CONSORTIUM FOR IT SOFTWARE QUALITY
Advances In A Standards

“Galining Assurance”

Robert A. Martin

Emile Monette, GSA

Dr. Paul Black, NIST

Michael Kennedy, ISE DNI

Don Davidson, Office of DoD CIO

CIS() Today’s Reality — Requires confidence in our

software-based cyber technologies

* Water
) I « Agriculture and Food * Public Health
De p e n d e n C I eS O n * Energy « Telecommunications
« Transportation * Banking and Finance
teC h n O | O g y ar e « Chemical Industry * Key Assets

* Postal and Shipping

greater then ever
* Possibility of

» xot®
Critical Infrastructure / Key Resources %%

disruption is greater . Retirond Tragee | RESETVOIrS Treatment plants 7 ECT I PREER0S
« Highway Bridges « Food Processing Plants * Delivery Sites
than ever because | bipelnes O Taepitas oo Pt Nuclea power plants
hardware/ software is " cable o Sites + Dams
e Fiber A
vulnerable oo
: Physical Infrastructure &
e Loss of confidence
Services . Hardware
alone Can Iead tO : 'I\Anigfr?g:igscumy « Database Servers
. ~ * Networking Equipment
stakeholder actions Control Systems software —
. .. « SCADA Financial Syste |nternet
that disrupt critical .« PCS + Human Resour « Domain Name System
. L. « DCS * Web Hosting ot
business activities ol e

Cyber Infrastructure

THE GLOBAL STANDARD FOR SOFTWARE QUALITY : g™ % A wwwiit-cisq.org

Everything’s Connected

Your System is
attackable...

When this Other System gets subverted
through an un-patched vulnerability, a
mis-configuration, or an application
weakness...

CIS() Assurance: |
Mitigating Attacks That Impact Operations

_ screen close fill sub
water flooding door in sub door wiwater sunk same
Known Attack Weaknesses Controls* Technical Operational
Threat Patterns (CWESs) System & Impacts Impacts
Actors (CAPECS) Svg,g;&ggeﬁggw
% ® ---o Attack o--——o Weakness * T Item T —* Impact
|
|
—° Asset “{
|
% ¢ Attack j>—----o Weakness * 1 Item ¢4~ Impact
| Function -
Attack ~-® Weakness Impact
Asset 4
==s9 \Weakness ¢—9 |tem -

* Controls include architecture choices, design choices, added security

functions, activities & processes, phy5|cal decomposmon choices,
code assessments, design reviews, dynamic testing, and pen testing

THE GLOBAL STANDARD FOR SOFTWARE QUALITY _ ‘ A A wwwiit-cisq.org

ClSQ Assurance on the Management of Weaknesses

Using similar information to
Function Point calculations

Attack Surface Analysis/ Threat
Threat Modeling — - N7
Threat Vector
Manage Risk Eliminate v Mitigate
During Development ® Weakness 7
v
Vulnerability
Assess Deployment Risk 2

Block from Attack €= C°$r°| = Alarm for Attack/Exploit
Operational Mitigation Implementation

v
Validate/Verify Test

THE GLOBAL STANDARD FOR SOFTWARE QUALITY : r A wwwiit-cisq.org

CISQ

THE GLOBAL STANDARD FOR SOFTWARE QUALITY - R wwwiitcisq.org

CISQ

THE GLOBAL STANDARD FOR SOFTWARE QUALITY - R wwwiitcisq.org

CIS For DoD Software Assurance iIs defined by

Public Law 113-239 “Section 933 - Software
Assurance”

DoD Software-based System

Program Office
Mi_Iestone Reviews
Software Assurance.—The term “software with OSD on SwA
assurance” means the level of confidence Program Protection Plan’s
. . . Application of Software
that software functions as intended and is Assurance Countermeasures”
free of vulnerabilities, either intentionally or i B
unintentionally designed or inserted as part (13> Code nsnections
I e CVE
gf ttggssoftware, throughout the life cycie. L CVE o
ec CWE

Pen Test

» Test Coverage

COanden ce Operational System

» Failover Multiple Supplier
Redundancy

» Fault Isolation

» Least Privilege

| » System Element Isolation

functions as intended | |« Input checking/validation

* SW load key

Development Environment

* Source

|« Release Testing

» Generated code inspection

free of vulnerabilities
| THE GLOBAL STANDARD FOR SOFTWAREQUALITY & " A \\ww.it-cisg.org

