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1. Introduction

 

Ambrose Bierce defined “history” as “a record of mistakes made in the past, so we shall know

when we make them again.” Although sardonic, his definition describes the state of affairs of

computer system vulnerabilities.

A “vulnerable state” is “any state which enables a user to read information without authoriza-

tion, modify information without authorization, or grant or deny an entity access to a resource

without authorization.” “Exploiting a vulnerability” means that a system is in a vulnerable state

and a user (called an 

 

attacker

 

) reads or writes the information without authorization, or grants or

denies service to another without authorization. In both these definitions, “without authorization”

means “in violation of the system’s security policy.” A “vulnerability” (also called a “flaw” or a

“hole”) is the property of the system, its attendant software and/or hardware, or its administrative

procedures, that cause it to enter a vulnerable state.

That attackers can, and do, exploit system vulnerabilities is widely known; indeed, detailed

descriptions of how to find vulnerable states have appeared in various periodicals such as

 

PHRACK

 

 and 

 

2600

 

, and on the USENET [1]. All these discussions essentially show how to probe

a system for clues that indicate the system is running software known to be vulnerable, or that it is

being managed in such a way as to allow an attacker to exploit a vulnerability. The issue of how to

find the underlying vulnerabilities in the first place is finessed.

Research projects have addressed this issue. The seminal flaw hypothesis methodology [8]

used people who knew the system being attacked to find specific vulnerabilities and then hypoth-

esize more vulnerabilities from the known one. It introduced the notion of “classes of vulnerabili-

ties” in which these were grouped by how well one flaw suggested another. Work at the

Information Sciences Institute [2] and Lawrence Livermore National Laboratories [9] extended

this notion by postulating broad categories of flaws and grouping known vulnerabilities into these

categories. Independently, several penetration studies of systems were made [5][6][7]. 
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In the late 1980s interest in the study of vulnerabilities became more prominent for two rea-

sons. The first was the increase in the number of systems connected to the Internet, and the atten-

dant increase in exploiting system vulnerabilities. System administrators often found themselves

attacked before they even knew of a vulnerability’s existence, and the strictures preventing the

discussion of existing (and unfixed) security holes began to break down. The second was the

advent of intrusion detection systems, first proposed in [12] to detect statistically unexpected pat-

terns of behavior. Investigators used a database of rules to describe known attacks against sys-

tems, and the intrusion detection mechanisms would look for events matching those rules. This

helped drive the collection of system vulnerabilities and their integration into a database; and

since it would be desirable to have the intrusion detection system find new attacks, the interest in

classifying vulnerabilities grew, with an eye towards being able to detect new ones. Work by [3]

and [11] proposed taxonomies.

In this paper, we shall build on prior work to present another taxonomy, and argue that this

classification scheme highlights characteristics of the vulnerabilities it classifies in a more useful

way than other work. We shall then examine vulnerabilities in the UNIX operating system, its sys-

tem and ancillary software, and classify the security-related problems along several axes, after

which we shall examine the earlier work to see if this taxonomy holds for other systems. The

unique contribution of this work is an analysis of how to use the Protection Analysis work to

improve security of existing systems, and how to write programs with minimal exploitable secu-

rity flaws. This contrasts the work to [4], which argued that a preventative approach using formal

methods to design secure systems is appropriate. We emphatically agree; however, as nonsecure

systems continue to be used, our work is presented with the hope it will guide maintainers and

software implementers to improve the security of these flawed systems and software.

The perennial question of revealing sensitive information arises; by describing security vul-

nerabilities, we present information that an attacker could use to penetrate a computer system; so

such vulnerabilities are rarely discussed in the literature unless they are quite old. Showing that

our model is useful requires us to discuss existing vulnerabilities. However, we view the debate

over the wisdom of discussing vulnerabilities as tangential to the thrust of this 

 

particular

 

 paper, so

to emphasize the issue of relevance to our work over the dangers of revealing security vulnerabil-

ities, we have chosen to discuss those which are “widely known,” that criterion being met if the

vulnerability has been discussed in a nonstandard publication (such as 

 

PHRACK 

 

or 

 

2600

 

), a non-
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restricted electronic mailing list such as the 

 

RISKS

 

 or 

 

BUGTRAQ

 

 mailing lists, or a USENET

newsgroup such as 

 

alt.security

 

 or 

 

comp.security.unix

 

.

In the next section, we present what we need from a taxonomy of computer system vulnerabil-

ities; we analyze the earlier taxonomies and show why they are inadequate. Then, building upon

them, we design a classification scheme that meets our needs. In the third section, we analyze sev-

eral well-known vulnerabilities in the UNIX system, and in implementations of network proto-

cols, and show how they would be classified, both in our scheme and in the earlier ones. In the

fourth section, we show how to use the taxonomy to detect the vulnerabilities and their exploita-

tion, as well as how to eliminate them when possible. We close with suggestions for future work.

 

2. The Previous Models

 

In this section, we state our goal in designing a model, then briefly present previous models of

system vulnerabilities, and see how well they meet our purpose. We extend and modify them as

necessary.

 

2.1. The Goal of this Study

 

The goals of this work are:

1. To describe the vulnerabilities in a form useful to intrusion detection mechanisms;

2. To present techniques for finding these vulnerabilities; and

3. To present techniques to inhibit or eliminate exploitation of those vulnerabilities.

The first goal requires a bit of analysis. An intrusion detection mechanism acts by analyzing a

sequence of commands and related characteristics (such as timing) to determine if an entity is

exploiting, or attempting to exploit, a vulnerability. With most systems, this requires the use of a

rule base and pattern matching keyed to sequences of events that are known to cause compromise.

Consider a broader view. Every successful attack exploits a vulnerability. Within the attack,

lots of events occur that “set up” the exploitation but do not depend upon the particular vulnera-

bility. The actual exploitation (that is, the violation of the security policy) is typically only a few

events. For example, consider the “mkdir” bug in Version 7 UNIX [13] (see Appendix A). The

vulnerability is 

 

not

 

 the ability to change the ownership of a system file; the vulnerability is the

race condition (specifically, the lack of atomicity in the creation/change owner steps) that allows

one to change ownership of a system file, as an exploitation of that vulnerability. Thus, 

 

any

 

 such
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sequence of instructions is suspect. So, rather than simply looking for the sequence “make direc-

tory node; delete directory node; link file to the name of the deleted directory node; change own-

ership of directory node,” one should instead look for sequences of the form “instantiate 

 

name

 

;

delete node corresponding to 

 

name

 

; reinstantiate 

 

name

 

; modify characteristics of node with that

 

name

 

” to discover other attacks of this nature.

Were this done, a very recent attack would have been foiled. The “xterm” attack (see Appen-

dix A) uses the more general sequence: check to be sure the real user can access the file, open it

for writing. The check for access is an instantiation in that it sets the process’ idea of characteris-

tics of the node corresponding to 

 

name

 

; the open is a modification of the characteristics of the

node in that it binds the node to an internal identifier independent of the node’s name. So, the

attack takes the same form as the “mkdir” vulnerability: instantiate 

 

name

 

; delete node correspond-

ing to 

 

name

 

; reinstantiate 

 

name

 

; modify characteristics of node with that 

 

name

 

.” This provides a

new way to exploit the old vulnerability. (Race conditions are discussed in more depth later.)

 The point is that a model should highlight the underlying vulnerability and not its exploita-

tion. Models used for intrusion detection focus on the exploitations using known sequences of

system calls (or applications) rather than on the underlying vulnerability. Focussing on the latter

presents an opportunity for much more general rules and patterns and, hence, much more effec-

tive detection of exploitations.

This leads to the second goal. The two race conditions above are the same given the appropri-

ate view of the system. What is needed now is to characterize “instantiation” and “modification”

in terms of system calls, and then all race conditions involving access to files will be handled.

Similar characterizations are needed for process interaction, and other types of interactions. When

those characterizations are complete, the issue of vulnerabilities through race conditions will be

well characterized and can be checked for automatically.

