
March 1, 2007 1

Software Confidence. Achieved.

Attack Patterns: Knowing Your
Enemy in Order to Defeat Them

www.cigital.com
info@cigital.com
+1.703.404.9293

Sean Barnum
Managing Consultant
sbarnum@cigital.com

BlackHat DC
2007

2March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Evolution of Software Assurance

Defend the Perimeter
and Patch when

Problems are Found

Improve Assurance
through Proactive

Defense

Hardened Defenses
through Understanding

the Attacker’s
Perspective

3March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

 Goal: Representing the attacker’s perspective in a formalized
and constructive way to provide expert-level understanding and
guidance to software development personnel of all levels as to
how their software is likely to be attacked, and thereby equip
them to build more secure software

 Intended audience
 Software development community

 Provide knowledge to assist in building more secure software

 Security researchers
 Provide communication and knowledge capture mechanism for those

researching exploits and other software security issues

 Security professionals/practitioners
 Provide knowledge to guide security assessment and auditing

4March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Why Should You Care About Attack
Patterns?

5March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

The Nature of Risk

 Software Assurance is an issue of RISK

 Defenses are constructed and strengthened to
mitigate the risks of exploit of the system

 Exploring the Attacker’s perspective helps to
identify and qualify the nature of risk to the
software

6March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

The Long-established Principal of “Know Your Enemy”

 “One who knows the enemy and knows
himself will not be endangered in a
hundred engagements. One who does
not know the enemy but knows himself
will sometimes be victorious. Sometimes
meet with defeat. One who knows neither
the enemy nor himself will invariably be
defeated in every engagement.”

 Chapter 3: “Planning the Attack”

 The Art of War, Sun Tzu

7March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

The Long-established Principal of “Know Your Enemy”

 Software Assurance Translation

 “One who knows the enemy and knows himself will not be
endangered in a hundred engagements.

 Strong defensive preparedness combined with understanding
the attacker’s perspective yields high assurance

 One who does not know the enemy but knows himself will
sometimes be victorious. Sometimes meet with defeat.

 A strong defense alone will protect you from known threats but
will leave you vulnerable to others

 One who knows neither the enemy nor himself will invariably
be defeated in every engagement.”

 A lack of both a proactive defense and an understanding of the
attacker’s perspective leaves you completely vulnerable

 Chapter 3: “Planning the Attack”
 The Art of War, Sun Tzu

8March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

The Importance of Knowing Your Enemy

 An appropriate defense can only be established if you
know how it will be attacked

 The challenge of the defender
 The attacker’s advantage (defender must stop all

attacks; attacker need only succeed with one)
 Prioritization of functionality over security
 The knowledge gap between attacker’s and those

attempting to build secure software

 Remember!
 Software Assurance must assume motivated attackers and not simply

passive quality issues
 Attackers are very creative, actively collaborate and have powerful

tools at their disposal

9March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Patterns Background

10March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

What are Attack Patterns?

 An attack pattern is a blueprint for an exploit.
They are developed by reasoning over large
sets of software exploits.

 Attack patterns help identify and qualify the risk
that a given exploit will occur in a software
system.

11March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Background & Related Concepts

 Design Patterns
 Christopher Alexander and then the Gang of Four (Gamma, et

al)

 Exploiting Software [Hoglund & McGraw]
 Applying pattern concept to methods of exploit

 Attack/Threat trees
 Attack patterns are paths through the tree from leaf to root

 Fault trees
 Focused on reliability, safety and related characteristics

 Security Patterns
 Consist of general solutions to recurring security problems

(e.g. account lockout to prevent brute force attacks)

12March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Knowledge: 48 Attack Patterns
 Make the Client Invisible
 Target Programs That Write to Privileged OS Resources
 Use a User-Supplied Configuration File to Run Commands

That Elevate Privilege
 Make Use of Configuration File Search Paths
 Direct Access to Executable Files
 Embedding Scripts within Scripts
 Leverage Executable Code in Nonexecutable Files
 Argument Injection
 Command Delimiters
 Multiple Parsers and Double Escapes
 User-Supplied Variable Passed to File System Calls
 Postfix NULL Terminator
 Postfix, Null Terminate, and Backslash
 Relative Path Traversal
 Client-Controlled Environment Variables
 User-Supplied Global Variables (DEBUG=1, PHP Globals,

and So Forth)
 Session ID, Resource ID, and Blind Trust
 Analog In-Band Switching Signals (aka “Blue Boxing”)
 Attack Pattern Fragment: Manipulating Terminal Devices
 Simple Script Injection
 Embedding Script in Nonscript Elements
 XSS in HTTP Headers
 HTTP Query Strings