DoD Program Protection Plan (PPP)
Software Assurance Methods Countermeasure

Selection

Development Process

Apply assurance activities to the
procedures and structure imposed on
software development

Operational System
Implement countermeasures to the
design and acquisition of end-item
software products and their interfaces

Development Environment
Apply assurance activities to the
environment and tools for developing,

testing, and integrating software code
and interfaces

Additional Guidance in PPP Outline and Guidance

CISQ

13.7.3. Software Assurance

13.7.3.1. Development Process

13.7.3.1.1 Static Analysis

13.7.3.1.2 Design Inspection

13.7.3.1.3 Code Inspection

13.7.3.1.4. Common Vulnerabilities and Exposures (CVE)

13.7.3.1.5. Common Attack Pattern Enumeration and Classification (CAPEC)

13.7.3.1.6. Common Weakness Enumeration information (CWE)

..... Penetration Tes
13.7.3.1.8 Test Coverage
13.7.3.2. Operational System
13.7.3.2.1. Failover Multiple Supplier Redundancy
13.7.3.2.2. Fault Isolation
13.7.3.2.3. Least Privilege
13.7.3.2.4. System Element Isolation
13.7.3.2.5. Input Checking/Validation
13.7.3.2.6. Software Encryption and Anti-Tamper Techniques (SW load key)
13.7.3.3. Development Environment
13.7.3.3.1 Source Code Availability
13.7.3.3.2. Release Testing
13.7.3.3.3. Generated Code Inspection

13.7.3.3.3. Additional Countermeasures

S \Wt-Cisq.0rg

CISQ

THE GLOBAL STANDARD FOR SGFTWARE P - — A Www.it-cisq.q

prg

Industry Uptake

THE GLOBAL STANDARD FOR SOFTWARE GIUALITY . w S wwwit-cisg.org

Industry Uptake

Agile

IVIIL
mon

THE GLOBAL STANDARD FOR SOFTWARE QUALITY JIp—— R wwwiitcisq.org

Idaho National Labs SCADA Report

THE GLOBAL STANDARD FOR SOFTWARE QUALITY - R wwwiitcisq.org

CISQ

THE GLOBAL STANDARD FOR SOFTWARE QUALITY - R wwwiitcisq.org

Application Security Risks

Injection

What Are Application Security Risks?

Attackers can p o
hese paths Kk that may, or may not, to

to do harm to your business or organization. Each of

Threat Attack

Securiy
Agents Vectors

Weakneskes

Technical
Impacts

Business
Impacts

Impact

Impact

Sometimes, these paths are trvial

larly, the harm that is

caused may be of no consequence, or it may put you out o business. To determine the risk to your organization, you can
gent, attack vector, d combi h

of the technical and business imp: & Together, these

the overal risk.

What'’s My Risk?

References

‘The OWASP Top 10 focuses on identifying the most serious risks for a broad array
of organizations. For each of these risks, we provide generic information about
‘which

based on th

NASP Risk Rating Methodology

OwAsP
+ OWASP Risk Rating Methodology

%..... - Attack °

asnnung@ Security sssssnnafssg Technical g..k. Business
theatt Vectors Weakness Impacts Impacts
gents
s . Prevalence Detectability Application /
Application Specific COMMON AVERAGE Business Specific

Attacker sends
simple text-based
attacks that exploit
the syntax of the
targeted
interpreter. Almost
any source of data
can be an injection
vector, including
internal sources.

Consider anyone
who can send
untrusted data to
the system,
including external
users, internal
users, and
administrators.

Injection flaws occur when an application
sends untrusted data to an interpreter.
Injection flaws are very prevalent,
particularly in legacy code. They are often
found in SQL, LDAP, Xpath, or NoSQL
queries; OS commands; XML parsers,
SMTP Headers, program arguments, etc.
Injection flaws are easy to discover when
examining code, but frequently hard to
discover via testing. Scanners and fuzzers
can help attackers find injection flaws.

Consider the
business value of
the affected data
and the platform
running the
interpreter. All data
could be stolen,
modified, or
deleted. Could your
reputation be
harmed?

Injection can result
in data loss or
corruption, lack of
accountability, or
denial of access.
Injection can
sometimes lead to
complete host
takeover.

Threat | Attack
agents | vectors

Weakness | Weakness | Technical | Business
prevalence | Detectabitty | impacts

App /
Business
Specific

Avp vera ommon | _Avera ferate
sportc Jveee | Average | Moderat
Dificult | uncommon Diffcult | inor

nly you know the specifics of your environment and your business. For any given
i here may not be can perform

Therefore,
vou should evaluate each risk for yourself, focusing on the threat agents, security

trols, and b Your enterprise. We it Threat Agents
Application Specifc, and Business Impacts as Application / Business Specific to
indicate the details about your

enterprise.