The third goal follows from this. Techniques in program analysis, intrusion detection, and

other areas of security can analyze programs or log files to determine when an attack involving a

race condition could arise; for example, this technique has been used to find security problems

with security packages! Thus, it is an effective analysis technique, and can be used to find new

security holes in programs and systems that will allow attackers to exploit vulnerabilities.
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2.2. Analysis of Previous Models

 

We now consider previous models of security vulnerabilities. There are four main works: the

Information Sciences Institute study [2], the RISOS project [9], a study from the Naval Research

Laboratory [3], and a discussion of vulnerabilities for intrusion detection [11].

The Protection Analysis project, undertaken at the Information Sciences Institute, had as its

goal the derivation or discovery of patterns of errors that would enable the automatic detection of

security flaws. The classification scheme that was developed is summarized in Table 1. 

Note that these categories are not mutually exclusive. In particular, categories 2 and 4 may

often overlap, because lack of proper validation allows the passing of an improper operand. Also,

in many cases, the “time-of-check to time-of-use” flaw (category 1c) also implies that an opera-

tion which should have been atomic was not atomic, and so could be argued to fall under category

3a. This is more properly an example of problems at different levels of the abstraction hierarchy,

introduced during the refinement of that hierarchy.

1. Improper protection (initialization and enforcement)
1a. improper choice of initial protection domain – “incorrect initial assignment of security or 

integrity level at system initialization or generation; a security critical function manipulat-
ing critical data directly accessible to the user”;

1b. improper isolation of implementation detail – allowing users to bypass operating system 
controls and write to absolute input/output addresses; direct manipulation of a “hidden” 
data structure such as a directory file being written to as if it were a regular file; drawing 
inferences from paging activity

1c. improper change – the “time-of-check to time-of-use” flaw; changing a parameter unex-
pectedly;

1d. improper naming – allowing two different objects to have the same name, resulting in con-
fusion over which is referenced;

1e. improper deallocation or deletion – leaving old data in memory deallocated by one pro-
cess and reallocated to another process, enabling the second process to access the informa-
tion used by the first; failing to end a session properly

2. Improper validation – not checking critical conditions and parameters, leading to a process’ 
addressing memory not in its memory space by referencing through an out-of-bounds pointer 
value; allowing type clashes; overflows

3. Improper synchronization;
3a. improper indivisibility – interrupting atomic operations (e.g. locking); cache inconsis-

tency
3b. improper sequencing – allowing actions in an incorrect order (e.g. reading during writing)

4. Improper choice of operand or operation – using unfair scheduling algorithms that block cer-
tain processes or users from running; using the wrong function or wrong arguments.

Table 1. The categories of flaws in the Protection Analysis study, as presented in [4]. The exam-
ples are taken from [4]. 
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For example, how are files represented at the various levels of the hierarchy?   At the highest

level, users would use file names; at an intermediate level, programs would use integers (file han-

dles or descriptors). System calls would take names as arguments if they manipulated the file sys-

tem, and file handles if they manipulated the contents of a file. But at the lowest level, files are

represented to the system as ordered pairs (on the UNIX system, the components would be the

device number and the inode number). The high-level abstractions would be translated to pairs,

and the kernel would manipulate the pairs. Unless file descriptors are bound to the pairs rather

than to names, category 1c flaws (the “time-of-check to time-of-use” flaws) are immediately

introduced, since the name refers to one pair, and the file handle may well refer to another pair.

These flaws are a direct result of the way the notion of “file name” has been refined. 

We should note that category 1a flaws are those which exist when the system is started; all

others relate to nonsecure system transformations, specifically failures to enforce the given secu-

rity policy properly. Whether or not the system can enforce such policies is beside the point,

which is that those mechanisms do not act appropriately.

The RISOS Project, undertaken at Lawrence Livermore National Laboratories, developed

seven classes of vulnerabilities (see Table 2). Although their focus was on the operating system

software and not on supporting programs and applications, their list is quite applicable to the lat-

1. Incomplete parameter validation – failing to check that a parameter used as an array index is 
in the range of the array;

2. Inconsistent parameter validation – if a routine allowing shared access to files accepts blanks 
in a file name, but no other file manipulation routine (such as a routine to revoke shared 
access) will accept them;

3. Implicit sharing of privileged/confidential data – sending information by modulating the load 
average of the system;

4. Asynchronous validation/Inadequate serialization – checking a file for access permission and 
opening it non-atomically, thereby allowing another process to change the binding of the 
name to the data between the check and the open;

5. Inadequate identification/authentication/authorization – running a system program identified 
only by name, and having a different program with the same name executed;

6. Violable prohibition/limit – being able to manipulate data outside one’s protection domain; 
and

7. Exploitable logic error – preventing a program from opening a critical file, causing the pro-
gram to execute an error routine that gives the user unauthorized rights.

Table 2. The categories of flaws in the RISOS study, as presented in [9]. The examples are taken 
from [9].
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ter two. As with the Protection Analysis study, these problems may occur anywhere in the design

hierarchy. However the Protection Analysis model includes initial state (category 1a), whereas all

the RISOS categories speak to enforcement (although it could be argued that the “protection

domain” referred to in category 6 means that domain specified by the security policy, in which

case RISOS category 6 includes initial state). With that single exception, the two schemes overlap

(see Table 3).

The RISOS study focuses on the exploitation of the flaws rather than the nature of the condi-

tion which causes them. For example, consider class 3 (implicit sharing of privileged/confidential

data). This category covers all methods for exploiting covert channels (both timing and storage).

Modulating the load average is one such channel; sending information through the creation and

deletion of a file is another. The RISOS study lumps these very different methods into one class,

whereas the Protection Analysis study separates the two. The storage channel would fall into PA

category 1c (improper change), since it involves monitoring changes to another process’ files in a

shared area; the timing channel would fall into category 1b (improper isolation of implementation

detail), since the timing information is a detail of implementation that can be monitored. Other

methods of exploiting covert channels could fall into PA categories 3b (improper sequencing) and

4 (improper choice of operator or operand) as well, if the method of signalling involved flaws in

those categories.

Landwehr’s study [3] is interesting because it attempts to classify vulnerabilities according to

genesis, time of introduction, and location. The “genesis” category has two major subcategories.

Those flaws which were “inadvertent” fall into one of the above classes ([3] uses a modification

Table 3. The relationship between the categories of the PA study and the RISOS study.

RISOS category PA categories

1&2 2

3 1b, 1c, 3b, 4

4 1c, 3a, 3b

5 1c, 1d

6 1b, 2, 4

7 any
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of the RISOS classification); those which are “intentional” are either “malicious” (

 

e.g.

 

, Trojan

horses, trapdoors, logic or time bombs) or “non-malicious” (

 

e.g.

 

, covert channels, because they

are an artifact of the nature of many systems and cannot be entirely eliminated). The time of intro-

duction of a flaw is either during development (either in the requirements/specification/design

phase, the source code, or the object code), during maintenance, or during operation. The location

refers to what has the flaw: the hardware or the software; the latter is broken into applications,

support (privileged and unprivileged utilities), and the operating system proper. Let us consider

these three axes independently.

The basic problem with the first axis, that of classifying flaws by genesis, is it confuses the

vulnerability with the exploitation of the vulnerability. Specifically, a Trojan horse may use the

inadequacy of identification when it violates a security policy, and exploits a vulnerability to give

the user confidential information. The distinction between “intentional” and “inadvertent” is more

the “exploitation of the vulnerability” and the “vulnerability” itself. The extra layer of “intent”

detracts from the identification of the specific nature of the flaw.