 User-Controlled Filename
 Passing Local Filenames to Functions That Expect a URL
 Meta-characters in E-mail Header
 File System Function Injection, Content Based
 Client-side Injection, Buffer Overflow
 Cause Web Server Misclassification
 Alternate Encoding the Leading Ghost Characters
 Using Slashes in Alternate Encoding
 Using Escaped Slashes in Alternate Encoding
 Unicode Encoding
 UTF-8 Encoding
 URL Encoding
 Alternative IP Addresses
 Slashes and URL Encoding Combined
 Web Logs
 Overflow Binary Resource File
 Overflow Variables and Tags
 Overflow Symbolic Links
 MIME Conversion
 HTTP Cookies
 Filter Failure through Buffer Overflow
 Buffer Overflow with Environment Variables
 Buffer Overflow in an API Call
 Buffer Overflow in Local Command-Line Utilities
 Parameter Expansion
 String Format Overflow in syslog()

13March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Pattern 1:
Make the client invisible

 Remove the client from the
communications loop and
talk directly to the server

 Leverage incorrect trust
model (never trust the
client)

 Example: hacking browsers
that lie

14March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Pattern 2:
Command delimiters

 Use off-nominal
characters to string
together multiple
commands

 Example: shell
command injection with
delimiters

<input type=hidden name=filebase
value="bleh; [command]”>

cat data_log_; rm -rf /; cat
temp.dat

exec(“cat data_log_ .dat”);

; rm –rf /; cat temp

15March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Formally Representing Attack
Patterns

16March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Drivers for Formal Representation

 Consistency between patterns & authors

 Ensure adequate completeness and quality

 Correlate and integrate with other relevant
knowledge collections

 Ability for reader to focus on aspects they
care about

 Ability for variations in content presentation

 Ability to search and subsect a set of patterns
for given contexts

17March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

A Proposed Attack Pattern Schema

 Primary Schema Elements
 Identifying Information

 Attack Pattern ID
 Attack Pattern Name

 Describing Information
 Description
 Related Weaknesses
 Related Vulnerabilities
 Method of Attack
 Examples-Instances
 References

 Prescribing Information
 Solutions and Mitigations

 Scoping and Delimiting Information
 Severity
 Likelihood of Exploit
 Attack Prerequisites
 Attacker Skill or Knowledge Required
 Resources Required
 Attack Motivation-Consequences
 Context Description

18March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

A Proposed Attack Pattern Schema

 Supporting Schema Elements
 Describing Information

 Injection Vector
 Payload
 Activation Zone
 Payload Activation Impact

 Diagnosing Information
 Probing Techniques
 Indicators-Warnings of Attack
 Obfuscation Techniques

 Enhancing Information
 Related Attack Patterns
 Relevant Security Requirements
 Relevant Design Patterns
 Relevant Security Patterns
 Related Security Principles
 Related Guidelines

19March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Patterns Example (part 1)
Name HTTP Response Splitting

Attack_Pattern_ID

Severity High

Description

HTTP Response Splitting causes a vulnerable web server to respond to a maliciously crafted request by
sending an HTTP response stream such that it gets interpreted as two separate responses instead of a single
one. This is possible when user-controlled input is used unvalidated as part of the response headers. An
attacker can have the victim interpret the injected header as being a response to a second dummy request,
thereby causing the crafted contents be displayed and possibly cached. To achieve HTTP Response Splitting
on a vulnerable web server, the attacker:
1. Identifies the user-controllable input that causes arbitrary HTTP header injection.
2. Crafts a malicious input consisting of data to terminate the original response and start a second response
with headers controlled by the attacker.
3. Causes the victim to send two requests to the server. The first request consists of maliciously crafted input
to be used as part of HTTP response headers and the second is a dummy request so that the victim interprets
the split response as belonging to the second request.

Attack_Prerequisites

User-controlled input used as part of HTTP header

Ability of attacker to inject custom strings in HTTP header

Insufficient input validation in application to check for input sanity before using it as part of response header

Likelihood of Exploit Medium

Methods of Attack
Injection

Protocol Manipulation

Examples-Instances

In the PHP 5 session extension mechanism, a user-supplied session ID is sent back to the user within the Set-
Cookie HTTP header. Since the contents of the user-supplied session ID are not validated, it is possible to
inject arbitrary HTTP headers into the response body. This immediately enables HTTP Response Splitting by
simply terminating the HTTP response header from within the session ID used in the Set-Cookie directive.

CVE-2006-0207

Attacker_Skill_or_Knowledge_Required
High - The attacker needs to have a solid understanding of the HTTP protocol and HTTP headers and must be
able to craft and inject requests to elicit the split responses.

