #
SYSTEMS

LIST OF CONNECTED B
SYSTEMS

The CLASP Application Security Process

311

PRIMARY SYSTEM POC

E-MAIL

PHONE

CITY, STATE, ZIP

Www

OTHER SYSTEM POC

E-MAIL

PHONE

CITY, STATE, ZIP

WwWWwW

ASSESSMENT RESULTS OVERVIEW

TODO: FILL THISIN.

a XXX.
b. XXX.

Please attach the following documentation to the system assessment, when pos-
sible:

* Architecture diagrams.

* Most recent complete assessment reports for design and implementation.

* Relevant secure coding guidelines.

» Operationa security guide for the system.

* Any security documentation, such as architectural security document.

312

The CLASP Application Security Process

SYSTEM ASSESSMENT COVER PAGE

INITIATION DATE

COMPLETION DATE

SYSTEM NAME

SYSTEM VERSION

UNIQUE IDENTIFIER

SYSTEM VENDOR

TARGET SYSTEM OS(ES)

TARGET SYSTEM
PLATFORM(S)

SYSTEM DESCRIPTION

THIRD-PARTY
DEPENDENCIES

ROLES WITHIN SYSTEM

BOUNDARY CONTROLS
FOR CONNECTED
COMPONENTS

NOTES

The CLASP Application Security Process

313

Development Process and Organization

Concern

Guidance

Answer

ARE THERE
PERIODIC RISK
ASSESSMENTS OF
THE SYSTEM?

ARE RISK
ASSESSMENTS
PERFORMED ON
THE DESIGN?
IF SO, WHO » | Indicate team mem-
PERFORMS THEM ber, contractor, inde-
pendent audit group.
IF SO, WHAT
METHOD IS USED?
Please attach the most
MOST RECENT recent architectural
ARCHITECTURAL assessment, and/or
ASSESSMENT endorsement from
(VERSI’?N AND third party, if applica-
DATE)~ ble.
ARE RISK
ASSESSMENTS

PERFORMED ON
THE

IMPLEMENTATION
?

Indicate team mem-

IF sO, WHO 5 ber, contractor, inde-

PERFORMS THEM pendent audit group. If
contractor, specify
firm.

IF SO, WHAT

METHOD IS USED?

314

The CLASP Application Security Process

Please attach the most

MOST RECENT recent architectural
IMPLEMENTATION | aesecsment, and/or
ASSESSMENT endorsement from
(VERSION AND third party, if applica-
DATE)? ble.

ARE AUTOMATED

TOOLS USED IN
IMPLEMENTATION
ASSESSMENT?

Please specify yes or
no, and the tool
name(s), if yes.

WHAT VERSION
CONTROL AND
BUG TRACKING
SYSTEMS DOES
THE TEAM USE
FOR TRACKING
SECURITY
DEFECTS?

DO YOU USE A

STANDARD

SECURITY

AWARENESS

PROGRAM FOR If so0, please attach cur-
YOUR riculum, or provide an
DEVELOPMENT overview of topic areas
TEAM? covered.

IF SO, THE

DURATION OF THE

PROGRAM.

HOW OFTEN DO
TEAM MEMBERS
RECEIVE
REFRESHERS?

WHICH TEAMS
HAVE RECEIVED
TRAINING?

One or more of: Archi-
tect/designers, devel-
opers, testers,
managers.

The CLASP Application Security Process

315

WHAT PERCENT
OF THE PRODUCT
TEAM HAS BEEN
THROUGH A
SECURITY
AWARENESS
PROGRAM?

WHAT
ACCOUNTABILITY
MEASURESARE IN
PLACE FOR
SECURITY
FLAWS?

DO YOU ENFORCE
SECURE CODING
STANDARDS?

If s0, please attach
standards, and detail
how they are enforced
within your organiza-
tion.

WHAT
DISTRIBUTION
MECHANISM(S)
DO YOU USE FOR
MAJOR
SOFTWARE
UPDATES?

WHAT
DISTRIBUTION
MECHANISM(S)
DO YOU USE FOR
INCREMENTAL
UPDATES?

WHAT SECURITY
RISKS DEEMED
ACCEPTABLE ARE
PRESENT IN THE
ASSESSED
VERSION OF THE
SYSTEM?

316

The CLASP Application Security Process

Do YOu HAVE
INTERNAL
PROCESS FOR
RESPONDING TO
SECURITY
INCIDENTS?

WHAT IS THE
MAXIMUM
EXPECTED TIME
FROM PRIVATE
DISCLOSURE TO
AVAILABLE FIX?

WHAT IS THE
MAXIMUM
EXPECTED TIME
FROM PUBLIC
DISCLOSURE TO
AVAILABLE FIX?

How DO You
NOTIFY
CUSTOMERS OF
SECURITY
INCIDENTS?

WHAT SECURITY
RISKSHAVE BEEN
FOUND IN YOUR
SYSTEM
PREVIOUSLY?

ARE THERE ANY
OUTSTANDING
SECURITY RISKS
KNOWN TO BE IN
THE SYSTEM?

This should not
include those risks that
wereexplicitly deemed
acceptable above.

WHAT IS YOUR
CORPORATE
POLICY FOR
PRODUCT
MAINTENANCE?

Particularly, specify
the point where you
will no longer support
the product with secu-
rity updates.

The CLASP Application Security Process

317

WHAT PROCESS
DO YOU USE FOR

Please list relevant
techniques used,
including red teaming,

SECURITY fuzing, fault injection

TESTING? and dynamic web app
testing.

DOES THE

SYSTEM HAVE

AVAILABLE

GUIDANCE FOR
OPERATIONAL
SECURITY?

If yes, please attach to
this document.

DOES YOUR
SYSTEM PROVIDE
MECHANISMSFOR
DATA RECOVERY
OR
REDUNDANCY ?

WHAT ARE THE
CONFIGURABLE
SECURITY
OPTIONSIN THE
SYSTEM; WHAT
ARE THEIR
DEFAULT
SETTINGS?

WHAT USER
ACCOUNTS ARE
INSTALLED IN
THE SYSTEM BY
DEFAULT, WHAT
ISTHE DEFAULT
AUTHENTICATION
PROCESS; HOW IS
THIS UPDATED?

318

The CLASP Application Security Process

System Resources

Inthissection, list al of the distinct resources that this system usesinternally or
exports and denote measures taken to promote security goals, where appropri-

ate.

Resource

Security measures

Authentication®:
Confidentiality:
Data integrity:
Access control:
Non-repudiation:
Accountability:

Authentication:
Confidentiality:
Data integrity:
Access control:
Non-repudiation:
Accountability:

Authentication:
Confidentiality:
Data integrity:
Access control:
Non-repudiation:
Accountability:

Authentication:
Confidentiality:
Data integrity:
Access control:
Non-repudiation:
Accountability:

The CLASP Application Security Process

319

Resource Security measures

Authentication:
Confidentiality:
Data integrity:
Access control:
Non-repudiation:
Accountability:

Authentication:
Confidentiality:
Data integrity:
Access control:
Non-repudiation:
Accountability:

Authentication:
Confidentiality:
Data integrity:
Access control:
Non-repudiation:
Accountability:

Authentication:
Confidentiality:
Data integrity:
Access control:
Non-repudiation:

Accountability:

a. Entity authentication. Use “dataintegrity” field for ongoing message authentication mecha-
nism. Here, specify:

mutual or one-way;

number of factors;

actua authentication mechanism; and
how authentication channel is protected.

320 The CLASP Application Security Process

Network Resource Detail

On this page, specify the ports and protocols that are used by the system, denot-
ing the individual resources that may be accessed or sent through that channel.
Additionally, specify operational security assumptions— such as whether the
port is expected to be behind afirewall, expected to communicate with only a

particular piece of software, etc.

Port

Protocols Resources

Notes

The CLASP Application Security Process

321

File System Usage Detail

In this section, detail which resources on the file system can be used by the pro-
gram. For each file or directory, indicate the privileges needed (e.g., owner,
administrator), the type of access required (read, write, execute, etc.), and an
indication of whether the resource has special security measures taken for confi-
dentiality, integrity, and other security services.