The time of introduction classification scheme encompasses procedural vulnerabilities as well

as those in the software and hardware. Landwehr divides the lifetime of software into three

phases, the development phase, the maintenance phase, and the operation phase. In software engi-

neering terms, “maintenance” is defined as any “work done to change the system after it is in

operation” [16]. But what precisely does “in operation” mean? When software is in the beta test

stage, it may be “in operation” at sites other than the developer’s site, yet that is considered

“development.” Further, Landwehr’s example of an operational flaw is the infection of a program

with a virus. From our point of view, the infection is not a flaw but the exploitation of a flaw

(which is that the protections are incorrectly set). So this classification needs to be made more

explicit.

The third axis discusses where the vulnerability occurs: in hardware, software, and if the lat-

ter, what kind of software. For example, the two race conditions described earlier occur in system

software. However, they could equally well occur in user programs; of course, since those are not

privileged, the vulnerability poses a threat to the user owning those programs only. Thus, for our

purposes, this category is not particularly useful; as we shall see, however, a slight modification

makes it very useful.

Spafford’s characterization of security vulnerabilities [11] identifies operational (administra-
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tive) flaws, design flaws, and faults as the three main categories of flaws. All of these are sub-

sumed by the classes discussed above, and require no further discussion.

 

2.3. The Synthesis of A Framework

 

We now build upon the analysis in the previous section to develop axes of classification for

vulnerabilities. Because we are focussing on the underlying cause of the flaw, rather than a

description of the flaw, we shall use the PA categories to classify security problems. As was

argued above, that classification describes the nature of the flaw in more detail than the RISOS

classes do. In some sense, this is an artifact of the origins of the research; the RISOS project very

specifically looked at operation systems and not arbitrary programs, whereas the PA study empha-

sized both programs and operating systems.

What other metrics would aid our analysis? Our goal is to identify vulnerabilities. In that

sense, how or why they were introduced is irrelevant. Nevertheless, the collection of other infor-

mation may help software and system designers determine where to put resources to look for

flaws, where to look to learn about flaws, and the level of expertise needed to take advantage of

the flaws. So, we shall consider other axes.

The problem with Landwehr’s time of introduction classification scheme is that the distinction

between “during development”, “during maintenance,” and “during operation” seems somewhat

artificial, especially since the requirements of a system often change once the system is installed.

For example, many non-secure systems have had security enhancements added to them when the

need arose. Is this maintenance or development? For our purposes, we adopt the following defini-

tions. Suppose we have some software 

 

plugh

 

, at version 

 

xyzzy

 

. If a security vulnerability exists in

all versions of 

 

plugh

 

 up to version 

 

xyzzy

 

, it is in the class “during development.” (If we can further

identify the flaw as being introduced in design or in implementation, we shall do so; but this is not

always obvious.) If there is a version 

 

glorkz 

 

before which no version of 

 

plugh

 

 had the vulnerabil-

ity, but the vulnerability exists in versions of 

 

plugh

 

 from 

 

glorkz

 

 to 

 

xyzzy

 

, it will be in the class

“during maintenance.” If the vulnerability depends only upon the operation of the entity, then we

shall put it in the class “during operation.” We should note that from the intrusion detection point

of view, the first two classes may be considered together, as a “system” problem, and the third is a

“procedural” problem.

Landwehr’s third axis suggests an alternate characterization of location. Where the flaw
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occurs is not so important as whom it affects and who can exploit it. For example, if one were to

plant a Trojan horse, it could access the protection domain of anyone who executed it. In some

cases, the effect depends upon physical access to the hardware (ejecting a CD ROM or floppy, for

example, or playing offensive matter over a speaker) or on the victim being on a network (for

example, sending sensitive data over a non-secure network puts the data at risk). So, the effects

axis has one class per user protection domain, and two subclasses which capture the notions of a

“physical” protection domain and a “network” protection domain. Similarly, consider what privi-

leges are needed to exploit the vulnerability. It may require access to a particular user’s protection

domain; similarly, it may also require access to the physical hardware (such as replacing

EPROMS to change a password) or to a network (to launch an IP spoof). These categories iden-

tify the privileges required for exploitation. Table 4 summarizes these.

Note that these are similar to, but different than, Landwehr’s categories, for he focuses on the

type of software in which the flaw occurs, whereas we focus on the effect of the vulnerability.

Specifically, he does not distinguish between a privileged protection domain and multiple protec-

tion domains. On many systems, users can create programs which allow others to access their pro-

tection domain; so, the distinction is useful.

Three other potentially useful classes of categories have been identified. The first, the method

of exploitation, describes whether the flaw can be exploited using a program, a high-level user

command language, or a configuration file. The last category is subsumed by the time of introduc-

tion axis; the issue of which language is required to exploit the flaw is clearly intended as a mea-

sure of difficulty of exploiting the flaw. However, with the introduction of “cracking scripts”

which enable novices to break into systems using very sophisticated techniques, it is not clear that

the distinction between the command interface language and a programming language indicates

anything more than convenience. Further, from the intrusion detection point of view, the effects of

Effect domain: in all cases, the user domain(s) 
which the vulnerability can effect must be 
given. The numbers refer to what else is 
affected:
1 nothing
2 network sessions (datagram or connection)
3 (physical) hardware
4 network sessions and (physical) hardware

Table 4. The exploitation domain and effect domain axes.
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the program exploiting the vulnerability (such as its trace in the system logs) is what matters; and

those will be the same regardless of the language used to create the exploitation. So the method of

exploitation axis is redundant.

The second proposed axis, the difficulty of exploitation, is irrelevant to the issue of intrusion

detection when the method of introducing the exploiting script is considered (

 

e.g.

 

 cut and paste, or

trial and error). Consider race conditions. While these may require trial and error, a good program

can drastically reduce the number of tries needed to succeed; further, a user may use cut and paste

to probe the race conditions. But the question of number of components required to exploit the

vulnerability is a good metric, because it indicates the number of programs’ audit records must be

analyzed to discover the exploitation – and this is what intrusion detection mechanisms must do.

So, another axis we shall use is the minimum number of components needed to exploit the vulner-

ability.

The third proposed classification scheme, the identification of the flaw, is relevant to intrusion

detection because it gives compilers of misuse databases information about where to look for vul-

nerabilities – and where people have not been looking. Example classes in this category include

software (especially for improper settings of initial protection domains), postings to bulletin

boards, papers, articles, and so forth.

To summarize, the taxonomy we use has six axes, and every vulnerability is classified on each

axis. The first axis is the 

 

nature

 

 of the flaw, and we use the Protection Analysis categories; the sec-

ond axis is the 

 

time of introduction

 

, and we use the (modified) classes of Landwehr. Third is the

 

exploitation domain

 

 of the vulnerability and fourth is the 

 

effect domain

 

; for these, we use the

classes outlined above. The fifth axis is the 

 

minimum number

 

 of components needed to exploit the

vulnerability. The sixth axis is the 

 

source

 

 of the identification of the vulnerability.

 

2.4. The Impact of the Security Policy Upon Vulnerability Classification

 

The issue of what constitutes a vulnerability is not discussed in any of the above studies, pos-

sibly because it was considered self-evident. If a user can access a file which is read-protected, a

violation of security has occurred; the characteristic allowing the viewing is a vulnerability. But

consider the following situation: suppose an educational site has the policy that no user may look

at another user’s files. If Tom looks at Nancy’s file “hw1,” sees it is not read-protected, and then

views the file, has a breach of security occurred? In our model, the answer is “yes;” the specific
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vulnerability is that of “improper protection/improper choice of initial protection domain” (class

1a).

This is a clear case. But consider now Thompson’s compiler bug (see Appendix A). Is this

exploitation of a vulnerability? If so, which one?

Let us analyze what happened. First, the “attack” is the modification of the compiler, and the

installation of the corrupt compiler and rigged 

 

login

 

 program. The security policy, while unstated,

appears to be that accessing the system requires your (chosen or given) password; nothing is said

about the ability to change the compiler. Assuming Thompson was a member of the system staff

(a reasonable assumption), his modifying the compiler did not produce a state in which any user

could violate confidentiality, integrity, or access to services. Hence, this step seems not to involve

a vulnerability, not to be an attack.

