
Advances in IA Standards

“Gaining Assurance”

Robert A. Martin
Emile Monette, GSA
Dr. Paul Black, NIST
Michael Kennedy, ISE DNI
Don Davidson, Office of DoD CIO

Today s Reality – Requires confidence in our
software-based cyber technologies

•  Dependencies on
technology are
greater then ever

•  Possibility of
disruption is greater
than ever because
hardware/ software is
vulnerable

•  Loss of confidence
alone can lead to
stakeholder actions
that disrupt critical
business activities

Services
•  Managed Security
•  Information
Services Software

•  Financial Systems
•  Human Resources

Hardware
•  Database Servers
•  Networking Equipment

Internet
•  Domain Name System
•  Web Hosting

Control Systems
•  SCADA
•  PCS
•  DCS

Cyber Infrastructure

•  Agriculture and Food
•  Energy
•  Transportation
•  Chemical Industry
•  Postal and Shipping

•  Water
•  Public Health
•  Telecommunications
•  Banking and Finance
•  Key Assets

Critical Infrastructure / Key Resources

•  Railroad Tracks
•  Highway Bridges
•  Pipelines
•  Ports
•  Cable
•  Fiber

•  FDIC Institutions
•  Chemical Plants
•  Delivery Sites
•  Nuclear power plants
•  Government Facilities
•  Dams

Physical Infrastructure

•  Reservoirs Treatment plants
•  Farms
•  Food Processing Plants
•  Hospitals
•  Power Plants
•  Production Sites

Everything’s Connected

When this Other System gets subverted
through an un-patched vulnerability, a
mis-configuration, or an application
weakness

Your System is
attackable

 Weakness

 Weakness

 Weakness

 Weakness

Asset

Attack

Impact

Item

Item

Item

Attack

Attack

Function

Asset

Impact

Impact

Known
Threat
Actors

Attack
Patterns

(CAPECs)

Weaknesses
(CWEs)

Controls* Technical
Impacts

Operational
Impacts

* Controls include architecture choices, design choices, added security
functions, activities & processes, physical decomposition choices,
code assessments, design reviews, dynamic testing, and pen testing

System &
System Security

Engineering
Trades

Assurance:
Mitigating Attacks That Impact Operations

water flooding
screen

door in sub
close
door

fill sub
w/water sunk same

Assurance on the Management of Weaknesses

Eliminate Mitigate

Block from Attack Alarm for Attack/Exploit

Attack Surface Analysis/
Threat Modeling

Using similar information to
Function Point calculations

DoD Software-based System

Program Office
Milestone Reviews
with OSD on SwA

Program Protection Plan’s
“Application of Software

Assurance Countermeasures”
Development Process
•  Static Analysis
•  Design Inspection
•  Code Inspections
•  CVE
•  CAPEC
•  CWE
•  Pen Test
•  Test Coverage

Operational System
•  Failover Multiple Supplier

Redundancy
•  Fault Isolation
•  Least Privilege
•  System Element Isolation
•  Input checking/validation
•  SW load key

Development Environment
•  Source
•  Release Testing
•  Generated code inspection

Software Assurance.—The term ‘‘software
assurance’’ means the level of confidence
that software functions as intended and is
free of vulnerabilities, either intentionally or
unintentionally designed or inserted as part
of the software, throughout the life cycle.
Sect933

confidence

free of vulnerabilities

functions as intended

For DoD Software Assurance is defined by
Public Law 113-239 “Section 933 - Software
Assurance”

Additional Guidance in PPP Outline and Guidance

Development Process
Apply assurance activities to the
procedures and structure imposed on
software development

Operational System
Implement countermeasures to the
design and acquisition of end-item
software products and their interfaces

Development Environment
Apply assurance activities to the
environment and tools for developing,
testing, and integrating software code
and interfaces

Countermeasure
Selection

DoD Program Protection Plan (PPP)
Software Assurance Methods

Industry Uptake

CWE

Industry Uptake
Agile

CWE

Idaho National Labs SCADA Report

Prioritizing by Technical Impacts:
CWE’s Common Consequences

1.  Modify data
2.  Read data
3.  DoS: unreliable execution
4.  DoS: resource consumption
5.  Execute unauthorized code or commands
6.  Gain privileges / assume identity
7.  Bypass protection mechanism
8.  Hide activities

CWE’s all lead to these Technical Impacts

Which static analysis
tools and Pen Testing
services find the CWEs
I care about?