The datain this table can be used to establish a sandboxing or monitoring envi-
ronment.

Fileor Directory Zre'gg;jga Type of Access | Security Measures

322

The CLASP Application Security Process

The CLASP Application Security Process 323

Registry Usage (Microsoft Windows Environment)

For programs running in a Microsoft Windows environment, indicate registry
resources that are used by the system, along with the owner, actions that may be
taken on the key (read, write, delete, etc.), and notes on the security relevance of

the key.

Registry Key Owner Type of Access | Notes

324

The CLASP Application Security Process

The CLASP Application Security Process 325

326 The CLASP Application Security Process

APPENDIX C

Glossary of Terms

This glossary contains alist of terms relevant to application security. Thetermsin this
glossary are not specific to material found in the CLASP process.

3DES

Access Control
List

ACL

Active attack

Advanced
Encryption
Standard

AES
Anti-debugger

Anti-tampering

Architectural
security assess-
ment

See: Triple DES

A list of credentials attached to a resource indicating whether or not the cre-
dentials have access to the resource.

Access Control List

Any network-based attack other than simple eavesdropping — i.e., apassive
attack).

A fast general-purpose block cipher standardized by NIST (the National
Institute of Standards and Technology). The AES selection process was a
multi-year competition, where Rijndael was the winning cipher.

See: Advanced Encryption Sandard

Referring to technology that detects or thwarts the use of a debugger on a
piece of software.

Referring to technology that attempts to thwart the reverse engineering and
patching of a piece of software in binary format.

See: Threat Model.

The CLASP Application Security Process

327

ASN.1

Asymmetric
cryptography

Audit

Audit log
Authenticate-

and-encrypt

Authenticate-
then-encrypt

Authentication
Backdoor

Base 64 encod-
ing
Big endian

Birthday attack

Abstract Syntax Notation is alanguage for representing data objects. Itis
popular to use thisin specifying cryptographic protocols, usually using DER
(Distinguished Encoding Rules), which alows the data layout to be unam-
biguously specified.

See also: Distinguished Encoding Rules.

Cryptography involving public keys, as opposed to cryptography making use
of shared secrets.

See also: Symmetric cryptography.

In the context of security, areview of asystem in order to validate the secu-

rity of the system. Generally, this either refersto code auditing or reviewing
audit logs.

See also: Audit log; code auditing.
Records that are kept for the purpose of later verifying that the security prop-
erties of a system have remained intact.

When using acipher to encrypt and aMA C to provide message integrity, this
paradigm specifies that one authenticates the plaintext and encrypts the
plaintext, possibly in parallel. Thisis not secure in the general case.

See also: Authenticate-then-encrypt; encrypt-then-authenticate.

When using acipher to encrypt and aMA C to provide message integrity, this
paradigm specifies that one authenticates the plaintext and then encrypts the
plaintext concatenated with the MAC tag. Thisis not secure in the generd
case, but usually works well in practice.

See also: Authenticate-and-encrypt, Encrypt-then-authenticate.
The process of verifying identity, ownership, and/or authorization.

Malicious code inserted into a program for the purposes of providing the
author covert access to machines running the program.

A method for encoding binary datainto printable ASCII strings. Every byte
of output mapsto six bits of input (minus possible padding bytes).

Refers to machines representing words most significant bytefirst. While x86
machines do not use big endian byte ordering (instead using little endian),
the PowerPC and SPARC architectures do. Thisis aso network byte order.

See also: Little endian.
Take a function f() that seemsto map an input to arandom output of some
fixed size (a pseudo-random function or PRF). A birthday attack is simply

selecting random inputs for f() and checking to seeif any previous values
gave the same output. Statistically, if the output sizeis S bits, then one can

find a collision in 252 operations, on average.

The CLASP Application Security Process

Bit-flipping
attack

Blacklist

Blinding
Block cipher

Blowfish

Brute-force
attack

Buffer overflow

CA
Canary

Capture-replay
attacks

Carter Wegmen
+ Counter mode

CASTS

CBC Mode

In a stream cipher, flipping a bit in the ciphertext flips the corresponding bit
in the plaintext. If using a message authentication code (MAC), such attacks
arenot practical.

When performing input validation, the set of items that — if matched —
result intheinput being considered invalid. If no invalid items are found, the
resultisvalid.

See also: Whitelist.
A technique used to thwart timing attacks.

An encryption algorithm that maps inputs of size n to outputs of sizen (nis
called the block size). Datathat is not avalid block size must somehow be
padded (generally by using an encryption mode). The same input always
produces the same output.

See also: Sream cipher.

A block cipher with 64-bit blocks and variable length keys, created by Bruce
Schneier. This cipher isinfamous for having slow key-setup times.

An attack on an encryption algorithm where the encryption key for a cipher-
text is determined by trying to decrypt with every key until valid plaintext is
obtained.

A buffer overflow iswhen you can put more datainto a memory location
than is allocated to hold that data. Languages like C and C++ that do no
built-in bounds checking are susceptible to such problems. These problems
are often security-critical.

See Certification Authority.

A piece of data, the absence of which indicates a violation of a security pol-
icy. Several tools use a canary for preventing certain stack-smashing buffer
overflow attacks.

See also: Buffer overflow; Sack smashing.

When an attacker can capture data off the wire and replay it later without the
bogus data being detected as bogus.

A parallelizable and patent-free high-level encryption mode that provides
both encryption and built-in message integrity.

A block cipher with 64-bit blocks and key sizes up to 128 hits. It is patent-
free, and generally considered sound, but modern algorithms with larger
block sizes are generally preferred (e.g., AES).

See also: AES.
See: Cipher Block Chaining mode.

The CLASP Application Security Process

329

CBC-MAC

CCM mode
Certificate

Certificate
Revocation List

Certificate Sign-
ing Request

Certification
Authority
CFB mode

Chain responder

Choke point

chroot

Cipher-Block
Chaining mode

Cipher Feed-
back mode

A simple construction for turning a block cipher into a message authentica-
tion code. It only is secure when all messages MAC'd with asingle key are
the same size. However, there are severa variants that thwart this problem,
the most important being OMAC.

See also; OMAC.
See: Counter mode + CBC-MAC.

A data object that binds information about a person or some other entity to a
public key. The binding is generally done using adigital signature from a
trusted third party (acertification authority).

A list published by a certification authority indicating which issued certifi-
cates should be considered invalid.

Data about an entity given to a certification authority. The authority will
package the data into a certificate and sign the certificateif the datain the
signing request is validated.

An entity that manages digital certificates— i.e., issues and revokes. Veri-
sign and InstantSSL are two well known CAs.

See: Cipher Feedback mode.

An OCSP responder that relays the results of querying another OCSP
responder.

See also: OCSP.

In computer security, aplace in asystem where input is routed for the pur-
poses of performing data validation. The implication is that there are few
such placesin asystem and that all datamust pass through one or more of the
choke points. Theideais that funneling input through a small number of
choke points makes it easier to ensure that input is properly validated. One
potential concern isthat poorly chosen choke points may not have enough
information to perform input validation that is as accurate as possible.

A UNIX system call that sets the root directory for a process to any arbitrary
directory. The ideais compartmentalization: Even if aprocessis compro-
mised, it should not be able to see interesting parts of the file system beyond
its own little world. There are some instances where chroot

& quot;jails& quot; can be circumvented; it can be difficult to build proper
operating environments to make chroot work well.

A block cipher mode that provides secrecy but not message integrity. Mes-
sages encrypted with this mode should have random initialization vectors.

A mode that turns ablock cipher into a stream cipher. Thismode is safe only
when used in particular configurations. Generally, CTR mode and OFB
mode are used instead since both have better security bounds.

The CLASP Application Security Process

Ciphertext

Ciphertext steal-
ing mode

Code auditing

Code signing

Compartmental-
ization

Context object

Counter mode

Counter mode +
CBC-MAC

CRAM

CRC

The result of encrypting a message.
See: Plaintext.