The second step, recompiling and reinstalling the rigged 

 

login

 

 program, also seems to be

allowed under the assumption that Thompson is a member of the system staff. Hence it too is not

an attack, nor does it exploit a vulnerability. It does however create a vulnerability, namely the

ability of an entity to access a resource (an account) without authorization. So, at this point the

system is in a vulnerable state.

The third step, which would be a user using the rigged login program and fixed password to

access the system, involves exploiting the vulnerability installed earlier. It is an “attack” as we use

the term.

As a socratic exercise, assume Thompson were not authorized to modify the compiler or to

install the 

 

login

 

 program. In both cases, his ability to do so would indicate that he had privileges

not allowed under the security policy, which shows the existence of improperly set protections, or

a vulnerability of “improper protection/improper choice of initial protection domain.”

The key point is that the security policy controls what is, and is not, a vulnerability, and any

analysis of system vulnerabilities must be made with this in mind. In what follows, when those

aspects of the policy involved in the attack are clear, we shall not specify them; but (as with the

Thompson example) when they could change whether what we are discussing is the exploitation

of a “vulnerability,” we shall be explicit.

In the next section, we discuss some classic security flaws in the UNIX system, and classify

them according to these axes.
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3. Example Classification Of Some UNIX Flaws

 

To show that the model is useful, we classify some of the better-known UNIX security flaws

along these lines. See Appendix A for a technical description of the programs and attacks

involved. We should note that although we refer to the vulnerabilities by the attacks which exploit

them, the item of interest in each case is the vulnerability itself and not the attack. Thus, we have

avoided classifying the attacks.

 

3.1. The 

 

mkdir

 

 Flaw

 

This flaw springs from a race condition, specifically the non-atomicity of the creation and the

change of ownership of the directory node. It is in essence two processes writing to the same file

(taking the view that changing the ownership of a file is a “write” and changing the binding of a

name to a file is a “write”). Hence, the vulnerability it exhibits clearly falls into the class of

“improper synchronization/sequencing” (flaw class 3b). As 

 

mkdir

 

 allows you to change system

files, including the password file, it allows access to all protection domains on the system and the

effect domain is therefore that of any user; however, it is setuid to 

 

root

 

, and only 

 

root

 

 can execute

the system calls that cause the race. Therefore the exploitation n domain is that of 

 

root

 

. In terms of

time of introduction, this was most likely done during development; it is definitely a software

problem and not a procedural one.

Note at the abstract level, this is an example of what should be an atomic operation being

divisible; specifically, the creation should be as the owner of the directory. However, at the imple-

mentation level, the flaw consists of problems in sequencing operations, as discussed above. This

provides an example of where the abstraction flaw falls into one class and the implementation

flaw into another, closely related class.

Vulnerability class: 3b, improper synchronization/sequencing
Time of Introduction: 1, during development
Exploitation Domain involved: 1, 

 

root

 

 protection domains
Effect Domain: 1, any protection domain
Minimum number: 2, the 

 

mkdir

 

 process and another process to delete the directory file and link 
the password file to the name

Source: unknown, but described in [13]

 

3.2. The 

 

xterm

 

 Flaw

 

This is the legendary “time-of-check to time-of-use” flaw; specifically the binding of the log

file name changes between the time of the access check and the opening for writing. Hence, the
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vulnerability it exhibits is in the class of “improper change” (flaw class 1c). As 

 

xterm

 

 can be used

to alter a protected file, its effect domain is that of any user; also, the user with the effective UID

of 

 

xterm 

 

can execute the system calls that cause the race. In terms of time of introduction, this was

clearly done during development; it is definitely a software problem and not a procedural one.

Vulnerability class: 1c, improper change
Time of Introduction: 1, during development
Exploitation Domain involved: 1, UID of 

 

xterm

 

 program file
Effect Domain: 1, any protection domain
Minimum number: 2, the 

 

xterm

 

 process and another process to delete the directory file and link 
the password file to the name

Source: posted to the USENET

 

3.3. The 

 

sendmail

 

 Display File Problem

 

This flaw occurs because of a failure to check permissions properly; specifically the failure to

be sure the real user can access the configuration file. The vulnerability clearly is one of

“improper validation” (class 2). Again, as 

 

sendmail

 

 must run setuid for the 

 

open

 

(2) system call to

be able to open a protected file, the exploitation domain is that of the owner of 

 

sendmail

 

; without

the setuid feature, it cannot alter any files other than those the user could alter himself or herself.

In terms of time of introduction, this was clearly done during development; it is definitely a soft-

ware problem and not a procedural one.

Vulnerability class: 2, improper validation
Time of Introduction: 1, during development
Exploitation Domain involved: 1, UID of owner of 

 

sendmail

 

Effect Domain: 1, any protection domain
Minimum number: 1, the 

 

sendmail

 

 process
Source: posted to the USENET

 

3.4. Thompson’s Compiler Bug

 

As discussed earlier, under the assumption that Thompson were authorized to modify the

compiler and 

 

login 

 

program, the only vulnerability involved is that created by installing the 

 

login

 

program, which allows users onto the system without proper authorization. This is a vulnerability

of class 1b, “improper protection/improper isolation of implementation detail” because users are

allowed to bypass the normal authentication controls. As exploiting the flaw requires enough priv-

ileges to install a system program, it would be in 

 

root

 

’s protection domain on most systems; the

effect is that any user’s domain could be accessed. This problem was introduced by Ken Thomp-

son after the compiler had been written, so by our definition it is in the class “during mainte-
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nance.”

Vulnerability class: 1b, improper isolation of implementation detail
Time of Introduction: 2, during maintenance
Exploitation Domain involved: 1, 

 

root

 

 protection domain
Effect Domain: 1, any protection domain
Minimum number: 1, the back-door in the 

 

login

 

 program
Source: posted to the USENET

 

3.5. Thompson’s Compiler Bug Redux

 

Under the assumption that Thompson were not authorized to modify the compiler and 

 

login

 

programs, the system begins in a vulnerable state; the vulnerability is that Thompson is able to

modify the compiler and 

 

login

 

 programs without authorization. This is clearly an “improper pro-

tection/improper choice of initial protection domain” vulnerability. As exploiting the flaw requires

enough privileges to install a system program, it would be in 

 

root

 

’s protection domain on most

systems; the effect is that any user’s domain could be accessed. The vulnerability was introduced

during operation. Note that the 

 

login

 

 vulnerability described above also exists when Thompson

installs the rigged 

 

login program.

Vulnerability class: 1a, improper choice of initial protection domain
Time of Introduction: 3, during operation
Exploitation Domain involved: 1, root protection domain
Effect Domain: 1, any protection domain
Minimum number: 1, the process modifying the compiler and login program
Source: posted to the USENET

3.6. Reading Passwords from Terminal Buffers

The flaw here is the failure of the UNIX system to erase sensitive information, such as pass-

words. (In fact, this vulnerability exists on all UNIX file storage management, not just in the ker-

nel buffers; however, exploiting the kernel buffers is usually simpler.) This is clearly an “improper

protection/improper deallocation or deletion” vulnerability. As it can give access to any user’s

protection domain, its effect domain falls into the class of “user protection domains;” exploiting it

requires access to the kernel memory, so it is in the appropriate user’s (or group’s) protection

domain (usually the group kmem). The vulnerability also exists because of the way the kernel han-

dles reuse of objects, so it was introduced “during development.”

Vulnerability class: 1e, improper deallocation or deletion
Time of Introduction: 1, during development
Exploitation Domain involved: 1, group kmem protection domain
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Effect Domain: 1, any protection domain
Minimum number: 1, the process reading the terminal buffer
Source: the author of this paper; others posted it (independently) to the USENET

3.7. Reading Kernel Memory

The vulnerability here is the failure to reset the effective GID of a process. This is an example

of improper choice of operand or operation, because the choice of effective GID is inappropriate.

It was introduced “during development,” and involves sufficient privilege to execute the program

involved.