Resources_Required None

Probing_Techniques

With available source code, the attacker can see whether user input is validated or not before being used as
part of output. This can also be achieved with static code analysis tools

If source code is not available, the attacker can try injecting a CR-LF sequence (usually encoded as %0d%0a
in the input) and use a proxy such as Paros to observe the response. If the resulting injection causes an invalid
request, the web server may also indicate the protocol error.

Indicators-Warnings_of_Attack
The only indicators are multiple responses to a single request in the web logs. However, this is difficult to
notice in the absence of an application filter proxy or a log analyzer. There are no indicators for the client

Solutions_and_Mitigations To avoid HTTP Response Splitting, the application must not rely on user-controllable input to form part of its

20March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Patterns Example (part 2)

Modification Source

Chiradeep B Chhaya2007-01-09First DraftSubmission Source

G. Hoglund and G. McGraw. Exploiting Software: How to Break Code. Addison-Wesley, February
2004.
CWE - HTTP Response Splitting
CWE - Injection

References

Related_Coding_Rules

Never trust user-supplied input.Related_Guidelines

Reluctance to TrustRelated Security Principles

All client-supplied input must be validated through filtering and all output must be properly
escaped.

Relevant_Security_Requirements

CWE113 “HTTP Response Splitting” - Targeted
CWE74 “Injection” - Secondary

Related Weaknesses

The impact of payload activation is that two distinct HTTP responses are issued to the target, which
interprets the first as response to a supposedly valid request and the second, which causes the actual
attack, to be a response to a second dummy request issued by the attacker.

Payload_Activation_Impact

API calls in the application that set output response headers.Activation_Zone

Encoded HTTP header and data separated by appropriate CR-LF sequences. The injected data must
consist of legitimate and well-formed HTTP headers as well as required script to be included as
HTML body.

Payload

User-controllable input that forms part of output HTTP response headersInjection_Vector

HTTP Response Splitting attacks take place where the server script embeds user-controllable data in
HTTP response headers. This typically happens when the script embeds such data in the redirection
URL of a redirection response (HTTP status code 3xx), or when the script embeds usuch data in a
cookie value or name when the response sets a cookie. In the first case, the redirection URL is part
of the Location HTTP response header, and in the cookie setting, the cookie name/value pair is part
of the Set-Cookie HTTP response header.

Context Description

Run Arbitrary Code
Privilege Escalation

Attack Motivation-Consequences

To avoid HTTP Response Splitting, the application must not rely on user-controllable input to form
part of its output response stream. Specifically, response splitting occurs due to injection of CR-LF
sequences and additional headers. All data arriving from the user and being used as part of HTTP
response headers must be subjected to strict validation that performs simple character-based as well
as semantic filtering to strip it of malicious character sequences and headers.

Solutions_and_Mitigations

21March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Attack Pattern Generation

22March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Come From

 Input source – Exploits

 Not many good official sources for Exploits –
Lots of shady sources

 POC exploits sometimes available with
vulnerability reports

 Analysis Approach

 Batch vs Continual

 Formal vs Informal

23March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Exploit Analysis Process

 Analyze the exploit
 Reverse engineer it

 Perform forensic analysis

 Analyze any available patches by vendors of the target software

 Determine whether the exploit is an instantiation of any
existing attack patterns
 If so, add new exploit reference to existing attack pattern and stop there

 If not, determine if this represents a new common attack approach

 If so, continue with attack pattern generation

 If not, archive exploit analysis performed and stop there

 Identify targeted vulnerability or weakness
 If vulnerability, find related CVE, OVAL, weakness and context descriptions

 Define contextual prerequisites for attack
 In what technical context (OS, platform, language, etc.) and under what

conditions is this exploit possible?

24March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Exploit Analysis Process (continued)

 Determine the method of attack
 Malicious data entry?

 Maliciously crafted file?

 Protocol corruption?

 Determine required attacker’s skill
 Script kiddie?

 Experienced hacker?

 Determine required attacker’s resources
 Simple manual execution?

 Distributed bot army?

 Well-funded organization?

 Tools?

 Determine motivation of attacker
 Gain access to secure assets (information, CPU cycles, etc.)?

 Denial of capability?

 Vandalism or pure destructive intent?