A block cipher mode of operation that issimilar to CBC mode except that the
fina block is processed in such away that the output is always the same
length asthe input. That is, this mode is similar to CBC mode but does not
require padding.

See also: Cipher Block Chaining mode; Padding.
Reviewing computer software for security problems.
See also: Audit.

Signing executable code to establish that it comes from atrustworthy vendor.
The signature must be validated using atrusted third party in order to estab-
lish identity.

Separating a system into parts with distinct boundaries, using simple, well-
defined interfaces. The basic ideaisthat of containment — i.e., if one part is
compromised, perhaps the extent of the damage can be limited.

See also: Jail; Chroot.

In a cryptographic library, a data object that holds the intermediate state
associated with the cryptographic processing of a piece of data. For example,
if incrementally hashing a string, a context object stores the internal state of
the hash function necessary to process further data.

A parallelizable encryption mode that effectively turns a block cipher into a
stream cipher. It isapopular component in authenticated encryption schemes
dueto its optimal security bounds and good performance characteristics.

An encryption mode that provides both message secrecy and integrity. It was
the first such mode that was not covered by patent.

A password-based authenti cation mechanism using a cryptographic hash
function (usually MD5). It does not provide adequate protection against sev-
eral common threats to password-based authentication systems. HTTP
Digest Authentication isasomewhat better alternative; it isreplacing CRAM
in most places.

Cyclic Redundancy Check. A means of determining whether accidental
transmission errors have occurred. Such algorithms are not cryptographically
secure because attackers can often forge CRC values or even modify data
maliciously in such away that the CRC value does not change. Instead, one
should use a strong, keyed message authentication code such as HMAC or
OMAC.

See also: HMAC, Message Authentication Code; OMAC.

The CLASP Application Security Process

331

Critical exten-
sions

CRL

Cross-site
scripting

Cryptanalysis

Cryptographic
hash function

Cryptographic
randomness

Cryptography
CSR
CSsSs

CTR mode
CWC mode
DACL

Davies-Meyer

Default deny

In an X.509 certificate, those extensions that must be recognized by any soft-
ware processing the certificate. If a piece of software does not recognize an
extension marked as critical, the software must regard the certificate as
invalid.

See: Certificate Revocation List.

A class of problems resulting from insufficient input validation where one
user can add content to aweb site that can be malicious when viewed by
other users to the web site. For example, one might post to a message board
that accepts arbitrary HTML and include a malicious code item.

The science of breaking cryptographic algorithms.

A function that takes an input string of arbitrary length and produces a fixed-
size output — where it is unfeasible to find two inputs that map to the same
output, and it is unfeasible to learn anything about the input from the outpui.

Data produced by a cryptographic pseudo-random number generator. The
probability of figuring out the internal state of the generator is related to the
strength of the underlying cryptography — i.e., assuming the generator is
seeded with enough entropy.

The science of providing secrecy, integrity, and non-repudiation for data.
See: Certificate Sgning Request.

Cross-site scripting. Generally, however, thisis abbreviated to XSS in order
to avoid confusion with cascading style sheets.

See: Cross-site scripting.
See: Counter mode.
See: Carter Wegmen + Counter mode.

Discretionary Access Control List. InaWindows ACL, alist that determines
access rights to an object.

See also: Access Control List.

An algorithm for turning a block cipher into a cryptographic one-way hash
function.

A paradigm for access control and input validation where an action must
explicitly be allowed. The idea behind this paradigm is that one should limit
the possihilities for unexpected behavior by being strict, instead of lenient,
with rules.

The CLASP Application Security Process

Defense-in- A principle for building systems stating that multiple defensive mechanisms

depth at different layers of a system are usually more secure than asingle layer of
defense. For example, when performing input validation, one might validate
user dataasit comesin and then also validate it before each use — just in
case something was not caught, or the underlying components are linked
against a different front end, etc.

DEK Data encrypting key.

DeltaCRLs A variation of Certificate Revocation Lists that allows for incremental updat-
ing, as an effort to avoid frequently re-downloading a large amount of
unchanged data.

See also: Certificate Revocation List.

Denial of ser- Any attack that affects the availability of a service. Reliability bugs that

vice attack cause a service to crash or go into some sort of vegetative state are usualy
potential denial-of-service problems.

DES The Data Encryption Standard. An encryption algorithm standardized by the

US Government. The key length istoo short, so this algorithm should be
considered insecure. The effective key strength is 56 bits; the actual key size
is 64 bits— 8 bhits are wasted. However, there are variations such as Triple
DES and DESX that increase security while also increasing the key size.

See also: Advanced Encryption Sandard; Triple DES.

DESX An extended version of DES that increases the resistance to brute-force
attack in ahighly efficient way by increasing the key length. The extra key
material is mixed into the encryption process, using XORs. This technique
does not improve resistance to differential attacks, but such attacks are still
generaly considered unfeasible against DES.

Seealso: DES.
Dictionary An attack against a cryptographic system, using precomputating valuesto
attack build a dictionary. For example, in a password system, one might keep adic-

tionary mapping ciphertext pairsin plaintext form to keysfor asingle plain-
text that frequently occurs. A large enough key space can render this attack
useless. In apassword system, there are similar dictionary attacks, which are
somewhat alleviated by salt. The end result is that the attacker — once he
knows the salt — can do a“ Crack” -style dictionary attack. Crack-style
attacks can be avoided to some degree by making the password verifier com-
putationally expensive to compute. Or select strong random passwords, or do
not use a password-based system.

The CLASP Application Security Process 333

Differential
cryptanalysis

Diffie-Hellman
key exchange

Digest size
Digital signature

Digital Signa-
ture Algorithm

Distinguished
Encoding Rules

Distinguished
Name

DN
DoS

DSA

Eavesdropping
attack

ECB Mode
ECC

A type of cryptographic attack where an attacker who can select related
inputs|earnsinformation about the key from comparing the outputs. Modern
ciphers of merit are designed in such away as to thwart such attacks. Also
note that such attacks generally require enough chosen plaintexts asto be
considered unfeasible, even when there is a cipher that theoretically falls
prey to such a problem.

A method for exchanging a secret key over an untrusted mediumin such a
way asto preserve the secrecy of the key. The two parties both contribute
random data that factors into the final shared secret. The fundamental prob-
lem with this method is authenticating the party with whom you exchanged
keys. The simple Diffie-Hellman protocol does not do that. One must also
use some public-key authentication system such as DSA.

See also: DSA; Sation-to-station protocol.
The output size for a hash function.

Datathat proves that a document (or other piece of data) was not modified
since being processed by a particular entity. Generally, what this really
meansisthat — if someone ‘signs’ a piece of data— anyone who has the
right public key can demonstrated which private key was used to sign the
data.

See: DSA

A set of rules used that describes how to encode ASN.1 data objects unam-
biguously.

See also: ASN.1.

In an X.509 certificate, afield that uniquely specifiesthe user or group to
which the certificate is bound. Usually, the Distinguished Name will contain
auser’'s nameor User D, an organizational name, and a country designation.
For aserver certificate, it will often contain the DNS name of the machine.

See: Distinguished Name.
Denia of Service.
See also: Denial of service attack.

The Digital Signature Algorithm, a public key algorithm dedicated to digital
signatures which was standardized by NIST. It is based on the same mathe-
matical principles as Diffie-Hellman.

Any attack on a data connection where one simply records or views data
instead of tampering with the connection.

See: Electronic Code Book mode.
See: Eliptic Curve Cryptography.

The CLASP Application Security Process

EGD See: Entropy Gathering Daemon.

ElectronicCode An encryption mode for block ciphersthat is more or less a direct use of the

Book mode underlying block cipher. The only differenceis that a message is padded out
to amultiple of the block length. This mode should not be used under any
circumstances.

Eliptic Curve A type of public key cryptography that — due to smaller key sizes— tends

Cryptography to be more efficient that standard cryptography. The basic algorithms are
essentially the same, except that the operations are performed over different
mathematical groups (called dliptic curves).