Vulnerability class: 4, improper choice of operand or operation
Time of Introduction: 1, during development
Exploitation Domain involved: 1, group kmem protection domain
Effect Domain: 1, any protection domain
Minimum number: 1, the process reading the kernel memory
Source: the author of this paper; others posted it (independently) to the USENET

3.8. rdist Race Condition

This flaw may be summarized as the creation of a file, then it being deleted and a new file

given its name. In other words, the name of the file rdist created is rebound to a file of the user’s

own choosing. It is a classic case of improper sequencing, because two processes are allowed to

write to the file (which for our purposes includes changing the binding of the file’s name).

Vulnerability class: 3b, improper sequencing
Time of Introduction: 1, during development
Exploitation Domain involved: 1, protection domain of the owner of the directory where the temp 

file is put
Effect Domain: 1, any protection domain
Minimum number: 2, the rdist process and the process switching the binding of the temporary file
Source: USENET

3.9. Classic Trojan Horse

Because this involves confusion about naming, it is a vulnerability of class 1d, “improper pro-

tection/improper naming.” It is clearly a problem during operation, as the user can (and usually

does) set his or her search path. Finally, as a Trojan horse works in the domain of the executor,

and as an effect gives others access to, or information from, that domain, the effects and exploita-

tion domains are those of the user executing the program.

Vulnerability class: 1d, improper naming
Time of Introduction: 3, during operation
Exploitation Domain involved: 1, protection domain of executor
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Effect Domain: 1, protection domain of executor
Minimum number: 1, the process executing the Trojan Horse
Source: Dan Edwards

3.10. The fingerd Flaw

Because this involves writing beyond the end of an array, and hence going out of bounds, it is

a vulnerability of class 2, “improper validation.” It is clearly a problem introduced at the time of

creation of the program, and so is a development flaw; since the use of gets is not intrinsic to

design, we can safely speculate this is an implementation failure. Finally, exploiting it requires

access to the network (as it is a network daemon) using any identity; the effects involve only the

protection domain of the daemon.

Vulnerability class: 2, improper validation
Time of Introduction: 1, during development
Exploitation Domain involved: 3, any protection domain, network
Effect Domain: 1, protection domain of the daemon
Minimum number: 2, the fingerd process and the one feeding it input
Source: mailing list (phage, set up during the Internet worm crisis)

3.11. IP Spoofing

This attack involves deceiving a network service which relies on an untrustworthy datum, spe-

cifically an IP address in a packet; as this is not suitable for validation, this vulnerability is a vul-

nerability of class 2, “improper validation.” This problem is a development problem, because it is

introduced (usually) during the implementation of a network program that must authenticate its

peer (it is implementation because the design of a program rarely depends on how the authentica-

tion of the peer is done, merely that it be done). Finally, exploiting it requires access to the net-

work (as it is a network daemon) using any identity; the effects involve only the protection

domain of the daemon.

Vulnerability class: 2, improper validation
Time of Introduction: 1, during development
Exploitation Domain involved: 3, any protection domain, network
Effect Domain: 1, protection domain of the server
Minimum number: 2, the server process and the spoofing process
Source: research (widely known when the TCP specification was released)

3.12. Summary

Figure 2 summarizes the number of flaws in this section on each axis of the classification

scheme. As more flaws are classified (and we emphasize that the 9 listed are by no means exhaus-
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tive; for example, of the many flaws listed in [1], most are problems in configuring the protection

domain, and experience shows these should be more dominant than in our sample), the data in

these charts will become more complete, and more accurate conclusions can be drawn. For now,

the most interesting statistic is the location of the first discussion of the flaw, in public: the

USENET. This is especially surprising given the low quality of most USENET postings; so, it

would seem that the USENET, long demeaned as a frivolity, can be a fruitful source of data for

research and analysis in the study of vulnerabilities.

Supporting this analysis are the results of integrating other vulnerabilities into these catego-

ries. Of 23 vulnerabilities the origins of which are (believed) to be known, 7 come from USENET,

and the other 16 from research (which includes approximately 5 from anonymous papers which

can be obtained from bulletin boards). As for the other axes, the categories 1a and 2 dominate the

vulnerability classifications, most of the vulnerabilities were introduced in development, with

operation running a fairly distant second. All also require 1 or 2 processes.

4. Detection and Elimination of Vulnerabilities

We now turn to the use of the taxonomy in the detection and elimination of vulnerabilities.

Unfortunately, there is no mechanistic way to detect a vulnerability and classify it; however, by

looking at characteristics of the flaws in each class of vulnerability, we can describe techniques

which will aid the analyst in locating problems. In some cases, methods of elimination are clear;

Figure 2. Graphical summary of the frequencies of flaws in each of the six classification schemes 
used. 
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in other cases, containment is more appropriate.

Considerable work has been done on the study of secure operating systems, and intrusion

detection mechanisms make the assumption that the kernel is secure (otherwise, the logging

mechanisms cannot be trusted). So for this section, we shall focus on both applications-level and

program-level security problems, and omit discussion of kernel-level problems entirely. Those

interested in such problems are referred to [2].

4.1. Improper Choice of Initial Protection Domain

The vulnerabilities in this class involve incorrectly set permissions when the system starts;

these are configuration errors. Detection first requires a knowledge of the security policy, since

that policy describes the “proper” configuration. The detection method is to analyze the system to

see how closely its configuration conforms to that required by the security policy.

Utility checkers that generate listings of file protections and access rights of processes exist on

almost all systems; for the UNIX operating system, cops and tripwire are the two best known pro-

grams. But use of these tools does not solve the problem; it simply presents information which

must then be analyzed. To make this analysis effective, one must proceed top-down by under-

standing what the goals of the protection mechanisms are; only then can one ask if they are being

applied correctly. To do so requires a very clear, firm grasp of the site’s security policy.

The simplest technique for determining a “safe” configuration of a system is to begin with the

security policy, which presents the high-level goals, and refine them accordingly. For example, at

an educational institution running the UNIX operating system, the security policy might forbid

students sharing or reading other students’ homework, but allow faculty to read those homeworks.

In this case, there are two groups of users – students and faculty – with faculty able to read stu-

dents’ files but not vice versa. The obvious approach is to have two groups, one of students and

one of faculty, and require that all student files be unreadable by world and be group-readable by

the faculty group. So, the results of the integrity checking scan (by cops or tripwire) would show

if this were in fact true.

The basic problem with this approach is lack of completeness; specifically, how can one be

sure the policy is correctly broken down into checkable elements correctly? Clearly a formal

approach such as formal verification or program verification would work best, but these are not

yet practicable. The informal technique outlined above requires quite a bit of time initially to ana-
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lyze the security policy; by rights, this should be done before the computer is selected to ensure it

provides security mechanisms adequate to enforce the policy. Once done, it need not be redone.

The mechanistic job of checking conformance of the system to the policy simply requires scan-

ning the state of the system and analyzing the output, and can be done automatically.

To return to our example of Thompson’s rigged compiler, assume the security policy disal-

lowed Thompson modification access to the compiler. A simple file system scan of Thompson’s

protection domain would detect that he had such privilege. Thus a security hole would be closed.

Mechanistically, how is such a scan done? The simplest way is to use a file system scanning

tool to record all files that Thompson can access, and how. Then those which he can access need

to be checked to see if such access can expand his protection domain, and by what objects. If so,

the expanded domain needs to be rechecked. Compute the transitive closure of the protection

domain under the access functions. At each step, the new elements of the protection domain are

compared to the protection domain described by the security policy to see if the two conform.

This will uncover any initial protection domain flaws.

4.2. Improper Isolation of Implementation Detail

By their nature, these flaws arise because of multiple paths to a single object; for example, file

systems having aliases which allow them to be treated as ordinary objects. The key is the repre-

sentation of an object as an abstraction, yet reference to it through a path other than through the

abstraction’s operation.