Utilizing a Priority List of Weaknesses

Most
Important
Weaknesse

s
(CWEs)

Code
Review

Static
Analysis
Tool A

Pen
Testing
Services

CWEs a capability
claims to cover

Static
Analysis
Tool B

Scoring Weaknesses Discovered in Code

Assurance & the Systems Dev. Life-Cycle

Cyber
Threat/
Attack
Analysis

Abuse Case
Development

Attack Analysis against
Supply Chain &
Application Architecture
Security Review

Application Security Code
Review, Penetration Testing &
Abuse Case Driven Testing of
Maintenance Updates

Application Security Code
Review (developed and
purchased), Penetration
Testing & Abuse Case
Driven Testing

and Systems
Design

* Ideally Insert SwA before RFP release in Analysis of Alternatives

Attack-based
Application Design
Security Review

Gather All of the
Evidence for the
Assurance Case and
Get It Approved

Static
Code

Analysis

Penetration
Test

Data
Security
Analysis

Code
Review

Architecture
Risk

Analysis

Cross-Site Scripting (XSS) X X X
SQL Injection X X X

Insufficient Authorization Controls X X X X
Broken Authentication and Session Management X X X X

Information Leakage X X X
Improper Error Handling X

Insecure Use of Cryptography X X X
Cross Site Request Forgery (CSRF) X X

Denial of Service X X X X
Poor Coding Practices X X

  Different assessment methods are effective at
finding different types of weaknesses

  Some are good at finding the cause and some at
finding the effect

Leveraging and Managing to take Advantage of
the Multiple Detection Methods

Technical Impacts – Common Consequences Detection Methods

New Detection Methods Launched Feb 17

CWE will leverage the “State of the Art Resource” (SOAR):
Software Table of “Verification Methods”

Optional: FFRDC name here

Optional
Image
Here

Optional
Image
Here

Optional
Image
Here

Optional
Image
Here

Optional
Image
Here

Optional
Image
Here

© 2012 The MITRE Corporation. All rights reserved. For internal MITRE use

CISQ Security Measure

Objective
Develop automated source
code measures that predict the
vulnerability of source code to
external attack. Measure based
on the Top 25 in the Common
Weakness Enumeration

29

Measuring Security by Violated Rules

Software Quality Characteristics

Quality Sub-Characteristics

Software Quality Attributes

Security

Confidentiality, Authenticity,
Integrity, Accountability, etc.

Quality Measure Elements

Quality Rule Violations

•  Cross-site scripting
•  SQL injection
•  Buffer overflow
•  OS command injection
•  Unvalidated array
•  Etc.

ISO structure

Examples from CISQ measures

Structure of ISO 25023 Measures Structure of CISQ Security Measure

Example Security Issue→Rule→Measure

CISQ measure aggregates violations of 19 of the CWE Top 25:
79, 89, 22, 434, 78, 798, 706, 129, 754, 131,
327, 456, 672, 834, 681, 667, 772, 119

2 CrossTalk—March/April 2014

TABLE OF CONTENTS

NAVAIR Jeff Schwalb
DHS Joe Jarzombek
309 SMXG Karl Rogers

Publisher Justin T. Hill
Article Coordinator Heather Giacalone
Managing Director David Erickson
Technical Program Lead Thayne M. Hill
Managing Editor Brandon Ellis
Associate Editor Colin Kelly
Art Director Kevin Kiernan

Phone 801-777-9828
E-mail Crosstalk.Articles@hill.af.mil
CrossTalk Online www.crosstalkonline.org

, The Journal of Defense Software Engineering
is co-sponsored by the U.S. Navy (USN); U.S. Air Force (USAF); and
the U.S. Department of Homeland Security (DHS). USN co-sponsor:
Naval Air Systems Command. USAF co-sponsor: Ogden-ALC 309
SMXG. DHS co-sponsor: Office of Cybersecurity and Communica-
tions in the National Protection and Programs Directorate.

The USAF Software Technology Support Center (STSC) is the
publisher of providing both editorial oversight and
technical review of the journal. mission is to encour-
age the engineering development of software to improve the reliabil-
ity, sustainability, and responsiveness of our warfighting capability.