EME-OAEP A padding scheme for public key cryptography that uses a“random” value
padding generated, using a cryptographic hash function in order to prevent particular
types of attacks against RSA.

See also: PKCS#1 padding.

Encrypt-then- When using acipher to encrypt and aMA C to provide message integrity, this

authenticate paradigm specifiesthat one encryptsthe plaintext, then MACsthe ciphertext.
This paradigm has theoretically appealing properties and is recommended to
usein practice.

See also: Authenticate-and-encrypt; Authenticate-then-encrypt.

Endianess The byte ordering scheme that a machine uses (usualy either little endian or
big endian).
See also: Big endian; Little endian.

Entropy Refersto the inherent unknowability of data to external observers. If abitis

just aslikely to beal asa0 and auser does not know whichit is, then the bit
contains one bit of entropy.

Entropy Gather- A substitute for /dev/random; atool used for entropy harvesting.
ing Daemon

Entropy har- A piece of software responsible for gathering entropy from a machine and
vester distilling it into small pieces of high entropy data. Often an entropy harvester
will produce a seed for a cryptographic pseudo-random number generator.

See also: Entropy; Pseudo-random number generator.

Ephemera key- Using one-time public key pairsfor session key exchange in order to prevent
ing recovering previous session keysif aprivate key is compromised. Long-term
public key pairs are still used to establish identity.

Euclidian algo- An algorithm that computes the greatest common divisor of any two num-
rithm bers.

Extended An algorithm used to compute the inverse of a number modulo “some other
Euclidian algo- number.”
rithm

The CLASP Application Security Process 335

Fingerprint

FIPS
FIPS-140

Format string
attack

Forward secrecy

Hash function

Hash function
(cryptographic)
Hash function
(one-way)

Hash function
(universal)

Hash output
Hash value

hash127
HMAC

IDEA

I dentity estab-
lishment

The output of a cryptographic hash function.
See also: Message digest.
Federal Information Processing Standard; a set of standards from NIST.

A standard authored by the U.S. National Institute of Standards and Technol-
ogy, that details general security requirements for cryptographic software
deployed in a government systems (primarily cryptographic providers).

See also: NIST; FIPS

The C standard library uses specifiersto format output. If an attacker can
control theinput to such aformat string, he can often write to arbitrary mem-
ory locations.

Ensuring that the compromise of a secret does not divulge information that
could lead to data protected prior to the compromise. In many systems with
forward secrecy, it is only provided on a per-session basis, meaning that a
key compromise will not affect previous sessions, but would allow an
attacker to decrypt previous messages sent as a part of the current session.

See also: Perfect forward secrecy.

A function that maps a string of arbitrary length to afixed sizevalueina
deterministic manner. Such afunction may or may not have cryptographic
applications.

See also: Cryptographic hash function; Universal hash function; One-way
hash function.

See: Cryptographic hash function.

See: One-way hash function.

See: Universal hash function.

See: Hash value.

The output of a hash function.

See also: Fingerprint; Message digest.

A fast universal hash function from Dan Bernstein.

A well-known algorithm for converting a cryptographic one-way hash func-
tion into a message authentication code.

A block cipher with 128-bit keys and 64-bit blocks popularly used with PGP,
It is currently protected by patents.

Authentication.

The CLASP Application Security Process

|EEE P1363

Indirect CRLS

Initialization
vector

Input validation
Integer overflow

Integrity check-
ing

Interleaved
encryption
v

Jail

Kerberos

Key agreement

Key establish-
ment

Key exchange

Key manage-
ment

An |EEE standard for eliptic curve cryptography. Implementing the standard
requires licensing patents from Certicom.

A CRL issued by athird party, that can contain certificates from multiple
CA's.
See also: Certificate, Certificate Revocation List; Certification Authority.

A value used to initialize a cryptographic algorithm. Often, theimplicationis
that the value must be random.

See also: Nonce; Salt.
The act of determining that data input to a program is sound.

When an integer valueis too big to be held by its associated data type, the
results can often be disastrous. Thisis often a problem when converting
unsigned numbers to signed values.

The act of checking whether amessage has been modified either maliciously
or by accident. Cryptographically strong message integrity algorithms
should always be used when integrity isimportant.

Processing the encryption of a message as multiple messages, generaly
treating every nth block as part of a single message.

See: Initialization vector.

A restricted execution environment meant to compartmentalize a process, so
that — even if it has security problems — it cannot hurt resources which it
would not normally have accessto use. On FreeBSD, a system call similar to
chroot that provides compartmentalization. Unlike chroot, it can also restrict
network resources in addition to file system resources.

See also: Chroot.

“An authentication protocol that relies solely on symmetric cryptography, as
opposed to public key cryptography. It still relies on atrusted third party (an
authentication server). While Kerberos is often looked upon asaway to
avoid problems with Public Key Infrastructure, it can be difficult to scale
Kerberos beyond medium-sized organizations.

See also: Public Key Infrastructure; Trusted third party.

The process of two parties agreeing on a shared secret, where both parties
contribute materia to the key.

The process of agreeing on a shared secret, where both parties contribute
material to the key.

The process of two parties agreeing on a shared secret, usually implying that
both parties contribute to the key.

M echanisms and process for secure creation, storage, and handling of key
material.

The CLASP Application Security Process

337

Key schedule

Key transport
Keystream

LDAP

Length exten-
sion attack

LFSR

Linear cryp-
tanalysis

Linear Feedback

Shift Register

Little endian

MAC

Man-in-the-
middle attack

Matyas-Meyer-
Oseas

MCF

In ablock cipher, keys used for individua “rounds’ of encryption, derived
from the base key in a cipher-dependent manner.

When one party picks a session key and communicates it to a second party.
Output from a stream cipher.
See also: Pseudo-random number generator; Sream cipher.

Lightweight Directory Access Protocol. A directory protocol commonly
used for storing and distributing CRLs.

A class of attack on message authentication codes, where atag can be forged
without the key by extending a pre-existing message in a particular way.
CBC-MAC initssimplest form hasthis problem, but variants protect against
it (particularly OMAC).

See also: Message Authentication Code; OMAC.
See: Linear feedback shift register.

A type of cryptanalytic attack where linear approximations of behavior are
used. Modern ciphers of merit are designed in such away asto thwart such
attacks. Also note that such attacks generally require enough chosen plain-
texts as to be considered unfeasible — even when there is a cipher that theo-
retically falls prey to such a problem (such as DES).

A non-cryptographic class of pseudo-random number generators, where out-
put is determined by shifting out & quot;output& quot; bits and shifting in

& quot;input& quot; bits, where the input bits are afunction of the internal
state of the register, perhaps combined with new entropy. LFSRs are based
on polynomial math, and are not secure in and of themselves; however, they
can be put to good use as a component in more secure cryptosystems.

Refers to machines representing words of data least significant byte first,
such asthe Intel x86.

See also: Big endian.
See: Message authentication code.

An eavesdropping attack where a client’s communication with a server is
proxied by an attacker. Generally, theimplication isthat the client performsa
cryptographic key exchange with an entity and fails to authenticate that
entity, thus allowing an attacker to look like avalid server.

A construction for turning a block cipher into a cryptographic one-way hash
function.

The Modular Crypt Format, a de-facto data format standard for storing pass-
word hashes commonly used on UNIX boxes as a replacement for the tradi-
tional UNIX crypt() format.

338

The CLASP Application Security Process

MD-strengthen-
ing

MD2

MDA4

MD5

MD5-MCF

MDC2

Meet-in-the-
middle attack

Message
Authentication
Code

Message digest
Message integ-
rity
Miller-Rabin

Modulus

Near-collision
resistance

Merkel-Damgard strengthening, a general method for turning a collision-
resistant compression function into a collision-resistant hash function by
adding padding and an encoded length to the end of the input message. The
key point behind MD-strengthening is that no possible input to the underly-
ing hash function can be the tail end of a different input.