As an example, suppose a database records its data in a set of files, with each field of a record

being stored in a separate file (for example, if the database stored names and account names, one

field would contain the names and the other the account names). The database restricts the values

of fields when changes are made or records added. Because any program can access the files

directly rather than going through the database interface, a potential security problem exists. The

underlying flaw is that the instantiation (the files holding the fields of the records) of the abstrac-

tion (the records of the database) can be accessed by a mechanism other than the abstraction oper-

ations (the database functions).

Detecting flaws of this variety require an analysis of the abstractions used by programs, and

their implementation. For example, consider the implementation of the NIS password changing

mechanism. In this case, there is a daemon (yppasswdd) that changes the NIS master file, and a set
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of clients (yppasswd, ypchsh, and ypchfn) that communicate the new password record to the dae-

mon. The records were stored as a set of colon-separated fields, one record per line. The relevant

fields to this attack are the login shell field (changed by ypchsh) and the user information (gecos)

field (changed by ypchfn). A simple attack was to place a newline in the input to ypchsh or ypchfn,

and then enter a record creating a privileged account; the client would send this information to the

daemon, which would update the master file and propagate the changes to systems served by the

NIS server. To prevent this attack, the clients all checked for a newline in their input. The abstrac-

tion here was the password record; the abstraction operation was the updating of a record by one

of the clients.

Unfortunately, any user could write a program to connect to the NIS password daemon

directly, bypassing the clients (and the check). The detail of implementation was improperly iso-

lated, and as a result the abstraction operations could be bypassed. The correct view of the

abstraction operation is that the daemon, not the clients, implemented it. When this was under-

stood, the check was added to the daemon and the problem was solved.

Searching for these problems requires a systematic decomposition of the system and its atten-

dant programs and information into separate abstractions, at which point the implementation of

each abstraction can be checked, and then the interaction of the abstraction operations can be

checked. Checking requires a detailed analysis of the nature of the functions implementing the

abstraction operations. For this, a security manual of the sort described in [17] is a useful way to

specify the security properties of the implementation of the functions.

4.3. Improper Change

Flaws of this category occur when data that is meant to be consistent is not consistent; essen-

tially, one misplaces trust in the integrity of the data. This requires at least two processes, one

which relies upon the data and another that alters it.

The reliance upon the data is the key. For example, in the xterm flaw, the program assumes

that between the check and the open, the file name refers to the same object; as the checking and

opening are not part of an atomic operation, that assumption is flawed, leading to the attack. Any

pair of UNIX file system calls which involve using the name of an object (as opposed to a descrip-

tor) is vulnerable, although the exploitation may have various effects. For example, if a setuid

program first calls access(2) to see if a user can write to a file, and then unlink(2) to delete it, a
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malicious user might be able to delete system-critical files using that sequence and thereby deny

access to the system. With respect to files, Table 5 summarizes several such pairs of system calls;

when these occur in sequence, and refer to the same named object, an improper change flaw has

been introduced.

With data in shared memory, similar problems arise (note we assume that the kernel enforces

isolation of process memory). If the data is security-critical, such as a file descriptor, it must be

kept in protected memory and not shared memory. On most UNIX systems, this is a problem only

if the data is made available via some file-sharing mechanism or IPC method such as memory

mapping.

Techniques for detecting improper change flaws are very similar to those used for analyzing

testing. Research in the application of the testing technique called slicing is very promising [18];

its advantage over simple pattern matching is that it detects cases where the same value is stored

in different variables, and the different variables are used in the file system or memory manage-

ment calls that can produce an improper change flaw. The program rdist was analyzed using this

scheme, and the sequence of system calls shows up quite clearly in the slice (although it should be

noted the slicing was focussing on a different problem).

Nevertheless, even with a pattern matching program, the ubiquity of race conditions can be

seen. Running a prototype scanner on the sendmail program revealed an unknown race condition

that enabled an attacker to change the protection mode of any file on the system to world readable

[24]. The bug was reported and corrected.

4.4. Improper Naming

At the user level, handling improper naming simply means detecting objects in the user’s pro-

tection domain with the same name. Such software is straightforward to write; for example, on the

UNIX system, a simple shell script can traverse each directory in the user’s search path and look

Table 4. Example of system call sequences which create improper change flaws in the UNIX 
operating system

access open give read/write access to a protected file
access unlink delete a system-critical file
access chroot remove any restrictions on what part of the file tree is visible
creat chown change ownership of a file the user should not access
open rename move the wrong file to a system location
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for name collisions. Where the problem becomes interesting is if one object has two different

names, and therefore two different sets of access privileges.

The UNIX file system associates access control with inodes, not names, so in theory access to

the data in a file is controlled by one set of permissions, regardless of the number of names the file

has. But in practise, the UNIX system allows direct aliasing (called “hard links”) across directo-

ries; that is, the names “/usr/mab/xxx” and “/usr/holly/yyy” may refer to the same file. By pre-

venting the user heidi from searching her directory, holly can prevent her from accessing the data

in “/usr/holly/yyy”. But unless the user mab has also prevented heidi from searching his directory,

heidi can still gain access to the data. (Note that holly may not want to make the file yyy unread-

able by everyone so that others can execute a special program which runs with holly’s privileges

to get into the directory, and then uses their privileges to access the file.) Still, detecting instances

such as this requires a simple program.

Improper naming also arises with processes, and the UNIX system is particularly susceptible

to an attack based upon process name (which is represented as an integer between 0 and some

fixed upper bound, the PID). When process n communicates with process m, it is possible that the

process m being contacted is not the original process with PID m (which has terminated) but is

instead another process with the PID m (as the UNIX kernel reuses PIDs). This is especially dan-

gerous when temporary file names are based upon the PID of the creating process.

The only way to detect this type of flaw is to look for programs which communicate with

other processes and cannot determine when that other process terminates. If so, then the death of

process m and the reuse of m would be undetected by the original process. If, however, the origi-

nal process refrains from communicating with a terminated process, the flaw is removed.

4.5. Improper Deallocation or Deletion

When an object is improperly deallocated or deleted, the object containing the data is released

but the data is not erased. Any subject acquiring that object then has access to the data it contains.

This requires that when an object is re-used, its contents be cleared (or set to some fixed value).

This is a function of the operating system, and its specifications determine if in fact this sanitizing

does occur.

Another form of this attack is the failure to delete ancillary objects when a main object is

deleted. A classic instance of this occurred on a UNIX system with a process table of fixed size.
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When processes terminated, their process control block remained in the process table until a spe-

cial process, called the “mop,” deleted this information. The mop ran every 30 seconds. Denial of

service attacks were frequent, and simply required filling the process table. When the mop tried to

run, it could not find a free slot in the process table, and the kernel would issue a panic, crashing

the system.

 In a program, improper deallocation may refer to using a deleted object, or deallocating an

object which was not allocated. For example, on many versions of the UNIX system, when mem-

ory is released using free, one could still use the values in that memory so long as the memory

were not reallocated. This is of course a prime setting for a deallocation flaw, since if a malloc call

is missed, the data in the freed space is suspect.

The simplest way to check for improper deallocation or deletion flaws is to look for all alloca-

tions and deallocations, and be sure that every deletion or deallocation has a corresponding open

(creation) or allocation. Table 6 summarizes several pairs of allocation and deallocation functions

in the UNIX system. Testing techniques, specifically slicing [18], can easily focus on the func-

tions performing the allocation and deallocation, and this will enable rapid checking of the associ-

ations.

Problems arise when the flaw involves more than one process; unless shared memory is

involved, the flaws will involve files or processes. In this case, the programs for each process

must be analyzed together, and more research is needed to determine how to do this efficiently.

One step will be the locating of programs which interact through process or file manipulation; the

security manual can help here.

