Attack Patterns as a Knowledge Resource for
Building Secure Software

Sean Barnum Amit Sethi
Cigital, Inc. Cigital, Inc.

Building software with an adequate level of security assurance for its mission becomes more and more
challenging every day as the size, complexity, and tempo of software creation increases and the number
and the skill level of attackers continues to grow. These factors each exacerbate the issue that, to build
secure software, builders must ensure that they have protected every relevant potential vulnerability; yet,
to attack software, attackers often have to find and exploit only a single exposed vulnerability. To identify
and mitigate relevant vulnerabilities in software, the development community needs more than just good
software engineering and analytical practices, a solid grasp of software security features, and a powerful
set of tools. All of these things are necessary but not sufficient. To be effective, the community needs to
think outside of the box and to have a firm grasp of the attacker’s perspective and the approaches used to
exploit software [Hoglund 04, Koizol 04].

This paper discusses the concept of attack patterns as a mechanism to capture and communicate the at-
tacker’s perspective. Attack patterns are descriptions of common methods for exploiting software. They
derive from the concept of design patterns [Gamma 95] applied in a destructive rather than constructive
context and are generated from in-depth analysis of specific real-world exploit examples. Through analy-
sis of observed exploits, the following typical information is captured for each attack pattern:

o Pattern name and classification o Attacker skill or knowledge required
o Attack prerequisites « Resources required

« Description « Solutions and Mitigations

o Related vulnerabilities or weaknesses « Context description

e Method of attack o References

« Attack Motivation-Consequences

This information can bring considerable value for software security considerations through all phases of
the software development lifecycle (SDLC) and other security-related activities, including:

« Requirements gathering » Software testing and quality assurance
o Architecture and design » Systems operation
o Implementation and coding « Policy and standard generation

COPYRIGHT 2007 CIGITAL, INC. 1

1.1 Introduction

This paper introduces the concept, generation, and usage of attack patterns as a valuable knowledge tool in
the design, development, and deployment of secure software.

Design patterns are a familiar tool used by the software development community to help solve recurring
problems encountered during software development [Gamma 95]. These patterns attempt to address head-
on the thorny problems of secure, stable, and effective software architecture and design. Since the intro-
duction of design patterns, many other types of patterns relevant to software have been conceived, includ-
ing a relatively new construct known as attack patterns [Hoglund 04].

Attack patterns apply the problem-solution paradigm of design patterns in a destructive rather than con-
structive context. Here, the common problem targeted by the pattern represents the objective of the soft-
ware attacker, and the pattern's solution represents common methods for performing the attack. Tech-
niques for exploiting software tend to be few and fairly specific [Hoglund 04]. Attack patterns describe the
techniques that attackers may use to break software.

The incentive behind using attack patterns is that software developers must think like attackers to antici-
pate threats and thereby effectively secure their software. Due to the absence of information about soft-
ware security in many curricula and the traditional shroud of secrecy surrounding exploits, software devel-
opers are often ill-informed in the field of software security and especially software exploitation. The
concept of attack patterns can be used to teach the software development community how software is ex-
ploited in reality and to implement proper ways to avoid the attacks.

Often, security policy also lacks a comprehensive understanding of the issues surrounding software secu-
rity, as developers have a natural propensity to think in terms of features and functions. Widely accepted
and implemented policies that tout encryption as a silver bullet for security problems are an example.
Company representatives commonly reassure clients that their data are protected because the database in
which it is stored is encrypted. With the hype surrounding firewalls and encryption, it is difficult for the
software development community to learn how to actually build secure software. This paper will demon-
strate the use of one key tool for effectively building secure software in the absence of any silver bullets.