A cryptographic hash function optimized for 16-bit platforms. It has poor
performance characteristics on other platforms and has aweak internal struc-
ture.

A cryptographic hash function that is known to be broken and should not be
used under any circumstances.

A popular and fast cryptographic hash function that outputs 128-bit message
digests. Itsinternal structureisknown to be weak and should be avoided if at
all possible.

A way of using MD5 to store password authentication information, using the
modular crypt format.

See also: MCF, MD5.

A construction for turning ablock cipher into a cryptographic hash function,
where the output length is twice the block size of the cipher.

A theoretical attack against encrypting a message twice using a single block
cipher and two different keys. For example, double encryption with DES the-
oretically is no more secure than DES, which iswhy Triple DES became
popular (it gives twice the effective key strength).

A function that takes a message and a secret key (and possibly a nonce) and
produces an output that cannot, in practice, be forged without possessing the
secret key.

The output of a hash function.

A message has integrity if it maintains the value it is supposed to maintain,
as opposed to being modified on accident or as part of an attack.

A primality test that is efficient becauseit is probabilistic, meaning that there
is some chance it reports a composite (non-prime) number as a prime. There
is atrade-off between efficiency and probability, but one can gain extremely
high assurance without making unreasonabl e sacrificesin efficiency.

In the context of public key cryptography, avalue by which all other values
arereduced. That is, if anumber is bigger than the modulus, the value of the
number is considered to be the same as if the number were the remainder
after dividing the number by the modulus.

Given aplaintext value and the corresponding hash value, it should be com-
putationally unfeasible to find a second plaintext value that gives the same
hash value.

The CLASP Application Security Process

339

NIST

Non-repudiation

Nonce

OCB mode
OCSP
OCSP responder

OFB mode

Offset Code
Book mode

OMAC

One-time pad

One-time pass-
word

One-way hash
function
Online Certifi-
cate Status Pro-
tocol

Output Feed-
back mode

The National Institute of Standards and Technology isadivision of the U.S.
Department of Commerce. NIST issues standards and guidelines, with the
hope that they will be adopted by the computing community.

The capability of establishing that a message was signed by a particular
entity. That is, amessage is said to be non-repudiable when a user sendsiit,
and one can prove that the user sent it. In practice, cryptography can demon-
strate that only particular key material was used to produce amessage. There
are always legal defenses such as stolen credentials or duress.

A value used with a cryptographic algorithm that must be unique in order to
maintain the security of the system. Generally, the uniqueness requirement
holds only for asingle key — meaning that a{ key, nonce} pair should never
be reused.

See also: |nitialization vector, salt.

See: Offset Code Book mode.

See: Online Certificate Satus Protocol.

The server side software that answers OCSP requests.

See also: Online Certificate Satus Protocol.

See: Output Feedback mode.

A patented encryption mode for block ciphersthat provides both secrecy and
message integrity and is capable of doing so at high speeds.

One-key CBC-MAC. A secure, efficient way for turning a block cipher into
amessage authentication code. It is an improvement of the CBC-MAC,
which is not secure in the arbitrary case. Other CBC-MAC variants use mul-
tiple keysin order to fix the problem with CBC-MAC. OMAC usesasingle
key and till has appealing provable security properties.

A particular cryptographic system that is provably securein some sense, but
highly impractical, because it requires a bit of entropy for every bit of mes-
sage.

A password that is only valid once. Generally, such passwords are derived
from some master secret — which is shared by an entity and an authentica-
tion server — and are calculated via a challenge-response protocol.

A hash function, where it is computationally unfeasible to determine any-
thing about the input from the output.

A protocol for determining whether adigital certificateisvalidin rea time
without using CRLs. This protocol (usually abbreviated OCSP) is specified
in RFC 2560.

A block cipher mode that turns ablock cipher into a stream cipher. The mode
works by continually encrypting the previous block of keystream. The first
block of keystream is generated by encrypting an initialization vector.

The CLASP Application Security Process

Padding

Partial collision
resistance

Passive attack

Passphrase

Password
PBKDF2

PEM encoding

Perfect forward
secrecy

PKCS#1

PKCS#1 pad-
ding

PKCS#10
PKCS#11

PKCS#3

PKCS#5

Data added to a message that is not part of the message. For example, some
block cipher modes require messages to be padded to alength that is evenly
divisible by the block length of the cipher — i.e., the number of bytes that
the cipher processes at once.

Pluggable Authentication Modules is a technology for abstracting out
authentication at the host level. It issimilar to SASL, but isabit higher upin
the network stack and tends to be a much easier technology to use, particu-
larly for system administrators, who can configure authentication policies
quite easily using PAM.

Seealso: SASL.

When it is unfeasible to find two arbitrary inputs to a hash function that pro-
duce similar outputs — i.e., outputs that differ in only afew bits.

See: eavesdropping attack.

A synonym for “password,” meant to encourage people to use longer (itis
hoped, more secure) values.

A valuethat is used for authentication.

Password-Based Key Derivation Function #2. An algorithm defined in
PKCS#5 for deriving arandom value from a password.

A simple encoding scheme for cryptographic objects that outputs printable
values (by Base 64 encoding a DER-encoded representation of the crypto-
graphic object). The scheme wasfirst introduced in Privacy Enhanced Mail,
adefunct way of providing E-mail security.

Ensuring that the compromise of a secret does not divulge information that
could lead to the recovery of data protected prior to the compromise.

See also: Forward secrecy.

Public Key Cryptography Standard #1. A standard from RSA Labs specify-
ing how to use the RSA agorithm for encrypting and signing data.

Thisform of padding can encrypt messages up to 11 bytes smaller than the
modulus size in bytes. You should not use this method for any purpose other
than encrypting session keys or hash values.

Describes a standard syntax for certification requests.

Specifies a programming interface called Cryptoki for portable crypto-
graphic devices of al kinds.

Public Key Cryptography Standard #3. A standard from RSA Labs specify-
ing how to implement the Diffie-Hellman key exchange protocol.

Public Key Cryptography Standard #5. A standard from RSA L abs specify-
ing how to derive cryptographic keys from a password.

The CLASP Application Security Process

341

PKCS#7

PKI
Plaintext

PMAC

Precomputation
attack

Private key

Privilege sepa-
ration

PRNG

Pseudo-random
number genera-
tor

Public key

Public Key
Infrastructure

RA
Race condition

Public Key Cryptography Standard #7. A standard from RSA L abs specify-
ing a generic syntax for data that may be encrypted or signed.

See: Public Key Infrastructure.
An unencrypted message.
See also: Ciphertext.

The MAC portion of the OCB block cipher mode. It is a patented way of
turning a block cipher into a secure, paralelizable MAC.

Any attack that involves precomputing significant amounts of datain
advance of opportunities to launch an attack. A dictionary attack is acom-
mon precomputation attack.

Inapublic key cryptosystem, key material that is bound tightly to an individ-
ua entity that must remain secret in order for there to be secure communica-
tion.

A technique for trying to minimize the impact that a programming flaw can
have, where operations requiring privilege are separated out into a small,
independent component (hopefully audited with care). Generally, the compo-
nent isimplemented as an independent process, and it spawns off a non-priv-
ileged process to do most of the real work. The two processes keep open a
communication link, speaking a simple protocoal.

See: Pseudo-random number gener ator.

An algorithm that takes data and stretchesiit into a series of random-looking
outputs. Cryptographic pseudo-random number generators may be secure if
theinitial data contains enough entropy. Many popular pseudo-random num-
ber generators are not secure.

See also: Sream cipher.

In apublic key cryptosystem, the key material that can be published publicly
without compromising the security of the system. Generally, this material
must be published; its authenticity must be determined definitively.

A system that provides a means for establishing trust asto what identity is
associated with a public key. Some sort of Public Key Infrastructure (PK1) is
necessary to give reasonable assurance that one is communicating securely
with the proper party, even if that infrastructureis ad hoc.”

See: Registration Authority.