Subscriptions: Visit <www.crosstalkonline.org/subscribe> to
receive an e-mail notification when each new issue is published
online or to subscribe to an RSS notification feed.

Article Submissions: We welcome articles of interest to the defense
software community. Articles must be approved by the
editorial board prior to publication. Please follow the Author Guide-
lines, available at <www.crosstalkonline.org/submission-guidelines>.

 does not pay for submissions. Published articles
remain the property of the authors and may be submitted to other
publications. Security agency releases, clearances, and public af-
fairs office approvals are the sole responsibility of the authors and
their organizations.

Reprints: Permission to reprint or post articles must be requested
from the author or the copyright holder and coordinated with

Trademarks and Endorsements: is an authorized
publication for members of the DoD. Contents of are
not necessarily the official views of, or endorsed by, the U.S. govern-
ment, the DoD, the co-sponsors, or the STSC. All product names
referenced in this issue are trademarks of their companies.

 Online Services:
For questions or concerns about crosstalkonline.org web content
or functionality contact the webmaster at
801-417-3000 or webmaster@luminpublishing.com.

Back Issues Available: Please phone or e-mail us to
see if back issues are available free of charge.

 is published six times a year by the U.S. Air Force
STSC in concert with Lumin Publishing <luminpublishing.com>.
ISSN 2160-1577 (print); ISSN 2160-1593 (online)

Non-Malicious Taint:
Bad Hygiene is as Dangerous to the Mission as Malicious Intent
Until both malicious and non-malicious aspects of taint can be dealt with in ways
that are visible and verifiable, there will be a continued lack of confidence and
assurance in delivered capabilities throughout their lifecycle.
by Robert A. Martin

Collaborating across the Supply Chain to Address
Taint and Counterfeit
The community of acquirers and providers of technology must reach a consen-
sus on two basics questions: 1) Where is the mitigation focus?, and 2) Are we
discussing issues that occur in technology development or just products that
have been tampered with?

by Dan Reddy

Software and Supply Chain Risk Management Assurance Framework
The DoD, the defense industrial base, and the nation’s critical infrastructure all
face challenges in Supply Chain Risk Management Assurance. These diverse
challenges span infrastructure, trust, competitiveness, and austerity.

by Don O’Neill

��������	
���������
	���	���	��������	��	��������	������	������
The need for security often exceeds the ability and will of software engineers to
design secure software architectures, implement secure coding methods, per-
form functional security testing, and carefully manage the installation of software
products on various platforms and in different environments.

by C. Warren Axelrod, Ph.D.

Problems and Mitigation Strategies for Developing
and Validating Statistical Cyber Defenses
The development and validation of advanced cyber security technology frequent-
ly relies on data capturing normal and suspicious activities at various system lay-
ers. However, getting access to meaningful data continues to be a major hurdle
for innovation in statistical cyber defense research.
by Michael Atighetchi, Michael Jay Mayhew, Rachel Greenstadt,
and Aaron Adler

Earned Schedule 10 Years Later: Analyzing Military Programs
While progress has been made in understanding the utility of Earned Schedule
(ES) in some small scale and limited studies, a significant analysis of ES in DoD
acquisition programs is missing.

by Kevin T. Crumrine, Jonathan D. Ritschel, Ph.D., and Edward White, Ph.D.

10

4

15

20

25

30

Mitigating Risks of Counterfeit and Tainted Components

Departments

Cover Design by
Kent Bingham

3 From the Sponsor

 34 Upcoming Events

 35 BackTalk

CrossTalk—March/April 2014 7

MITIGATING RISKS OF COUNTERFEIT AND TAINTED COMPONENTS

Similarly, there is a “Detection Methods” field within many
CWE entries that conveys information about what types of as-
sessment activities that weakness can be found by. More and
more CWE entries have this field filled in over time. The recent
Institute of Defense Analysis (IDA) State of the Art Research
report conducted for DoD provides additional information for
use across CWE in this area. Labels for the Detection Methods
being used within CWE at present are: Automated Analysis,
Automated Dynamic Analysis, Automated Static Analysis,
Black Box, Fuzzing, Manual Analysis, Manual Dynamic Analysis,
Manual Static Analysis, Other, and White Box.