Terminology

A lot of terminology used in software security has not been standardized. Different publications use differ-
ent terminology to describe the same concepts and sometimes even use the same terminology to describe
different concepts. Furthermore, marketing literature often misuses security-related terms to sell particular
products, adding to the confusion surrounding software security. This section attempts to mitigate the issue
for the purposes of this paper. It will briefly describe the essential terminology used, which is mostly bor-
rowed from Exploiting Software [Hoglund 04]. The Attack Patterns Glossary should be consulted for a
more complete list of terminology used in this paper.

target software Target software is software that is the target of an attack.

target host A target host is the computer or platform that is running the target software of an attack.
A host may be attacked through the interfaces provided by the target software or through

COPYRIGHT 2007 CIGITAL, INC. 2

purely network-based attack mechanisms.

exploit An exploit is a technique or software code (often in the form of scripts) that takes advan-
tage of a vulnerability or security weakness in a piece of target software.

attack An attack is the act of carrying out an exploit.

attacker An attacker is the person or agent that actually executes an attack. Attackers may range
from very unskilled individuals leveraging automated attacks developed by others (“'script
kiddies") to well-funded government agencies or even organized criminals with extensive
software backgrounds.

attack pattern An attack pattern is a general framework for carrying out a particular type of attack, such
as a method for exploiting a buffer overflow or an interposition attack that leverages cer-
tain kinds of architectural weaknesses. In this paper, an attack pattern describes the ap-
proach used by attackers to generate an exploit against software.

Context

Before beginning a discussion on attack patterns, we first need to discuss why attack patterns are impor-
tant. Attack patterns provide a way for software developers to learn about how their software may be at-
tacked. Armed with knowledge about possible or probable attacks, developers can take steps to mitigate
the likelihood or impact of these attacks.

Challenges

Many challenges inhibit the development of secure software. These challenges include
o the actual difficulty of building secure software,

« market forces that favor functionality and time to market over security, and

« asignificant knowledge gap between the "black hat™

The Attacker's Advantage

The primary challenge in building secure software is that it is much easier to find vulnerabilities in soft-
ware than it is to make software secure. As an analogy, consider a bank vault. Its designers need to ensure
that it is safe against many different types of attacks, not just the seemingly obvious ones. It must gener-
ally be safe against mechanical attacks (e.g., using bulldozers), explosives, and safe cracking, to name a
few, while still maintaining usability (i.e., allowing authorized personnel to enter, having sufficient venti-
lation and lighting). This is clearly not a trivial task. However, the attacker may simply need to find one
exploitable vulnerability to achieve his or her goal of entering the vault. The attacker may try to access the
vault through various potential means, including through the main entrance by cracking the safe combina-
tion, through the ceiling, by digging underground, by entering through the ventilation system, by bribing

1 The term "black hat" invokes the old western movie imagery of the villain in the black cowboy hat and is used to describe individuals
who maliciously attack software. attacking community and the defending software development community with a lack of basic
awareness of security issues and solutions.

COPYRIGHT 2007 CIGITAL, INC. 3

an authorized employee to open the vault, or by creating a small fire in the bank while the vault is open to
cause all employees to flee in panic. Given these realities, it is evident that building and maintaining bank
vault security is typically much more difficult than breaking into one.

Building secure software has similar issues, but the problem is exacerbated by the virtuality of software.
With many systems, the attacker may actually possess the software (obtaining a local copy to attack is of-
ten trivial) or could attack it from anywhere in the world through networks. With the ability to attack re-
motely and without physical access, attacks become much easier. Audit trails may not be sufficient to
catch attackers after an attack takes place, because attackers could leverage the anonymity of an unsus-
pecting user's wireless network or public computers to launch attacks.

Given the greater risks that software faces compared to physical objects, it is essential that software be
built with security in mind. To do this, the developers must have a solid understanding of the attacker's
perspective to anticipate and thwart expected types of attacks. This is especially true when the assets pro-
tected by the software are just as valuable as physical assets protected in bank vaults. Just as bank vaults
are built considering all known high-risk attacks that they may face, software should be built considering
all applicable known types of attack.

Functionality Over Security

Another challenge is market forces that demand software developers to maximize functionality and mini-
mize time to market. Functionality is what generally sells software, and security is usually treated as an
afterthought. Because users do not see most security capabilities, they are not usually considered a prior-

ity.