“The names of the risks in the Top 10 stem from the type of attack, the type of
weakness, or the type of impact they cause. We chose names that accurately

raise awareness

« Article on Threat/fisk Modeling

External

Am | Vulnerable To Injection?

The best way to find out if an application is vulnerable to
injection is to verify that all use of interpreters clearly
separates untrusted data from the command or query. For
SQL calls, this means using bind variables in all prepared
statements and stored procedures, and avoiding dynamic
queries.

Checking the code is a fast and accurate way to see if the
application uses interpreters safely. Code analysis tools can
help a security analyst find the use of interpreters and trace

How Do | Prevent Injection?

Preventing injection requires keeping untrusted data
separate from commands and queries.

1.

the data flow through the application. Penetration testers can

validate these issues by crafting exploits that confirm the
vulnerability.

Automated dynamic scanning which exercises the application

may provide insight into whether some exploitable injection
flaws exist. Scanners cannot always reach interpreters and
have difficulty detecting whether an attack was successful.
Poor error handling makes injection flaws easier to discover.

Example Attack Scenarios

Scenario #1: The application uses untrusted data in the
construction of the following vulnerable SQL call:

String query = "SELECT * FROM accounts WHERE
custID="" + request.getParameter("id") + "'";

Scenario #2: Similarly, an application’s blind trust in
frameworks may result in queries that are still vulnerable,
(e.g., Hibernate Query Language (HQL)):

Query HQLQuery = session.createQuery(“FROM accounts
WHERE custID="“ + request.getParameter("id") + """);

In both cases, the attacker modifies the ‘id’ parameter value
in her browser to send: 'or '1'='1. For example:

http://example.com/app/accountView?id=' or '1'='1

This changes the meaning of both queries to return all the
records from the accounts table. More dangerous attacks
could modify data or even invoke stored procedures.

The preferred option is to use a safe APl which avoids the
use of the interpreter entirely or provides a
parameterized interface. Be careful with APIs, such as
stored procedures, that are parameterized, but can still
introduce injection under the hood.

If a parameterized APl is not available, you should
carefully escape special characters using the specific
escape syntax for that interpreter. OWASP’s ESAP|
provides many of these escaping routines.

Positive or “white list” input validation is also
recommended, but is not a complete defense as many
applications require special characters in their input. If
special characters are required, only approaches 1. and 2.
above will make their use safe. OWASP’s ESAPI has an
extensible library of white list input validation routines.

References
OWASP
* OWASP SQL Injection Prevention Cheat Sheet

* OWASP Query Parameterization Cheat Sheet

* OWASP Command Injection Article

* OWASP XML eXternal Entity (XXE) Reference Article

* ASVS: Output Encoding/Escaping Requirements (V6

External

* CWE Entry 77 on Command Injection

* CWE Entry 89 on SQL Injection

* CWE Entry 564 on Hibernate Injection

C|SQ Prioritizing by Technical Impacts:

CWE's Common Consequences

THE GLOBAL STANDARD FOR SOFTWARE QUALITY JIp—— R wwwiitcisq.org

C'SQ CWE’s all lead to these Technical Impacts

Modify data

Read data

DoS: unreliable execution

DoS: resource consumption

Execute unauthorized code or commands
Gain privileges / assume identity

Bypass protection mechanism

Hide activities

THE GLOBAL STANDARD FOR SOFTWARE QUALITY . r A wwwiit-cisq.org

CIS([utilizing a Priority List of Weaknesses

Code CWEs a capability
Review claims to cover
Static
Analysis
Tool A
Most

' Important

it]a;: ; sis Weaknesse
)

Tool B (CWEs)
gl Which stati lysi
Testin Ich static analysis
Servic%s tools and Pen Testing

services find the CWEs
| care about?

THE GLOBAL STANDARD FOR SOFTWARE QUALITY - R wwwiitcisq.org

CIS([Scoring Weaknesses Discovered in Code

THE GLOBAL STANDARD FOR SOFTWARE QUALITY - R wwwiitcisq.org

CIS() Assurance & the Systems Dev. Life-Cycle...