A class of error in environments that are multi-threaded or otherwise multi-
tasking, where an operation is falsely assumed to be atomic. That is, if two
operations overlap instead of being done sequentialy, there is somerisk of
the resulting computation not being correct. There are many cases where
such a condition can be security critical.

See also: TOCTOU problem.

The CLASP Application Security Process

Randomness

RC2
RC4

RC5

Registration
Authority

Rekeying
Related key
attack

Revocation

RIPEMD-160

RMAC

Rollback attack

Root certificate

A measure of how unguessable datais.
See also: Entropy.
A block cipher with variable key sizes and 64-hit blocks.

A widely used stream cipher that is relatively fast but with some significant
problems. One practical problem isthat it has aweak key setup algorithm,
though this problem can be mitigated with care. Another more theoretical
problem isthat RC4’s output is easy to distinguish from atruly random
stream of numbers. This problem indicates that RC4 is probably not a good
long-term choice for data security.

A block cipher that has several tunable parameters.

An organization that is responsible for validating the identity of entities try-
ing to obtain credentialsin a Public Key Infrastructure.

See also: Certification Authority; Public Key Infrastructure.
Changing a key in a cryptographic system.

A class of cryptographic attack where one takes advantage of known rela-
tionships between keys to expose information about the keys or the messages
those keys are protecting.

In the context of Public Key Infrastructure, the act of voiding adigital certif-
icate.

See also: Public Key Infrastructure; X.509 certificate.

A cryptographic hash function that is well regarded. It has a 160-bit output,
and isabit slower than SHA L.

A construction for making a Message Authentication Code out of a block
cipher. It is not generally secure in the way that OMAC is, and is generally
considered not worth using due to the existence of better alternatives.

See also: OMAC.

An attack where one forces communicating parties to agree on an insecure
protocol version.

A certificate that isintrinsically trusted by entitiesin a Public Key Infrastruc-
ture — generally should be transported over a secure medium. Root certifi-
cates belong to a Certification Authority and are used to sign other
certificates that are deemed to be valid. When a system tries to establish the
validity of acertificate, one of the first things that should happen is that it
should look for achain of trust to a known, trusted root certificate. That is, if
the certificate to be validated is not signed by aroot, one checks the certifi-
cate(s) used to sign it to determine if those were signed by aroot cert. Lather,
rinse, repeat.

See also: Public Key Infrastructure.

The CLASP Application Security Process

343

Round

RSA

RSASSA-PSS

S/Key

SMIME

SACL

SASL

Secret key
Secure Socket

Layer

Seed

Self-signed cer-
tificate

In ablock cipher, a group of operations applied as a unit that has an inverse
that undoes the operation. Most block ciphers define around operation and
then apply that round operation numerous times — though often applying a
different key for each round, where the round key is somehow derived from
the base key.

A popular public key algorithm for encryption and digital signatures
invented by Ron Rivest, Adi Shamir and Leonard Adleman. It is believed
that, if factoring large numbers is computationally unfeasible, then RSA can
be used securely in practice.

A padding standard defined in PK CS #1, used for padding data prior to RSA
signing operations.

A popular one-time password system.
See also: One-time password.

A protocol for secure electronic mail standardized by the IETF. It relies on
standard X.509-based Public Key Infrastructure.

System Access Control List. In Windows, the part of an ACL that determines
audit logging policy.

See also: Access Control List; DACL.

Datathat can be public but is used to prevent against precomputation attacks.
See also: Initialization vector; Nonce.

The Simple Authentication and Security Layer, which isamethod for adding
authentication services to network protocols somewhat genericaly. It isalso
capable of providing key exchange in many circumstances.

See: Symmetric key.

A popular protocol for establishing secure channels over areliable transport,
utilizing a standard X.509 Public Key Infrastructure for authenticating
machines. Thisprotocol has evolved into the TLS protocol, but the term SSL
is often used to generically refer to both.

See also: Transport Layer Security.
A value used to initialize a pseudo-random number generator.
See also: Entropy, initialization vector, Pseudo-random number generator.

A certificate signed by the private key associated with that certificate. In an
X.509 Public Key Infrastructure, all certificates need to be signed. Since root
certificates have no third-party signature to establish their authenticity, they
are used to sign themselves. In such a case, trust in the certificate must be
established by some other means.

The CLASP Application Security Process

Serpent

Session key

SHA-256
SHA-384
SHA-512
SHA1

Shared secret

Shatter attack

Single sign-on

Snooping
attacks

SNOW

SQL Injection

SSL
Stack smashing

A modern block cipher with 128-bit blocks and variable-sized keys. A final-
ist in the AES competition, Serpent has a higher security margin by design
than other candidates, and is abit Slower on typical 32-bit hardware asa
result.

See also; AES.

A randomly generated key used to secure a single connection and then dis-
carded.

A cryptographic hash function from NIST with 256-bit message digests.
SHA-512 with atruncated digest (as specified by NIST).
A cryptographic hash function from NIST with 512-bit message digests.

A fairly fast, well regarded hash function with 160-bit digests that has been
standardized by the National Ingtitute of Standards and Technology (NIST).

A value shared by parties that may wish to communicate, where the secrecy
of that value is an important component of secure communications. Typi-
cally, a shared secret is either an encryption key, aMAC key, or some value
used to derive such keys.

A class of attack on the Windows event system. The Windows messaging
system isfundamentally fragile from a security perspective becauseit allows
for arbitrary processesto insert control events into the message queue with-
out sufficient mechanisms for authentication. Sometimes messages can be
used to trick other applications to execute malicious code.

Single sign-on alows you to access all computing resources that you should
be able to reach by using a single set of authentication credentials that are
presented a single time per login session. Single sign-on is a notion for
improved usability of security systems that can often increase the security
exposure of asystem significantly.

Attacks where datais read off a network while in transit without modifying
or destroying the data.

A very fast stream cipher that is patent-free and seemsto have avery high
security margin.

When an attacker can cause malicious SQL code to run by maliciously mod-
ifying data used to compose an SQL command.

See Secure Socket Layer.

Overwriting areturn address on the program execution stack by exploiting a
buffer overflow. Generally, the implication isthat the return address gets
replaced with a pointer to malicious code.

See also: Buffer overflow.

The CLASP Application Security Process

345

Station-to-sta-
tion protocol

Stream cipher

Strong collision
resistance

Surreptitious
forwarding

Symmetric
cryptography
Symmetric key

Teg

Tamper-proof-
ing
Threat model

Time of check,
time of use
problem

TLS
TMAC

A simple variant of the Diffie-Hellman key exchange protocol that provides
key agreement and authenticates each party to the other. Thisis done by add-
ing digital signatures (which must be done carefully).

See also: Diffie-Hellman key exchange.

A pseudo-random number generator that is believed to be cryptographically
strong and always produces the same stream of output given the same initial
seed (i.e, key). Encrypting with a stream cipher consists of combining the
plaintext with the keystream, usually via XOR.

See also: Pseudo-random number generator.

Strong collision resistanceis a property that a hash function may have (and a
good cryptographic hash function will have), characterized by it being com-
putationally unfeasible to find two arbitrary inputs that yield the same out-
put.

See also: Hash function; Weak collision resistance.

An attack on some public key cryptosystems where amalicious user decrypts
adigitally signed message and then encrypts the message using someone
else’s public key: giving the end receiver the impression that the message
was originally destined for them.

Cryptography that makes use of shared secrets as opposed to public keys.

See: Shared secret.

The result of applying a keyed message authentication code to a message.
See also: Message Authentication Code.

See: Anti-tampering.

A representation of the system threats that are expected to be reasonable.
Thisincludes denoting what kind of resources an attacker is expected to
have, in addition to what kinds of things the attacker may be willing to try to
do. Sometimes called an architectural security assessment.

See: TOCTOU problem.

See: Transport Layer Security.

A two-keyed variant of the CBC-MAC that overcomes the fundamental lim-
itation of that MAC.

See also: Message Authentication Code; CBC-MAC; OMAC.