The most successful products tend to be those that offer the most functionality and enter the market before
their competitors'. Unfortunately, this holds true for security products such as encryption software, anti-
virus software, firewall software, etc. The products offering the best functionality are often chosen over
the ones that offer the best security. Because of this, more and more systems are being exploited with sig-
nificant newsworthy consequences. As time passes, the shortsightedness of this approach is becoming
clear to the industry, but it will still remain a challenge for many years to come.

The Knowledge Gap

A final central challenge in the area of software security arises from the fact that attackers have been learn-
ing how to exploit software for several decades, but the general software development community has not
kept up with the knowledge that attackers have gained. This knowledge gap is also evident in the differ-
ence of perspective between attackers with their cynical deconstructive view and developers with their
happy-go-lucky "you're not supposed to do that" view. The problem continues to grow in part because of
the traditional fear that teaching how software is exploited could actually reduce the security of software
by helping the existing attackers and even potentially creating new ones. The software development com-
munity hoped, in the past, that obscurity would keep the number of attackers relatively small. This as-
sumption has been shown to be a poor one, and some elements of the community are now beginning to
look for more effective methods of addressing this problem.

COPYRIGHT 2007 CIGITAL, INC. 4

Of course, many other issues pose challenges for software security, but the challenges described here are
among the most significant. A basic understanding of the attacker's perspective will help to address these
challenges.

Solution

One potential solution to these challenges is using attack patterns to help others understand the attacker's
perspective. The black hat community is already well-versed in the techniques used to attack software, but
the software development community is not generally educated in the ways in which software is exploited.
Attack patterns provide a coherent way of teaching designers and developers how their systems may be
attacked and how they can effectively defend them.

A common problem is that software developers try to harden small pieces of software while leaving gap-
ing holes in the big picture. For instance, a developer may use 256-bit AES encryption to secure data but
then store the key in the application itself. An attacker will of course choose the easiest way to break soft-
ware. If an attacker needs the key, he/she will not attempt a brute force attack (computationally infeasible)
or cryptanalysis (unlikely to be successful). The attacker will simply obtain the key from the code (very
easy).

Likewise, builders of secure physical systems, based on centuries of experience, generally know that at-
tackers always choose the easiest way to achieve their goal. As an analogy, a burglar breaking into a house
will not pick the lock(s) on the front door and try to guess the code to the security system if he/she can
instead cut the phone line to the house (thus disabling the security system) and break a window to gain
access to the inside. Thus, the task of making a house more secure should not involve only better locks and
longer security system unlocking codes; they should also involve things like stronger windows and cellular
backups for the security system (note that cellular signals also can be jammed, although it is currently not
quite as easy as cutting a wire), which can help mitigate known likely attacks. Unless software developers
understand similar issues in software security, they cannot effectively build secure software.

Attack patterns help to categorize attacks in a meaningful way, such that problems and solutions can be
discussed effectively. Instead of taking an ad hoc approach to software security, attack patterns can iden-
tify the types of known attacks to which an application could be exposed so that mitigations can be built
into the application.

Another benefit of attack patterns is that they contain sufficient detail about how attacks are carried out to
enable developers to help prevent them. Attack patterns, however, do not typically contain inappropriately
specific details about the actual exploits to ensure that they do not help educate less skilled members of the
black hat community (e.g, script kiddies). Information from attack patterns generally cannot be used di-
rectly to create automated exploits.

Of course, attack patterns are not the only useful tool for building secure software. Many other tools, such
as misuse/abuse cases, security requirements, threat models, knowledge of common weaknesses and vul-
nerabilities, coding rules, and attack trees, can help. Attack patterns play a unique role amid this larger
architecture of software security knowledge and techniques and will be the focus of this paper.