This offers a second simplification where stakeholders can
now match weaknesses against type of assessment activi-
ties, and will thereby gain insights into whether that weakness
is still an issue, or whether it has been mitigated or removed.
Continuing the example above, using the information in Figure
1, the specific CWEs that can lead to that type of impact can be
reviewed and the ones that dynamic analysis, static analysis, and
fuzzing can gather evidence about and which ones they can not.

Understanding the relationship between various assessment/
detection methods and the artifacts available over the lifecycle,
better enables decision-makers to plan for: specific issue(s) to
review; at what point(s) in the effort; using what method(s); and
through the use of the coverage claims representations [10] of
the various tools and services, which capability(s) could be lever-
aged, etc. This is depicted in Figure 2.

This information can assist project staff in planning their
assurance activities; it will better enable them to combine the
groupings of weaknesses that lead to specific technical impacts
with the listing of specific detection methods. This provides in-
formation about the presence of specific weaknesses, enabling
them to make sure the dangerous ones are addressed.

Figure 1 conveys information associated with the “Software
Assurance On-Ramp” portion of the CWE web site. This area of
the site is focused on providing help to projects on how they can
make use of the information about weaknesses to manage their
software security efforts.

Finally, the same type of information in this table could be
used to produce an assurance tag for an executable code
bundle, leveraging ISO/IEC 19770-2:2009 [11] as imple-
mented for Software Identification (SWID) Tags [12]. SWID
Tags can contain assurance information to convey which types
of assurance activities and efforts were undertaken against
what types of failure modes. The receiving enterprise could then
review this tag and match that information against their plan for
how they will use the software and what failure modes they are
most concerned about. This would be invaluable in determining
if sufficient efforts were taken in those areas. [Note: This also
supports ISO/IEC 15026 assurance cases.]

Managing Risks Attributable To Taint In
Software And Hardware

Hardware follows the physical laws applicable to their com-
position, electrical characteristics, and construction. Statisti-
cal process variations, logical errors of design, or mechanical
instabilities may not be originally understood, but can be studied

Figure 1: Weakness Technical Impacts by Detection Methods

Figure 2: Matching Coverage Claims to Your Organization’s Needs

and addressed using general engineering and process improve-
ment methodologies. However, it is clear that software fails from
things other than these causes. As discussed above, software
follows no laws unless their creators impose them and can fail
due to individual implementation mistakes or through the intro-
duction of weaknesses or malicious logic.

Few software developers or systems engineering practitioners
have the training and experience to recognize, consider, and
avoid these weaknesses. Few (if any) tools or procedures are
available to review and test for all weaknesses in a systematic
manner. Developers are rarely provided with criteria about what
types of problems are possible, and what their presence could
mean to the fielded software system and its users.

To manage these risks we cannot just expect to come up
with the “right security requirements.” We also need to provide a
methodology that assists in gaining assurance through the gath-
ering of evidence and showing how that information provides
assurance and confidence that the system development process
addressed the removal or mitigation of weaknesses that could
lead to exploitable vulnerabilities. The changes in revision 4 of
National Institute of Standards and Technology (NIST) Special
Publication 800-53 [13] directly bring assurance into the secu-
rity posture equation.

4 CrossTalk—March/April 2014

MITIGATING RISKS OF COUNTERFEIT AND TAINTED COMPONENTS

Robert A. Martin, MITRE Corporation

Abstract. Success of the mission should be the focus of software and supply chain
assurance activities regardless of what activity produces the risk. It does not matter if
a malicious saboteur is the cause. It does not matter if it is malicious logic inserted at
the factory or inserted through an update after fielding. It does not matter if it comes
from an error in judgment or from a failure to understand how an attacker could
exploit a software feature. Issues from bad software hygiene, like inadvertent coding
flaws or weak architectural constructs are as dangerous to the mission as malicious
acts. Enormous energies are put into hygiene and quality in the medical and food
industries to address any source of taint. Similar energies need to be applied to
software and hardware. Until both malicious and non-malicious aspects of taint can
be dealt with in ways that are visible and verifiable, there will be a continued lack of
confidence and assurance in delivered capabilities throughout their lifecycle.