The CLASP Application Security Process

TOCTOU prob-
lem

Transport Layer
Security

Triple DES

Trojan
Trojan Horse

Trusted third
party

Twofish

UMAC

Universal hash
function

Time-of-check, time-of-use race condition. A type of race condition between
multiple processes on afile system. Generally what happensisthat asingle
program checks some sort of property on afile, and then in subsequent
instructions tries to use the resource if the check succeeded. The problemis
that — even if the use comesimmediately after the check — there is often
some significant chance that a second process can invalidate the check in a
malicious way. For example, a privileged program might check write privi-
leges on avalid file, and the attacker can then replace that file with asym-
balic link to the system password file.

See also: Race condition.

The successor to SSL, a protocol for establishing secure channels over areli-
able transport, using a standard X.509 Public Key Infrastructure for authenti-
cating machines. The protocol is standardized by the IETF.

See also: Secure Socket Layer.

A variant of the original Data Encryption Standard that doubles the effective
security. Often abbreviated to 3DES. The security level of 3DES s still con-
sidered to be very high, but there are faster block ciphers that provide com-
parable levels of security — such as AES.

See: Backdoor.
See: Backdoor.

An entity in a system to whom entities must extend some implicit trust. For
example, in atypical Public Key Infrastructure, the Certification Authority
constitutes atrusted third party.

A modern block cipher with 128-bit blocks and variable-sized keys. A
finaist in the AES competition; it is an evolution of the Blowfish cipher.

See also: AES; Blowfish.

A secure MAC based on a set of universal hash functions that is extremely
fast in software but so complex that there has never been a validated imple-
mentation.

See also: Universal hash function.

A keyed hash function that has ideal hash properties. In practice, the only
practical functions of this nature are really & quot;almost universal & quot;
hash functions, meaning they come very close to being ideal. Universal and
near-universal hash functions are not cryptographically secure when used
naively for message authentication but can be adapted to be secure for this
purpose easily.

See also: Cryptographic hash function; Hash function; one-way hash func-
tion.

The CLASP Application Security Process

347

Validation

Weak collision
resistance

Whitelist

Window of vul-
nerability

X.509 certifi-
cate

XCBC-MAC

XMACC
XSS

The act of determining that datais sound. In security, generally used in the
context of validating input.

A property that a hash function may have (and a good cryptopgraphic hash
function will have), characterized by it being unfeasible to find a second
input that produces the same output as a known input.

See also: Hash function; Srong collision resistance.

When performing input validation, the set of itemsthat, if matched, resultsin
the input being accepted as valid. If there is no match to the whitelist, then
theinput is considered invalid. That is, awhitelist uses a & quot;default
deny& quot; policy.

See also: Blacklist; Default deny.
The period of time in which avulnerability can possibly be exploited.

A digital certificate that complies with the X.509 standard (produced by
ANSI).

A three-key variant of the CBC-MAC that overcomes the fundamental limi-
tation of that MAC.

See also: Message Authentication Code; CBC-MAC, OMAC.
A patented parallelizable Message Authentication Code.
See: Cross-site scripting.

348

The CLASP Application Security Process

	CHAPTER 1 Introduction
	1.1 CLASP Status
	1.2 An Activity-Centric Approach
	1.3 The CLASP Implementation Guide
	1.4 The Root-Cause Database
	1.5 Supporting Material

	CHAPTER 2 Implementation Guide
	2.1 The CLASP Activities
	2.1.1 Institute security awareness program
	2.1.2 Monitor security metrics
	2.1.3 Specify operational environment
	2.1.4 Identify global security policy
	2.1.5 Identify resources and trust boundaries
	2.1.6 Identify user roles and resource capabilities
	2.1.7 Document security-relevant requirements
	2.1.8 Detail misuse cases
	2.1.9 Identify attack surface
	2.1.10 Apply security principles to design
	2.1.11 Research and assess security posture of technology solutions
	2.1.12 Annotate class designs with security properties
	2.1.13 Specify database security configuration
	2.1.14 Perform security analysis of system requirements and design (threat modeling)
	2.1.15 Integrate security analysis into source management process
	2.1.16 Implement interface contracts
	2.1.17 Implement and elaborate resource policies and security technologies
	2.1.18 Address reported security issues
	2.1.19 Perform source-level security review
	2.1.20 Identify, implement and perform security tests
	2.1.21 Verify security attributes of resources
	2.1.22 Perform code signing
	2.1.23 Build operational security guide
	2.1.24 Manage security issue disclosure process
	2.2 Developing a Process Engineering Plan
	2.2.1 Business objectives
	2.2.2 Process milestones
	2.2.3 Process evaluation criteria
	2.3 Form the Process Engineering Team
	2.4 Sample Roadmaps
	2.4.1 “Green Field” Roadmap
	2.4.2 Legacy Roadmap

	CHAPTER 3 Role-based Overviews
	3.1 Project Manager
	3.2 Requirements Specifier
	3.3 Architect
	3.4 Designer
	3.5 Implementor
	3.6 Test Analyst
	3.7 Security Auditor

	CHAPTER 4 Activities
	4.1 Institute security awareness program
	4.1.1 Provide security training to all team members
	4.1.2 Promote awareness of the local security setting
	4.1.3 Institute accountability for security issues
	4.1.4 Appoint a project security officer
	4.1.5 Institute rewards for handling of security issues
	4.2 Monitor security metrics
	4.2.1 Identify metrics to collect
	4.2.2 Identify how metrics will be used
	4.2.3 Institute data collection and reporting strategy
	4.2.4 Periodically collect and evaluate metrics
	4.3 Specify operational environment
	4.3.1 Identify requirements and assumptions related to individual hosts
	4.3.2 Identify requirements and assumptions related to network architecture
	4.4 Identify global security policy
	4.4.1 Build a global project security policy, if necessary
	4.4.2 Determine suitability of global requirements to project
	4.5 Identify resources and trust boundaries
	4.5.1 Identify network-level design
	4.5.2 Identify data resources
	4.6 Identify user roles and resource capabilities
	4.6.1 Identify distinct capabilities
	4.6.2 Map system roles to capabilities
	4.6.3 Identify the attacker profile (attacker roles and resources)
	4.7 Document security-relevant requirements
	4.7.1 Document explicit business requirements
	4.7.2 Develop functional security requirements
	4.7.3 Explicitly label requirements that denote dependencies
	4.7.4 Determine risk mitigations (compensating controls) for each resource
	4.7.5 Resolve deficiencies and conflicts between requirement sets
	4.8 Detail misuse cases
	4.8.1 Identify misuse cases
	4.8.2 Describe misuse cases
	4.8.3 Identify defense mechanisms for misuse cases
	4.8.4 Evaluate results with stakeholders
	4.9 Identify attack surface
	4.9.1 Identify system entry points
	4.9.2 Map roles to entry points
	4.9.3 Map resources to entry points
	4.10 Apply security principles to design
	4.10.1 Refine existing application security profile
	4.10.2 Determine implementation strategy for security services
	4.10.3 Build hardened protocol specifications
	4.10.4 Design hardened interfaces
	4.11 Research and assess security posture of technology solutions
	4.11.1 Get structured technology assessment from vendor
	4.11.2 Perform security risk assessment
	4.11.3 Receive permission to perform security testing of software
	4.11.4 Perform security testing
	4.12 Annotate class designs with security properties
	4.12.1 Map data elements to resources and capabilities
	4.12.2 Annotate fields with policy information
	4.12.3 Annotate methods with policy data
	4.13 Specify database security configuration
	4.13.1 Identify candidate configuration
	4.13.2 Validate configuration
	4.14 Perform security analysis of system requirements and design (threat modeling)
	4.14.1 Develop an understanding of the system
	4.14.2 Determine and validate security-relevant assumptions
	4.14.3 Identify threats on assets/capabilities
	4.14.4 Determine level of risk
	4.14.5 Identify compensating controls
	4.14.6 Evaluate findings
	4.15 Integrate security analysis into source management process
	4.15.1 Select analysis technology or technologies
	4.15.2 Determine analysis integration point
	4.15.3 Integrate analysis technology
	4.16 Implement interface contracts
	4.16.1 Implement validation and error handling on function or method inputs
	4.16.2 Implement validation on function or method outputs
	4.17 Implement and elaborate resource policies and security technologies
	4.17.1 Review specified behavior
	4.17.2 Implement specification
	4.18 Address reported security issues
	4.18.1 Assign issue to investigator
	4.18.2 Assess likely exposure and impact
	4.18.3 Determine and execute remediation strategies
	4.18.4 Validation of remediation
	4.19 Perform source-level security review
	4.19.1 Scope the engagement
	4.19.2 Run automated analysis tools
	4.19.3 Evaluate tool results
	4.19.4 Identify additional risks
	4.20 Identify, implement and perform security tests
	4.20.1 Identify security tests for individual requirements
	4.20.2 Identify resource-driven security tests
	4.20.3 Identify other relevant security tests
	4.20.4 Implement test plan
	4.20.5 Execute security tests
	4.21 Verify security attributes of resources
	4.21.1 Check permissions on all static resources
	4.21.2 Profile resource usage in the operational context
	4.22 Perform code signing
	4.22.1 Obtain code signing credentials
	4.22.2 Identify signing targets
	4.22.3 Sign identified targets
	4.23 Build operational security guide
	4.23.1 Document pre-install configuration requirements
	4.23.2 Document application activity
	4.23.3 Document the security architecture
	4.23.4 Document security configuration mechanisms
	4.23.5 Document significant risks and known compensating controls
	4.24 Manage security issue disclosure process
	4.24.1 Provide means of communication for security issues
	4.24.2 Acknowledge receipt of vulnerability disclosures
	4.24.3 Address the issue internally
	4.24.4 Communicate relevant information to the researcher
	4.24.5 Provide a security advisory and customer access to remediation