COPYRIGHT 2007 CIGITAL, INC. 5

Background
Origins

The concept of attack patterns was derived from the notion of design patterns introduced by Christopher
Alexander during the 1960s and 1970s and popularized by Erich Gamma, Richard Helm, Ralph Johnson,
and John Vlissides in the book Design Patterns: Elements of Reusable Object-Oriented Software [Gamma
95]. The book discusses vetted solutions to specific problems encountered in object-oriented software de-
sign and how to package these solutions for broad leverage in the form of design patterns. A design pattern
captures the context and high-level detail of a general repeatable solution to a commonly occurring prob-
lem in software design. It is not a low-level design that can be transformed directly into code; it is a de-
scription of how to solve a problem that can be used in many situations. Examples of design patterns in-
clude the singleton pattern and the iterator pattern. Discussion of these and other specific design patterns is
out of scope for this paper but constitutes recommended reading for anyone desiring a full foundational
grounding in the context behind attack patterns.

Since the introduction of design patterns, the pattern construct has been applied to many other areas of
software development. One of these areas is software security and representation of the attacker's perspec-
tive in the form of attack patterns. The term "attack patterns” was coined in discussions among software
security thought-leaders starting around 2001, introduced in the paper Attack Modeling for Information
Security and Survivability [Moore 01] and was brought to the broader industry in greater detail and with a
solid set of specific examples by Greg Hoglund and Gary McGraw in 2004 in their book Exploiting Soft-
ware: How to Break Code.

Since the publication of Exploiting Software, several individuals and groups throughout the industry have
tried to push the concept forward with varying success. These efforts faced challenges like the lack of a
common definition and schema for attack patterns, a lack of diversity in the targeted areas of analysis by
the various groups involved, and a lack of any independent body to act as the collector and disseminator of
common attack pattern catalogues. This paper, as part of the Build Security In effort sponsored by the U.S.
Department of Homeland Security, attempts to provide some coherence of definition and structure. Efforts
such as the ongoing DHS-sponsored Common Attack Pattern Enumeration and Classification (CAPEC)
initiative will collect and make available to the public core sets of attack pattern instances.

Concept

An attack pattern is an abstraction mechanism for describing how a type of observed attack is executed.
Following the pattern paradigm, it also provides a description of the context where it is applicable and
then, unlike typical patterns, it gives recommended methods of mitigating the attack. In short, an attack
pattern is a blueprint for an exploit. We propose that an attack pattern should typically include the follow-
ing information:

« Pattern Name and Classification: A unique, descriptive identifier for the pattern.

« Attack Prerequisites: What conditions must exist or what functionality and what characteristics
must the target software have, or what behavior must it exhibit, for this attack to succeed?

« Description: A description of the attack including the chain of actions taken.

COPYRIGHT 2007 CIGITAL, INC. 6

Related Vulnerabilities or Weaknesses: What specific vulnerabilities or weaknesses (see the
glossary for definitions) does this attack leverage? Specific vulnerabilities should reference industry-
standard identifiers such as Common Vulnerabilities and Exposures (CVE) number, US-CERT num-
ber, etc. Specific weaknesses (underlying issues that may cause vulnerabilities) should reference in-
dustry-standard identifiers such as the Common Weakness Enumeration (CWE).

Method of Attack: What is the vector of attack used (e.g., malicious data entry, maliciously crafted
file, protocol corruption)?

Attack Motivation-Consequences: What is the attacker trying to achieve by using this attack? This
is not the end business/mission goal of the attack within the target context but rather the specific
technical result desired that could be leveraged to achieve the end business/mission objective. This
information is useful for aligning attack patterns to threat models and for determining which attack
patterns from the broader set available are relevant for a given context.

Attacker Skill or Knowledge Required: What level of skill or specific knowledge must the attacker
have to execute such an attack? This should be communicated on a rough scale (e.g., low, moderate,
high) as well as in contextual detail of what type of skills or knowledge are required.

Resources Required: What resources (e.g., CPU cycles, IP addresses, tools, time) are required to
execute the attack?

Solutions and Mitigations: What actions or approaches are recommended to mitigate this attack,
either through resistance or through resiliency?