Table 5. Pairs of UNIX library and system calls that allocate and deallocate objects

malloc, calloc free, cfree memory allocation (on the heap)
alloca return memory allocation (on the stack)
creat, open close create/open a file
socket close create an IPC channel
fork exit, wait create a process
popen pclose create a process
fopen fclose create/open a file
mmap close allocate shared memory
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4.6. Improper Validation

Improper validation means that insufficient checks are made upon data, and the failure to do

so creates a security problem. Note that protection data need not be involved; the failure of gets to

check the length of its input is a wonderful example; this failure, and the use of gets in a system

daemon, allowed the Internet worm to gain access to system users (usually daemon or nobody,

sometimes root).

Within a single program, the only defense against improper validation is a very careful pro-

gramming style – checking the types and ranges of arguments to functions, being sure that array

(and memory) bounds are not overwritten, and so forth. Using both static and run-time checking

are essential, because of the pointer problem; generating code for checking array bounds when an

index is involved is easy, but when pointers are used, is much more difficult (for example, if two

character arrays are sequential, if a pointer references the first array and then the second, was that

intentional or overflowing bounds?). The tools needed are a syntax checker like the UNIX lint

program or the GNU ANSI C compiler (with warning flags added); these check for type problems,

in some cases range overflow (for example, when a parameter has the type of a set or enumerated

type, and the corresponding argument has a value not in that set or enumerated type). However,

the checks are not exhaustive; for example, if the function expects an argument of 0 or 1, and 2 is

passed, the syntax checkers will not report an error.

A runtime checking system provides this type of support. By adding appropriate assertions

into the program, one can direct actions to be taken if something unexpected occurs. The problem

with such checking mechanisms is that one must understand what the error conditions are before

the checker can be instructed to watch for them. In some cases (as with the flag argument, which

must be either 0 or 1), the error condition is obvious; with others, it may be far more subtle.

Several of the more common programming errors in programs written for the UNIX environ-

ment are summarized in Table 7. A database along the lines of the security manual for the system

calls and library functions [17] would enable a tool such as a “security lint” to check for many

improper validation problems. It would have other uses as well; it would help programmers to

write robust code which did not involve security issues.

At runtime, the return value of functions should be checked. A very common error in UNIX

programs is to forget to check the return value of a system function, or not to validate the reason

for the failure of a system call. For example, an asynchronous read can fail because there is no
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information to be read, but unless the error code is checked, the failure will appear the same as a

failure to read because the file does not exist.

As with the other flaws, detecting problems is greatly aided by the use of an abstraction. The

abstraction operations operate upon the objects in specific ways, and those “specific ways”

impose constraints on legal values. So the abstraction guides the analyst or programmer to the

legal values and operations, and the tools (such as the security lint) would validate that only legal

values and operations occur.

Another, more pernicious form of improper validation is the ability to masquerade as another.

Detecting such a masquerade is beyond the scope of this work; the interested reader is referred to

work on intrusion detection systems [19]. However, a failure to select an adequate one-way trans-

form for reusable passwords is an excellent example of a flaw of improper validation.

4.7. Improper Indivisibility

This category involves operations which need to be atomic but are interruptible. At the user or

program level, the best example is of file locking. On many UNIX systems, all locks are advisory,

and so non-cooperating programs can interfere with one another. Hence, programs which do not

respect the locking conventions can breach security.

Detecting problems of this nature requires abstraction again; one must determine which

sequences of commands or calls need to be executed atomically. A prime example is the mknod

followed by chown discussed in the mkdir attack. Conceptually, the creation of the directory

should be by the person asking for it, not by some other user and then transferred. The latter

scheme was adopted because the UNIX system then did not have a “create directory” system call.

Because of the flaw this introduced, such a system call was added.

Note the relationship between this and category 1c, the change of name flaw; in some sense,

Table 7. Some programming tips for avoiding the improper validation flaw

• Use enumerated types instead of integers or macros whenever possible
• Check all arguments for illegal or unexpected values
• When handling errors, do not make assumptions you cannot verify; if in doubt, stop.
• Check the return values of all functions and system calls for errors.
• If your compiler does range checking, use indices and not pointers to reference array ele-

ments so the range checking can be used.
• Use library functions that do error checking whenever possible (e.g., fgets rather than gets)



– 27 –

these categories overlap, because the improper change of names or privileges often arises due to

inadequate indivisibility. As many systems do not provide mechanisms for user-level atomicity

(that is, once the sequence of indivisible instructions is started, no other user program may run

until that sequence finished) because of the ease of a denial of service attack, mechanisms to pre-

vent flaws of this nature are beyond the users or programmers; they require kernel-level modifica-

tion. The best that can be done is to use an abstraction to determine what those indivisible

operations should be, and use the protection system to enforce them.

Indivisibility occurs when what should be an atomic operation is interrupted, perhaps by a

system crash (leaving the system in an inconsistent state) or a telephone being hung up during a

login sequence (leaving some parts of the login sequence completed and others not). The key is

that the system (or data being accessed) is in an inconsistent state; so, detection mechanisms

require knowledge of the nature of consistent states. Then one can check for these flaws by look-

ing for states which are not consistent; for example, UNIX accounts with no corresponding home

directories, inconsistent transaction databases, and so forth. Unfortunately, prevention requires

kernel-level modifications, since only the kernel can guarantee that a process or action will not be

interrupted by another process or action.

Another example, again from the UNIX environment, will bring this point home. The pass-

word file is a database containing information about user accounts, including data used to authen-

ticate users. If a user’s account is not listed in that file, the user cannot log in. The password file

has a fixed name (/etc/passwd). Updating the password file requires that a copy of it be made with

the changes, and then the existing password file be replaced with the copy. Older versions of the

UNIX system had no atomic file replacement command, so this was done by first deleting the cur-

rent password file, and then binding the new password file to the old one’s name. Often a system

would crash after the removing but before the binding; then systems staff would invoke a monitor

program, build a password file with one entry – the superuser – log in using that account, and then

bind the new password file to the old password file’s name. At that point, the system could be

rebooted again, normally. The security threat is of course a denial of service attack; the fix was to

add an atomic file replacement system call, so the kernel could guarantee that either the old file or

the new file would be bound to the name at all times.
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4.8. Improper Sequencing

Improper sequencing refers to the incorrect ordering of operations. The best example of this

involves two programs writing to the same database. Even if the writes are atomic, the result is

indeterminate because the Bernstein conditions1 are violated.

An excellent example of this is the implementation of the password changing program in

many UNIX systems. As was discussed above, the program creates a temporary password file and

copies the contents of the old one into it, making the necessary changes as it is copied. If two

password changing programs ran simultaneously, whichever bound the name of the password file

to its temporary file last would have its changes take effect. The changes made by the other pro-

gram would be ignored. (The solution was to add a lock file, which prevented the second program

from running. Again, though, note the second program stopped because it honored a convention,

not because the kernel blocked it.)

A second example is the implementation of the mkdir program discussed in Section 3.1. Treat-

ing directory creation, deletion, and change of ownership as writes to the parent directory, the

problem is again that two processes are trying to write to the same location in a file (i.e., same

name of a file in the directory) at once. Again, this violates the Bernstein conditions and causes a

security problem.

This type of flaw can be found much in the way improper changes can be found: one needs to

determine the sequence of events (here, function and system calls) that can cause an improper

serialization flaw to occur, and given that sequence of system and function calls, one can use the

testing methods described above to locate such problems. Again, the testing work is preliminary,

but has been successful in small cases, and there is every reason to believe it can be generalized to

multiple processes.

4.9. Improper Choice of Operand or Operation

Because the choice of operand or operation admits so many possibilities, rather than to take

the approach of detecting improper choices, let us approach the problem by detecting all choices

and eliminating proper ones. Again, this means we must work from the abstraction on down to the

implementation.

1. The Bernstein conditions disallow reading and writing, or two processes writing, simultaneously [23]
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A very famous bug arose in some versions of UNIX UUCP when the shell’s built-in operators

were augmented to include the in-line command evaluation operator ‘. The uuxqt program, which

received commands from the remote program uux, would scan the user-supplied command look-

ing for command dividers such as pipes, and check each command to be sure the UUCP system

configuration allowed that command to be executed. Since it did not know about the in-line com-

mand evaluation operator, it assumed the next word was an argument to the previous command

rather than a command itself. It would pass the command to a shell, which would then execute the

command. For example, the sequence

uux ‘remote!rmail ‘mail local!bishop < /etc/passwd‘ local!bishop

would enable bishop to acquire a copy of the remote system’s password file whether or not the

UUCP system were configured to allow the remote user to use the mail command.