	CHAPTER 5 Vulnerability Root-Causes
	5.1 Preliminaries
	5.1.1 Problem types
	5.1.2 Consequences
	5.1.3 Exposure period
	5.1.4 Other recorded information
	5.2 Range and type errors
	5.2.1 Buffer overflow
	5.2.2 “Write-what-where” condition
	5.2.3 Stack overflow
	5.2.4 Heap overflow
	5.2.5 Buffer underwrite
	5.2.6 Wrap-around error
	5.2.7 Integer overflow
	5.2.8 Integer coercion error
	5.2.9 Truncation error
	5.2.10 Sign extension error
	5.2.11 Signed to unsigned conversion error
	5.2.12 Unsigned to signed conversion error
	5.2.13 Unchecked array indexing
	5.2.14 Miscalculated null termination
	5.2.15 Improper string length checking
	5.2.16 Covert storage channel
	5.2.17 Failure to account for default case in switch
	5.2.18 Null-pointer dereference
	5.2.19 Using freed memory
	5.2.20 Doubly freeing memory
	5.2.21 Invoking untrusted mobile code
	5.2.22 Cross-site scripting
	5.2.23 Format string problem
	5.2.24 Injection problem (‘data’ used as something else)
	5.2.25 Command injection
	5.2.26 SQL injection
	5.2.27 Deserialization of untrusted data
	5.3 Environmental problems
	5.3.1 Reliance on data layout
	5.3.2 Relative path library search
	5.3.3 Relying on package-level scope
	5.3.4 Insufficient entropy in PRNG
	5.3.5 Failure of TRNG
	5.3.6 Publicizing of private data when using inner classes
	5.3.7 Trust of system event data
	5.3.8 Resource exhaustion (file descriptor, disk space, sockets, ...)
	5.3.9 Information leak through class cloning
	5.3.10 Information leak through serialization
	5.3.11 Overflow of static internal buffer
	5.4 Synchronization and timing errors
	5.4.1 State synchronization error
	5.4.2 Covert timing channel
	5.4.3 Symbolic name not mapping to correct object
	5.4.4 Time of check, time of use race condition
	5.4.5 Comparing classes by name
	5.4.6 Race condition in switch
	5.4.7 Race condition in signal handler
	5.4.8 Unsafe function call from a signal handler
	5.4.9 Failure to drop privileges when reasonable
	5.4.10 Race condition in checking for certificate revocation
	5.4.11 Mutable objects passed by reference
	5.4.12 Passing mutable objects to an untrusted method
	5.4.13 Accidental leaking of sensitive information through error messages
	5.4.14 Accidental leaking of sensitive information through sent data
	5.4.15 Accidental leaking of sensitive information through data queries
	5.4.16 Race condition within a thread
	5.4.17 Reflection attack in an auth protocol
	5.4.18 Capture-replay
	5.5 Protocol errors
	5.5.1 Failure to follow chain of trust in certificate validation
	5.5.2 Key exchange without entity authentication
	5.5.3 Failure to validate host-specific certificate data
	5.5.4 Failure to validate certificate expiration
	5.5.5 Failure to check for certificate revocation
	5.5.6 Failure to encrypt data
	5.5.7 Failure to add integrity check value
	5.5.8 Failure to check integrity check value
	5.5.9 Use of hard-coded password
	5.5.10 Use of hard-coded cryptographic key
	5.5.11 Storing passwords in a recoverable format
	5.5.12 Trusting self-reported IP address
	5.5.13 Trusting self-reported DNS name
	5.5.14 Using referrer field for authentication
	5.5.15 Using a broken or risky cryptographic algorithm
	5.5.16 Using password systems
	5.5.17 Using single-factor authentication
	5.5.18 Not allowing password aging
	5.5.19 Allowing password aging
	5.5.20 Reusing a nonce, key pair in encryption
	5.5.21 Using a key past its expiration date
	5.5.22 Not using a random IV with CBC mode
	5.5.23 Failure to protect stored data from modification
	5.5.24 Failure to provide confidentiality for stored data
	5.6 General logic errors
	5.6.1 Ignored function return value
	5.6.2 Missing parameter
	5.6.3 Misinterpreted function return value
	5.6.4 Uninitialized variable
	5.6.5 Duplicate key in associative list (alist)
	5.6.6 Deletion of data-structure sentinel
	5.6.7 Addition of data-structure sentinel
	5.6.8 Use of sizeof() on a pointer type
	5.6.9 Unintentional pointer scaling
	5.6.10 Improper pointer subtraction
	5.6.11 Using the wrong operator
	5.6.12 Assigning instead of comparing
	5.6.13 Comparing instead of assigning
	5.6.14 Incorrect block delimitation
	5.6.15 Omitted break statement
	5.6.16 Improper cleanup on thrown exception
	5.6.17 Improper cleanup on thrown exception
	5.6.18 Uncaught exception
	5.6.19 Improper error handling
	5.6.20 Improper temp file opening
	5.6.21 Guessed or visible temporary file
	5.6.22 Failure to deallocate data
	5.6.23 Non-cryptographic PRNG
	5.6.24 Failure to check whether privileges were dropped successfully

	APPENDIX A Principles (Key Security Concepts)
	1 Insider Threats as the Weak Link
	2 Ethics in Secure-Software Development
	3 Fundamental Security Goals - Core Security Services
	3.1 Authorization (access control)
	3.2 Authentication
	3.3 Confidentiality
	3.4 Data Integrity
	3.5 Availability
	3.6 Accountability
	3.7 Non-repudiation
	4 Input Validation
	4.1 Where to perform input validation
	4.2 Ways in which data can be invalid
	4.3 How to determine input validity
	4.4 Actions to perform when invalid data is found
	5 Assume the Network is Compromised
	6 Minimize Attack Surface
	7 Secure by Default
	8 Defense-in-Depth
	9 Principles for Reducing Exposure
	10 The Insecure Bootstrapping Principle

	APPENDIX B Templates and Worksheets
	1 Sample Coding Guidelines
	1.1 Instructions to manager
	1.2 Instructions to developer
	2 System Assessment Worksheets
	1 Development Process and Organization
	2 System Resources
	3 Network Resource Detail
	4 File System Usage Detail
	5 Registry Usage (Microsoft Windows Environment)

	APPENDIX C Glossary of Terms