Context Description: In what technical contexts (e.g., platform, OS, language, architectural para-
digm) is this pattern relevant? This information is useful for selecting a set of attack patterns that are
appropriate for a given context.

References: What further sources of information are available to describe this attack?

Two examples of attack patterns are provided below [Hoglund 04]:

1.

COPYRIGHT 2007 CIGITAL, INC.

Pattern name and classification: Make the Client Invisible

- Attack Prerequisites: The application must have a multi-tiered architecture with a division be-
tween client and server.

- Description: This attack pattern exploits client-side trust issues that are apparent in the software
architecture. The attacker removes the client from the communication loop by communicating di-
rectly with the server. This could be done by bypassing the client or by creating a malicious im-
personation of the client.

- Related Vulnerabilities or Weaknesses: CWE—-Man-in-the-Middle (MITM), CWE- Origin Vali-
dation Error, CWE- Authentication Bypass by Spoofing, CWE- No Authentication for Critical
Function, CWE- Reflection Attack in an Authentication Protocol

- Method of Attack: Direct protocol communication with the server.

- Attack Motivation-Consequences: Potentially information leak, data modification, arbitrary
code execution, etc. These can all be achieved by bypassing authentication and filtering accom-
plished with this attack pattern.

- Attacker Skill or Knowledge Required: Finding and initially executing this attack requires a
moderate skill level and knowledge of the client-server communications protocol. Once the vul-
nerability is found, the attack can be easily automated for execution by far less skilled attackers.
Skill level for leveraging follow-on attacks can vary widely depending on the nature of the at-
tack.

- Resources Required: None, although protocol analysis tools and client impersonation tools such
as netcat can greatly increase the ease and effectiveness of the attack.

- Solutions and Mitigations:

- Increase Resistance to Attack: Utilize strong two-way authentication for all communication be-
tween client and server. This option could have significant performance implications.

- Increase Resilience to Attack: Minimize the amount of logic and filtering present on the client;
place it on the server instead. Use white lists on server to filter and validate client input.

- Context Description: "Any raw data that exist outside the server software cannot and should not
be trusted. Client-side security is an oxymoron. Simply put, all clients will be hacked. Of course
the real problem is one of client-side trust. Accepting anything blindly from the client and trust-
ing it through and through is a bad idea, and yet this is often the case in server-side design™
[Hoglund 04].

- References: Exploiting Software: How to Break Code, p.150 [Hoglund 04].

2. Pattern name and classification: Shell Command Injection—Command Delimiters

- Attack Prerequisites: The application must pass user input directly into a shell command.

- Description: Using the semicolon or other off-nominal characters, multiple commands can be
strung together. Unsuspecting target programs will execute all the commands. An example may
be when authenticating a user using a web form, where the username is passed directly to the
shell as in:

- exec("cat data_log_" + userInput + ".dat")

- The "+" sign denotes concatenation. The developer expects that the user will only provide a user-
name. However, a malicious user could supply "username.dat; rm —rf / ;" as the input to execute
the malicious commands on the machine running the target software. Similar techniques are also
used for other attacks such as SQL injection. In the above case, the actual commands passed to
the shell will be:
cat data_log_username.dat; rm —rf /; .dat

- The first command may or may not succeed; the second command will delete everything on the
file system to which the application has access, and success/failure of the last command is irrele-
vant.

- Related Vulnerabilities or Weaknesses: CWE-OS Command Injection, CVE-1999-0043, CVE-
1999-0067, CVE-1999-0097, CVE-1999-0152, CVE-1999-0210, CVE-1999-0260, 1999-0262,
CVE-1999-0279, CVE-1999-0365, etc.

- Method of Attack: By injecting other shell commands into other data that are passed directly
into a shell command.

COPYRIGHT 2007 CIGITAL, INC. 8

- Attack Motivation-Consequences: Execution of arbitrary code. The attacker wants to use the
target software, which has more privilege than the attacker, to execute some commands that
he/she does not have privileges to execute.