Signs that there may be an instance of this flaw are erroneous types (either in program argu-

ments, function or system call arguments, or in return values); error codes (because this may leave

the system in an unsafe state); and anomalous responses, such as “unfairly” favoring one set of

users over another (unfair is in quotes because this is a matter of policy, not inherent to the sys-

tem).

This type of flaw can arise in one of two ways: an abstraction operation may be chosen incor-

rectly, or the implementation may be poorly (incorrectly) chosen. In the former case, one must

analyze the design of the abstraction and its operations to determine what the correct operation is,

and under what conditions such operation will occur (or can fail); then, one must ensure the

implementation adequately enforces those constraints. In the latter case, by going from imple-

mentation to abstraction, one can see what the abstraction operations are (as opposed to what they

should be) and analyze those for correctness and fairness in light of the site security policy.

4.10. Summary

On looking at the methods of detection and prevention for all these flaws, the notion of

“abstraction” stands out. It is vital to understand our use of this term: we do not mean a formal

model (although if feasible that may be used). We mean instead an abstraction in the object-ori-

ented sense: a collection of smaller parts and operations lumped together with well defined inter-

faces providing the only access to the internal representation. All too often, systems and

subsystems are thrown together with little or no thought to how they will interact with other sys-
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tems or subsystems; thus, as more security is needed, the modularity (if any) of the original entity

is lost. The abstraction no longer reflects reality.

So, our suggestion is to look at the implementation itself, which exists, and abstract based

upon that. What are the goals of the data being accessed? How can it be accessed? What interfaces

are used? Frame these as abstract operations accessing an abstract object. Then ask what opera-

tions should be allowed upon that abstract entity. If the abstract operations that are allowed does

not correspond to the set of operations that should be allowed, security problems arise. Further, if

the implementation of the abstraction allows access through mechanisms other than the abstract

operations (for example, direct editing of a database rather than updates), several types of vulner-

abilities exist. It is left to the reader, and the security analyst, to determine what those flaws might

be.

5. Conclusion

The goal of this work is to argue that a coherent and accurate taxonomy of system vulnerabil-

ities can aid in the detection of exploitation or those flaws, as well as provide guidance in amelio-

rating or eliminating them.

The work presented herein can best be described as very promising. Because only a few vul-

nerabilities were classified, we have presented merely an argument that the taxonomy of vulnera-

bilities is complete. One area for future work is the analysis of other vulnerabilities, their

placement in this taxonomy, and whether or not the taxonomy must be expanded to include new

vulnerabilities.

Related to this is the correlation of the axes. Currently, we are classifying security flaws based

upon 5 axes. But suppose certain types of flaws required 2 processes, and the rest only 1. Then

one axis is redundant. Of the flaws classified above, those in vulnerability classes 1c (improper

change) and 3b (improper synchronization) all use 2 processes, and the rest 1 process. Is this

always true? Analysis of vulnerabilities may reveal other correlations.

As a side point, if the flaws tend to concentrate in some set of classes, this suggests either that

the flaws tend to be in those categories, or that we are unaware of flaws in other categories; and in

either case, the hunt for flaws in the sparsely populated classes should be intensified. If the flaws

tend to occur during development, then more effort in the detection of those flaws must be made

during development. Finally, the place where the flaws were first publicized gives guidance about
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where to look for vulnerabilities information; the author had no idea that so many vulnerabilities

came from the USENET.

The detection and prevention work is also at an embryonic stage. Testing techniques, abstrac-

tion techniques, and an implementation guide to the security-related properties of each program

(or set of programs) are central to effective detection and prevention. In particular, the ability to

determine the abstractions that a system is implementing is crucial; once this is done, one needs to

check that the abstraction is correctly implemented and properly isolates the implementation

details – rather like a reference monitor. The conclusion from this approach is obvious, and some-

what surprising: the same techniques that are used to formally verify the design of a secure system

may be applied to existing system. Going from implementation to abstraction is the only addi-

tional step.

In practise, formal methods are unlikely to be used as they are still not yet well developed

enough, and the burden of abstracting to the degree necessary to use them may be quite high.

However, this provides an additional impetus for their study. It also argues for an “informal” for-

mal analysis (that is, analysis and argument rather than abstraction to a mathematical design and

proof) for several reasons.

First, understanding the security of the existing system requires an understanding of how all

its components work,. and how they are intended to work. All too often, system maintainers and

developers patch or build on existing structures without considering the abstraction of the part

they are maintaining or developing. This causes major security problems, as we saw with the NIS

password example, because often the wrong tools are modified.

Secondly, it forces the managers (purchasers, users, etc.) to understand their security needs

and how effectively the system can support those needs. For example, as the UNIX operating sys-

tem made its way from the research laboratory into the commercial world, one major complaint

about it was its lack of security mechanisms such as IBM, Burroughs, and other systems pro-

vided. Part of the complaints stemmed from an ignorance of the UNIX system, but far more from

the misunderstanding that the UNIX system was not designed to be secure [20]. Commercial ven-

dors began to add on security mechanisms for their clients, or third parties began to supply secu-

rity mechanisms, as the UNIX community absorbed the complaints and tried to deal with them,

but, as [21] points out, retrofitted mechanisms are never as good as those designed in from the

start. Problems still arise when firms purchase UNIX systems not understanding the type of secu-
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rity those systems provide.

Finally, it enables one to analyze realistically proposed security solutions. If a new mechanism

is proposed, the analysts determining what should be recommended can take their solution and

analyze it in light of the above classification scheme for vulnerabilities and the abstractions of the

system. They can make a more realistic estimate of the effectiveness of the mechanism upon

detection of attacks and prevention of security incidents. A guide to where problems have histori-

cally been the most likely to occur, and the relationship between vulnerabilities and their risks

(how many users they may affect, etc.) may be gleaned from statistics such as the rough statistics

presented in section 3.11. This may provide some help in where to look first for problems.

Those statistics are useful in a non-technical way. They provide some ideas about sources for

vulnerabilities: bulletin board systems, the USENET, and other non-academic channels. Interest-

ingly enough, the emergency response teams do not publish descriptions of vulnerabilities

(although some do publish notices – not details – of the vulnerabilities when the fixes are avail-

able); but others are much less recent. What exactly is the legal liability for posting a script for

exploiting a vulnerability to a public place such as the USENET? That has not been decided. It

undoubtedly will be.

The role of auditing is another issue. In this paper we have not discussed auditing in detail,

primarily because of a lack of data. However, with the proper view, auditing can play a major role

in the detection of attacks exploiting some of the vulnerabilities above. The key is to determine

the signature of the flaws, and then look for commands that contain those characteristic patterns.

For example, in the UNIX system, one signature would be an open system call followed by a

chown system call; this indicates a possible improper change (category 1c) flaw. So, instead of

looking for the specific high-level attack, one need only look for the low-level exploitation.

This ties into the notion of goal-oriented auditing and logging, which is an extension of the

work of [22]. Using that approach, one determines first what one will use the auditing mecha-

nisms to look for, and then builds in the audit mechanism to make the appropriate log entries. If

logging is already provided (as is the case here), this refinement process indicates exactly what to

look for.

We have outlined very rough mechanisms for both detection and prevention; these mecha-

nisms need to be refined, and in some cases tools crafted, to aid the security analyst in his or her

task. We need to analyze audit trails to determine what audit entries will indicate the attack has
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been launched; we can do this in part by using goal oriented auditing and logging, where we pro-

ceed from the end result we want to what the logs need to record. This future research is one of the

most exciting areas in the field of computer security.
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