25March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Adorning the Attack Pattern

 It is often useful to adorn the attack pattern with
useful reference information
 Source exploits

 Targeted vulnerabilities including CVE & OVAL
references

 Targeted weaknesses including CWE references

 Relevant security requirements

 Relevant design patterns

 Related attack patterns

26March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Evaluating and Verifying Attack Patterns

 Validate with a 3rd party review
 Verify that no existing attack pattern covers the

exploits
 If existing attack pattern found, determine if new one is needed

or if existing one should be modified

 Validate that source exploits are actually
instantiations of new attack pattern
 If not, should attack pattern be modified

 Ensure attack pattern is not overly generic
 Ensure attack pattern is not overly specific
 Ensure attack pattern is accessible to target

audiences

27March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Leveraging Attack Patterns

28March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged

 Depending on the level of detail describing the
attack pattern and the level of abstraction of the
attack, any given attack pattern can have
varying levels of usefulness across the
software development lifecycle (SDLC)

 The first step in leveraging attack patterns
anywhere in the SDLC is identifying which
patterns are appropriate for the business,
technical and security context as well as the
development activity being undertaken

29March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged – Requirements

 Attack Patterns can be an invaluable resource
in assisting to define the system’s behavior to
prevent or react to a specific type of likely
attack

 Defining requirements
 Development perspective

 Using relevant attack patterns to identify appropriate
positive security requirements to describe functionality
that will be resistant and resilient to the specified attack

 Security Assurance perspective

 Using relevant attack patterns to identify appropriate
negative security requirements (misuse/abuse cases) to
specify the software’s behavior when faced with the
specified attack

30March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Resource: Misuse/Abuse Cases

 Objective
 Capture and personify attacking behaviors against the

system as requirements for attack resistance

 Key Factors
 Can be derived from Attack Patterns
 Form basis for security testing of attack resistance
 Consist of typical use case fields
 Relationships with Use Cases
 Mapping to relevant Attack Patterns
 Efficacy Targets

 Resistance
 Recovery

31March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged – Architecture and
Design

 Attack Patterns can be an invaluable resource
in assisting a software architecture team to
create secure designs

 Architecture and design
 Development perspective

 Using relevant attack patterns as negative scenarios for a
proposed architecture and design to deal with

 Security Assurance perspective

 Using relevant attack patterns to identify appropriate
recommended or non-recommended design patterns

32March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

A&D Practice: Attack Surface Modeling

 Objective
 Identify in somewhat objective terms how

vulnerable a software system is to attack
(characterize defensive posture)

 Key Factors
 Entry/Exit Points

 Amount of Code Running

 Trust Boundaries

 Assets

 Vulnerabilities

 Barriers/Challenges to Attack (difficulty to exploit)

33March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

A&D Practice: Threat Analysis

 Objective
 To identify and understand the active threats that

exist for a software system that induce
assurance risk

 Key Factors
 Actor Identification

 Motivation

 Capability

 Access Vector against Attack Surface

34March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Threat Analysis Diagrams

 Diagram system

 List Threats (agents of maligned intent)

 Show attack vectors

35March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged – Implementation

 Attack Patterns can be an invaluable resource
in guiding secure code implementation
practices through targeting and avoiding
specific weaknesses in the code

 Implementation
 Development perspective

 Using relevant attack patterns as a mechanism to identify
relevant weaknesses to avoid

 Security Assurance perspective

 Using relevant attack patterns as a mechanism to identify
relevant weaknesses to scan for using software security
tools and confirm the absence of

36March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged – Test

 Attack Patterns can be an invaluable resource
in guiding software security testing in a
practical and realistic context

 Test
 Development perspective

 Using relevant attack patterns to identify necessary test
cases for confirming the absence of relevant weaknesses
as well as giving a practical context for testing security
features

 Security Assurance perspective

 Using relevant attack patterns to define appropriate roles
and approaches for red team testing

37March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Test Practice: Red Teaming

 Description
 Active testing of system attack resistance

through emulation of a specific attacker profile
 Team of testers creatively attack the system as

an identified attacker/threat might

 Red Teaming is a more involved and
creative form of penetration testing
 Penetration testing typically focuses on simply breaching

the barrier security of the software where red teaming
probes the full scope of the software as an attacker would

 Red teaming emulates the creativity of the attacker where
penetration testing is often a rote execution through a
checklist of common attacks

38March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged – Operations

 Attack Patterns can be an invaluable resource
in securely operating a deployed system

 Operations
 Development perspective

 Using relevant attack patterns to identify appropriate
secure operations configurations

 Security Assurance perspective

 Operational knowledge of security issues can be
leveraged to feed the attack pattern generation process
and yield better attack pattern coverage and thereby better
future software.