- Attacker Skill or Knowledge Required: Finding and exploiting this vulnerability does not re-
quire much skill. A novice with some knowledge of shell commands and delimiters can perform
a very destructive attack. A skilled attacker, however, may be required to subvert simple coun-
termeasures such as rudimentary input filtering.

- Resources Required: No special or extensive resources are required for this attack.

- Solutions and Mitigations: Define valid inputs to all fields and ensure that the user input is al-
ways valid. Also perform white-list and/or black-list filtering as a backup to filter out known
command delimiters.

- Context Description: OS: UNIX.

- References: Exploiting Software [Hoglund 04].

Note that an attack pattern is not overly generic or theoretical. The following is not an attack pattern:
"writing outside array boundaries in an application can allow an attacker to execute arbitrary code on the
computer running the target software.” The statement does not identify what type of functionality and spe-
cific weakness is targeted or how malicious input is provided to the application. Without that information,
the statement is not particularly useful and cannot be considered an attack pattern.

An attack pattern is also not an overly specific attack that only applies to a particular application. For in-
stance, "When the PATH environment variable is set to a string of length greater than 128, the application
foo executes the code at the memory location pointed to by characters 132, 133, 134, and 135 in the envi-
ronment variable." This amount of specificity is dangerous to disclose and provides limited benefit to the
software development community. It is dangerous because it enables black hats to more easily attack par-
ticular software without requiring much thought. It is of limited benefit to the software development com-
munity because it does not help them discover and fix vulnerabilities in other applications or even fix other
similar vulnerabilities in the same application.

Though not broadly required or typical, it can be valuable to adorn attack patterns where possible and ap-
propriate with other useful reference information such as:

« Examples-Instances: Explanatory examples or demonstrative exploit instances of this type of attack.
They are intended to help the reader understand the nature, context and variability of the attack in
more practical and concrete terms.

« Source Exploits: From which specific exploits (e.g., malware, cracks) was this pattern derived and
which shows an example?

« Related Attack Patterns: What other attack patterns affect or are affected by this pattern?

« Relevant Design Patterns: What specific design patterns are recommended as providing resistance
or resilience to this attack, or which design patterns are not recommended as they are particularly
susceptible to this attack?

« Relevant Security Patterns: What specific security patterns are recommended to provide resistance
or resilience to this attack?

COPYRIGHT 2007 CIGITAL, INC. 9

« Related Guidelines or Rules: What existing security guidelines or secure coding rules are relevant
to identifying or mitigating this attack?

« Relevant Security Requirements: Have specific security requirements relevant to this attack been
identified which offer opportunities for reuse?

« Probing Techniques: What techniques are typically used to probe and reconnoiter a potential target
to determine vulnerability and/or to prepare for an attack?

« Indicators-Warnings of Attack: What activities, events, conditions, or behaviors could serve as in-
dicators that an attack of this type is imminent, in progress, or has occurred?

« Obfuscation Techniques: What techniques are typically used to disguise the fact that an attack of
this type is imminent, in progress, or has occurred?

« Injection Vector: What is the mechanism and format for this input-driven attack? Injection vectors
must take into account the grammar of an attack, the syntax accepted by the system, the position of
various fields, and the acceptable ranges of data [Hoglund 04].

« Payload: What is the code, configuration, or other data to be executed or otherwise activated as part
of this injection-based attack?

« Activation Zone: What is the area within the target software that is capable of executing or otherwise
activating the payload of this injection-based attack? The activation zone is where the intent of the at-
tacker is put into action. The activation zone may be a command interpreter, some active machine
code in a buffer, a client browser, a system API call, etc. [Hoglund 04].

« Payload Activation Impact: What is the typical impact of the attack payload activation for this in-
jection-based attack on the confidentiality, integrity, or availability of the target software?

Related Concepts

There exist many other concepts and tools related to attack patterns, including fault trees, attack trees,
threat trees, and security patterns that are available to the community. It is useful to examine and describe
these concepts briefly to reduce confusion between these concepts and attack patterns and so that related
literature can be used as a reference when researching or using attack patterns.