~

Abuse Case |~
Development

Application Security Code
Review (developed and

N\

Gather All of the
Evidence for the
Assurance Case and

Cyber purchased), Penetration
Threat/ Testing & Abuse Case Get It Approved
Attack Driven Testing
Anglysis \ |
(Program
A B \Initiation) C 10C FOC
Concept | Technology | System Development Production & Operations &
Refinement | Development & Demonstration Deployment Support
and'Systems e ERP
Gecieion Design DEeE RIPAOTSE 0 Review "
Pre-Systems Acquisition Systems Acquisition Sustainment

Attack-based
Application Design
Security Review

Attack Analysis against
Supply Chain &
Application Architecture
Security Review

Application Security Code
Review, Penetration Testing &
Abuse Case Driven Testing of
Maintenance Updates

* |deally Insert SWA before RFP release in Analysis of Alternatives

THE GLOBAL STANOARD FOR SOFTWARE QUALITY _

RN v t-CiSg,0rg

CISQ

Leveraging and Managing to take Advantage of
the Multiple Detection Methods

m Different assessment methods are effective at
finding different types of weaknesses

B Some are good at finding the cause and some at

finding the effect

Static Penetration Data Code Architecture
Code Test Security Review Risk
Analysis Analysis Analysis
Cross-Site Scripting (XSS) X X X
SQL Injection X X X
Insufficient Authorization Controls X X X X
Broken Authentication and Session Management X X X X
Information Leakage X X X
Improper Error Handling X
Insecure Use of Cryptography X X X
Cross Site Request Forgery (CSRF) X X
Denial of Service X X X X
Poor Coding Practices X X

THE GLOBAL STANOARD FOR SOFTWARE QUALITY e

R 4 S v Wt-CiSg,0rg

CIS([) Deteutiain ivettksdsCommon Consequences

THE GLOBAL STANDARD FOR SOFTWARE QUALITY ; = A wwwiitcisq.org

ClSQ New Detection Methods Launched Feb 17

THE GLOBAL STANDARD FOR SOFTWARE QUALITY - R wwwiitcisq.org

CISQ

THE GLOBAL STANDARD FOR SOFTWARE QUALITY - R wwwiitcisq.org

CIS CWE will leverage the “State of the Art Resource” (SOAR):

Software Table of “Verification Methods”

THE GLOBAL STANDARD FOR SOFTWARE QUALITY . i - A wwwiitcisq.org

Optional: FFRDC name here

© 2012 The MITRE Corporation. All rights reserved. For internal MITRE use MITRE

CISQ cCISQ Security Measure

Objective
Develop automated source
code measures that predict the
vulnerability of source code to
external attack. Measure based
on the Top 25 in the Common
Weakness Enumeration

a

\/

THE GLOBAL STANDARD FOR SuFTWARE QUALITY - w A wwwiitcisq.org

CIS0 Measuring Security by Violated Rules

Structure of ISO 25023 Measures Structure of CISQ Security Measure

---»

Security

\

Confidentiality, Authenticity,

Integrity, Accountability, etc.

'
'

Quality Rule Violations

---»

—
[]
ISO structure .
[

Examples from CISQ measures

[
[
[]
- =

Cross-site scripting
SQL injection

Buffer overflow

OS command injection
Unvalidated array

Etc.

R v Wt-CiSg,0rg

CIS(Example Security Issue—~Rule—~Measure

CWE-89: Improper Rule 2: Use a vetted library or Measure 2: # of instances where
Neutralization of Special framework that does not allow data is included in SQL statements
Elements used in an SQL SQL injection to occur or provides | that is not passed through the
Command ('SQL Injection’) constructs that make this SQL neutralization routines.

injection easier to avoid or use
persistence layers such as
Hibernate or Enterprise Java
Beans.

CIS f 19 of the CWE Top 25:
79, 89, 22,434, 78, 798, 706, 129, 754, 131,
327, 456, 672, 834, 681, 667, 772, 119

THE GLOBAL STANDARD FOR SOFTWARE QUALITY - w A wwwiitcisq.org

TABLE OF CONTENTS

CROSSTALK

Departments
P AVAR Jeff Schwalb MITIGATING RISKS OF COUNTERFEIT AND TAINTED COMPONENTS

3 From the Sponsor

OHS Joe Jarzombek
309 SMXG Karl Rogers

34 Upcoming Events

35 BackTalk

Mitigating Risks of Counterfeit and Tainted

4
10

15
20

25

30

Non-Malicious Taint:

Bad Hygiene is as Dangerous to the Mission ag
Until both malicious and non-malicious aspects of taint car|
that are visible and verifiable, there will be a continued lack|
assurance in delivered capabilities throughout their lifecycl
by Robert A. Martin

Collaborating across the Supply Chain to Addr|
Taint and Counterfeit

The community of acquirers and providers of technology
sus on two basics questions: 1) Where is the mitigation foq
discussing issues that occur in technology development or|
have been tampered with?

by Dan Reddy

Software and Supply Chain Risk Management Ass|
The DoD, the defense industrial base, and the nation'’s criti
face challenges in Supply Chain Risk Management Assurg
challenges span infrastructure, trust, competitiveness, and

by Don O’Neill

Malware, “Weakware,” and the Security of Softwar
The need for security often exceeds the ability and will of
design secure software architectures, implement secure ¢
form functional security testing, and carefully manage the i
products on various platforms and in different environment

by C. Warren Axelrod, Ph.D.

Problems and Mitigation Strategies for Developing
and Validating Statistical Cyber Defenses

The development and validation of advanced cyber securit
ly relies on data capturing normal and suspicious activities
ers. However, getting access to meaningful data continues|
for innovation in statistical cyber defense research.

by Michael Atighetchi, Michael Jay Mayhew, Rachel
and Aaron Adler

Earned Schedule 10 Years Later: Analyzing Military
While progress has been made in understanding the utility
(ES) in some small scale and limited studies, a significant ¢
acquisition programs is missing.

by Kevin T. Crumrine, Jonathan D. Ritschel, Ph.D., and

2 CrossTalk—March/April 2014

MITIGATING RISKS OF COUNTERFEIT AND TAINTED COMPONENTS

Non-Malicious Taint

Bad Hygiene is as Dangerous to
the Mission as Malicious Intent

Robert A. Martin, MITRE Corporation

Abstract. Success of the mission should be the focus of software and supply chain
assurance activities regardless of what activity produces the risk. It does not matter if
a malicious saboteur is the cause. It does not matter if it is malicious logic inserted at
the factory or inserted through an update after fielding. It does not matter if it comes
from an error in judgment or from a failure to understand how an attacker could
exploit a software feature. Issues from bad software hygiene, like inadvertent coding
flaws or weak architectural constructs are as dangerous to the mission as malicious
acts. Enormous energies are put into hygiene and quality in the medical and food
industries to address any source of taint. Similar energies need to be applied to
software and hardware. Until both malicious and non-malicious aspects of taint can
be dealt with in ways that are visible and verifiable, there will be a continued lack of
confidence and assurance in delivered capabilities throughout their lifecycle.

Background

Every piece of information and communications technology
(ICT) hardware—this includes computers as well as any device
that stores, processes, or transmits data—has an initially embed-
ded software component that requires follow-on support and
sustainment throughout the equipment's lifecycle.

The concept of supply chain risk management (SCRM) must
be applied to both the software and hardware components
within the ICT. Because of the way ICT hardware items are
maintained, the supply chain for ongoing sustainment support
of the software is often disconnected from the support for the
hardware (e.g., continued software maintenance contracts with
third parties other than the original manufacturer). As a result,
supply chain assurance regarding software requires a slightly
unique approach within the larger world of SCRM.

Some may want to focus on just “low hanging fruit" like ban-
ning suspect products by the the country they come from or
the ownership of the producer due to their focused nature and
ignore more critical issues surrounding the software aspect of
ICT like the exploitable vulnerabilities outlined in this article. It is
a misconception that “adding” software assurance to the mix of
supply chain concerns and activities will add too much com-
plexity, thereby making SCRM even harder to perform. Some
organizations and sectors are already developing standards of
care and due-diligence that directly address these unintended
and bad hygiene types of issues. That said, such practices
for avoiding the bad hygiene issues that make software unfit
for its intended purpose are not the norm across most of the
industries involved in creating and supporting software-based
products. Mitigating risk to the mission is a critical objective
and including software assurance as a fundamental aspect of
SCRM for ICT equipment is a critical component of delivering
mission assurance.

4 CrossTalk—March/April 2014

During the past several decades, software-based ICT capa-
bilities have become the basis of almost every aspect of today's
cyber commerce, governance, national security, and recreation.
Software-based devices are in our homes, vehicles, commu-
nications, and toys. Unfortunately software, the basis of these
cyber capabilities, can be unpredictable since there are now
underlying rules software has to follow as opposed to the rest
of our material world which is constrained by the laws of gravity,
chemistry, and physics with core factors like Plank's Constant.
This is even more true given the variety and level of skills and
training of those who create and evolve cyber capabilities. The
result is that for the foreseeable future there will remain a need
to address the types of quality and integrity problems that leave
software unreliable, attackable, and brittle directly. This includes
addressing the problems that allow malware and exploitable
vulnerabilities to be accidentally inserted into products dur-
ing development, packaging, or updates due to poor software
hygiene practices.