39March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Where They Are Leveraged – Security Policy

 Attack Patterns can be an invaluable resource
in guiding the selection and definition of
relevant security policies

 Generating security policies
 Development perspective

 Using relevant attack patterns to identify appropriate
security policies and guidelines

 Security Assurance perspective

 Using relevant attack patterns to identify appropriate
guidelines and context for verifying compliance with
appropriate security policies

40March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Common Attack Pattern
Enumeration and Classification

(CAPEC)

41March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

What is CAPEC?

 Effort targeted at:

 Standardizing the capture and description of
attack patterns

 Collecting known attack patterns into an
integrated enumeration that can be consistently
and effectively leveraged by the community

 Classifying attack patterns such that users can
easily identify the subset of the entire
enumeration that is appropriate for their context

 Funded by the DHS NCSD

 Led by Cigital

42March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Current CAPEC Status

 Extensive research performed and underway
to identify and evaluate potential resources
for creating attack patterns

 Schema definition completed (discussed
earlier)

 In process of fleshing out and authoring
~100 patterns

 Draft attack taxonomy completed from
analysis of existing taxonomies and
identified patterns

43March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Draft Attack Taxonomy (snippet)
Session Fixation

Session Riding (aka Cross-site Request Forgery)

Resource
Depletion

Denial of Service through Resource Depletion

Resource Depletion through Flooding
Resource Depletion through
Allocation

Resource Depletion through Leak

XML Parser Attack

Exploitation of Privilege/Trust
Privilege Escalation

Direct Access to Executable Files

Use a User-Supplied Configuration File to Run Commands That Elevate Privilege

Hijacking a privileged thread of execution

Implementing a callback to system routine (old AWT Queue)

Catching exception throw/signal from privileged block

Subverting code-signing/identity facilities to gain their privilege

Calling signed code from another language within a sandbox that allows this

Lifting signing key and signing malicious code from a production environment

Using URL/codebase / G.A.C. (code source) to convince sandbox of privilege

Target Programs That Write to Privileged OS Resources
Exploiting Trust in
Client

Man-in-the-Middle

Create Malicious Client

Client-Server Protocol Manipulation

Reflection Attack in an Authentication Protocol

Lifting Sensitive Data from the Client

Lifting data embedded in client distributions (thick or thin)
Lifting credential(s)/key material embedded in client distributions (thick or
thin)

Lifting cached, sensitive data embedded in client distributions (thick or thin)

Removing Important Functionality from the Client
Removing/short-circuiting 'guard
logic'

Removing/short-circuiting 'Purse' logic: removing/mutating 'cash'
"decrements"

Removal of filters: Input filters, output filters, data masking
Subversion of authorization checks: cache filtering, programmatic security,
etc.

Exploitation of Authorization

Mapping a path to and accessing functionality not properly constrained by authorization framework/ACLs

Injecting Control Plane content through the Data Plane (AKA Injection)
Analog In-Band Switching Signals (aka “Blue Boxing”)

Parameter Injection

Argument Injection

User-Supplied Variable Passed to File System Calls

Resource Injection

44March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Adorning Metadata

 Purpose
 Reconnaissance
 Penetration
 Exploitation

 CIA Impact
 Confidentiality Impact
 Integrity Impact
 Availability Impact

 Technical Context
 Paradigm
 Framework
 Platform

 SDLC Stage

45March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Fitting CAPEC into the Bigger Picture

 CAPEC is most valuable when its content is
aligned with related software assurance
knowledge collections

 Yields gestalt where the whole is greater
than the sum of the parts

 The DHS/DOD Software Assurance
Knowledge Architecture

 Common Weakness Enumeration (CWE)

 Common Malware Enumeration (CME)

46March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

The Big Picture

47March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

What to Expect Going Forward from CAPEC

 Draft attack pattern enumeration should be
available for review in early to mid-March

 Initial release of CAPEC including
deployment to publicly available website
should late March to early April

48March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Community Involvement and Future Growth

 DHS/DOD Software Assurance programs

 OMG Software Assurance SIG

 Contribution/Involvement Opportunities

 Community review & feedback

 Contributing new APs

49March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Summary

 Understanding and representing the attacker’s
perspective is critical to building secure software

 Attack patterns are a powerful resource for capturing
and communicating this perspective

 Attack patterns have direct value across the entire
SDLC

 CAPEC is one ongoing effort to standardize, collect
and share common attack patterns

 There are opportunities for you to get involved and
contribute to realizing the value of attack patterns for
the broader software community

50March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Never Underestimate Your Adversary

 “The individualist without strategy who takes
opponents lightly will inevitably become the
captive of others.”

 Chapter 9: “Maneuvering Armies”

 The Art of War, Sun Tzu

51March 1, 2007© 2007 Cigital Inc. All Rights Reserved.

Questions?

Further questions or want to get involved?

sbarnum@cigital.com