Bad Hygiene is as Dangerous to
the Mission as Malicious Intent

During the past several decades, software-based ICT capa-
bilities have become the basis of almost every aspect of today’s
cyber commerce, governance, national security, and recreation.
Software-based devices are in our homes, vehicles, commu-
nications, and toys. Unfortunately software, the basis of these
cyber capabilities, can be unpredictable since there are now
underlying rules software has to follow as opposed to the rest
of our material world which is constrained by the laws of gravity,
chemistry, and physics with core factors like Plank’s Constant.
This is even more true given the variety and level of skills and
training of those who create and evolve cyber capabilities. The
result is that for the foreseeable future there will remain a need
to address the types of quality and integrity problems that leave
software unreliable, attackable, and brittle directly. This includes
addressing the problems that allow malware and exploitable
vulnerabilities to be accidentally inserted into products dur-
ing development, packaging, or updates due to poor software
hygiene practices.

Computer language specifications are historically vague and
loosely written. (Note: ISO/IEC JTC1 SC22 issued a Techni-
cal Report [1] with guidance for selecting languages and using
languages more secure and reliably.) There is often a lack of
concern for resilience, robustness, and security in the variety
of development tools used to build and deploy software. And
there are gaps in the skills and education of those that manage,
specify, create, test, and field these software-based products.

Additionally, software-based products are available to at-
tackers who study them and then make these products do
things their creators never intended. Traditionally this has led
to calls for improved security functionality and more rigorous
review, testing, and management. However, that approach fails
to account for the core differences between the engineering
of software-based products and other engineering disciplines.
Those differences are detailed later in this article.

The need to address these differences has accelerated as
more of the nation’s critical industrial, financial, and military ca-
pabilities rely on cyber-space and the software-based products
that comprise this expanding cyber world. ICT systems must be
designed to withstand attacks and offer resilience through bet-
ter integrity, avoidance of known weaknesses in code, architec-
ture, and design. Additionally, ICT systems should be created
with designed-in protection capabilities to address unforeseen
attacks by making them intrinsically more rugged and resilient
so that there are fewer ways to impact the system. This same
concern has been expressed by Congress with the inclusion
of a definition of “Software Assurance” in Public Law 112-239
Section 933 [2] where they directed DoD to specifically address
software assurance of its systems.

Defining “Taint” and Software Assurance
While there is no concrete definition of what “taint” specifi-

cally means within the cyber realm, we would be remiss not to
look to the general use of the term, as well as synonyms and
antonyms. Merriam Webster [3] provides a useful point-of-
departure, as shown in Table 1 below.

Non-Malicious Taint

Background
Every piece of information and communications technology

(ICT) hardware—this includes computers as well as any device
that stores, processes, or transmits data—has an initially embed-
ded software component that requires follow-on support and
sustainment throughout the equipment’s lifecycle.

The concept of supply chain risk management (SCRM) must
be applied to both the software and hardware components
within the ICT. Because of the way ICT hardware items are
maintained, the supply chain for ongoing sustainment support
of the software is often disconnected from the support for the
hardware (e.g., continued software maintenance contracts with
third parties other than the original manufacturer). As a result,
supply chain assurance regarding software requires a slightly
unique approach within the larger world of SCRM.

Some may want to focus on just “low hanging fruit” like ban-
ning suspect products by the the country they come from or
the ownership of the producer due to their focused nature and
ignore more critical issues surrounding the software aspect of
ICT like the exploitable vulnerabilities outlined in this article. It is
a misconception that “adding” software assurance to the mix of
supply chain concerns and activities will add too much com-
plexity, thereby making SCRM even harder to perform. Some
organizations and sectors are already developing standards of
care and due-diligence that directly address these unintended
and bad hygiene types of issues. That said, such practices
for avoiding the bad hygiene issues that make software unfit
for its intended purpose are not the norm across most of the
industries involved in creating and supporting software-based
products. Mitigating risk to the mission is a critical objective
and including software assurance as a fundamental aspect of
SCRM for ICT equipment is a critical component of delivering
mission assurance.

Mission

Fulfillm
ent

Mission

Attacks &
Hazards

Capability

Weakness #3

Weakness #1

Weakness #2

Mission

Fulfillm
ent

Mission

Attacks &
Hazards

Capability

Impact from
Weakness #1

Weakness #3

Exploitable Weakness #1
(a vulnerability)

Exploitable Weakness #2
(a vulnerability)

Impact from
Weakness #3

Many Capabilities Support the Mission

Capability

Chips

Capability

Software

Capability

Systems

Capability

People

Capability

Supply Chain Activities

Assurance on the Management of Weaknesses

Eliminate Mitigate

Block from Attack Alarm for Attack/Exploit