Computer language specifications are historically vague and
loosely written. (Note: ISO/IEC JTC1 SC22 issued a Techni-
cal Report [1] with guidance for selecting languages and using
languages more secure and reliably.) There is often a lack of
concern for resilience, robustness, and security in the variety
of development tools used to build and deploy software. And
there are gaps in the skills and education of those that manage,
specify, create, test, and field these software-based products.

Additionally, software-based products are available to at-
tackers who study them and then make these products do
things their creators never intended. Traditionally this has led
to calls for improved security functionality and more rigorous
review, testing, and management. However, that approach fails
to account for the core differences between the engineering
of software-based products and other engineering disciplines.
Those differences are detailed later in this article.

The need to address these differences has accelerated as
more of the nation’s critical industrial, financial, and military ca-
pabilities rely on cyber-space and the software-based products
that comprise this expanding cyber world. ICT systems must be
designed to withstand attacks and offer resilience through bet-
ter integrity, avoidance of known weaknesses in code, architec-
ture, and design. Additionally, ICT systems should be created
with designed-in protection capabilities to address unforeseen
attacks by making them intrinsically more rugged and resilient
so that there are fewer ways to impact the system. This same
concern has been expressed by Congress with the inclusion
of a definition of “Software Assurance” in Public Law 112-239
Section 933 [2] where they directed DoD to specifically address
software assurance of its systems.

Defining “Taint” and Software Assurance

While there is no concrete definition of what “taint” specifi-
cally means within the cyber realm, we would be remiss not to
look to the general use of the term, as well as synonyms and
antonyms. Merriam Webster [3] provides a useful point-of-
departure, as shown in Table 1 below.

nical Impacts by Detection M

2: Matching Coverage Claims to Your Organization's Needs

dressed using general engineering and process improve-
methodologies. However, it is clear that software fails from
other than these causes. As discussed above, software
s no laws unless their creators impose them and can fail
individual implementation mistakes or through the intro-
In of weaknesses or malicious logic.

software developers or systems engineering practitioners
he training and experience to recognize, consider, and
hese weaknesses. Few (if any) tools or procedures are

le to review and test for all weaknesses in a systematic

r. Developers are rarely provided with criteria about what
f problems are possible, and what their presence could
to the fielded software system and its users.

anage these risks we cannot just expect to come up

e “right security requirements”” We also need to provide a
dology that assists in gaining assurance through the gath-
f evidence and showing how that information provides
nce and confidence that the system development process
sed the removal or mitigation of weaknesses that could

exploitable vulnerabilities. The changes in revision 4 of

al Institute of Standards and Technology (NIST) Special
lation 800-53 [13] directly bring assurance into the secu-
sture equation.

CrossTalk-March/April 2014

B Wwww.it-cisg.org

Weakness #1 “

Capability

v xe B

Weakness #2 ‘ Weakness #3 '

R v witCiSq.0rg

THE GLOBAL STANOARD FOR SOFTWARE QUALITY

Attacks &

Hazards Impact from

Weakness #1

Exploitable Weakness #1
(a vulnerability)

Exploitable Weakness #2
(a vulnerability)

Weakness #3

Impact from
Weakness #3

THE GLOBAL STANOARD FOR SOFTWARE QUALITY

R it ciSq.0rg

C|SQ Many Capabilities Support the Mission

P«
Capability
Capability
Capability
- Capability S “Chips

Software

Capability

Systems

Supply Chain Activities

THE GLOBAL STANDARD FOR SOFTWARE QUALITY o O A v \wit-cisq.org

CISQ

THE GLOBAL STANDARD FOR SOFTWARE QUALITY - R wwwiitcisq.org

ClSD Assurance on the Management of Weaknesses

Threat
W

Threat Vector

Eliminate v Mitigate
CWE ® Weakness 7

Z

CVE Vulnegbility

Block from Attack € €ontrol 5 Alarm for Attack/Exploit
CAPEC v

Implementation

v

Test

THE GLOBAL STANDARD FOR SOFTWARE QUALITY : g™ % A wwwiit-cisq.org