Bell Labs developed the concept of fault trees for the Air Force in 1962. It was later applied in a software
context in the works of Nancy Leveson [Leveson 83] in the early 1980s. Fault trees provide a formal and
methodical way of describing the safety of systems, based on various factors affecting potential system
failure. Fault trees are commonly used in safety engineering; the goal of which is to ensure that life-critical
systems behave as required when parts of them fail [Vesely 81]. Fault trees have system failure as their
root node and potential causes of system failure as other nodes in the tree. Any particular node's “children”
represent ways in which the node can "fail." The concept of fault trees is especially helpful for analyzing
software for which availability/survivability is a major security concern. Fault trees are a fairly mature
concept, and an abundance of literature elaborates on the topic. Fault trees and attack patterns have only a
very tenuous relationship. Attack patterns are much more closely aligned with attack trees, a derivative of
fault trees, which are described below.

The concept of attack trees was first promulgated by Bruce Schneier, CTO of Counterpane Internet Secu-
rity. Attack trees are similar to fault trees, except that attack trees are used to analyze the security of sys-

COPYRIGHT 2007 CIGITAL, INC. 10

tems rather than safety. Attack trees provide a formal and methodical way of describing the security of
systems based on varying attacks [Schneier 99]. Microsoft uses the term "threat tree" to describe the same
concept [Swiderski 04]. An attack tree has the attacker's goal as the root, and the children of each parent
node represent conditions of which one or more must be satisfied to achieve the goal of the parent node. In
this manner, all paths to the root from the leaf nodes indicate potential attacks.

An attack pattern consists of a minimal set of nodes in an attack tree that achieves the goal at the root
node. In a tree with only "or" branches, this consists of all paths from a leaf node to the root node. Such
paths are also known as "attack paths." In a tree with some "and" branches, an attack pattern may be a sub-
tree of the attack tree that includes the root node and at least one leaf node.

Attack trees and attack patterns are complementary concepts that balance and enhance each other. While
attack trees provide a holistic view of the potential attacks facing a particular piece of software, attack pat-
terns provide actionable detail on specific types of common attacks potentially affecting entire classes of
software. Details and examples of attack trees can be found in [Schneier 99].

Lastly, another concept related to attack patterns is security patterns. Security patterns consist of general
solutions to recurring security problems. A security pattern encapsulates security expertise in the form of
vetted solutions to these recurring problems, presenting issues and tradeoffs in the usage of the pattern
[Kienzle 01]. Examples include implementing account lockout to prevent brute force attacks, secure client
data storage, and password authentication. Because general software developers may not be familiar with
security best practices or with security issues, security patterns attempt to provide practical solutions that
can be implemented in a straightforward manner. Security patterns also list various tradeoffs in the solu-
tions. Security patterns can be an effective complement to attack patterns in providing viable solutions to
specific attack patterns at the design level. As such, it should be noted that security patterns generally de-
scribe relatively high-level repeatable implementation tasks such as user authentication and data storage.
They are not typically suitable for low-level implementation details such as NULL termination of strings
or even very high-level design issues such as client-side trust issues. Hence, they are excellent for describ-
ing solutions to programming problems with a security context but they do not demonstrate how to avoid
most common software development pitfalls. A security patterns repository is available at
SecurityPatterns.org. The repository is not meant to be a comprehensive or most up-to-date list of security
patterns.

1.2 Attack Pattern Generation

The Introduction section presented introductory and contextual information on attack patterns. This section
describes a typical process for how attack patterns are actually generated. The intended audience for this
section includes mainly security researchers and experienced security practitioners who are interested in
discovering and documenting new attack patterns. It is, however, also valuable for the broader audience in
that it gives a much deeper understanding of the source and meaning of attack patterns.

COPYRIGHT 2007 CIGITAL, INC. 11

Purpose

As attackers become more sophisticated, they will discover new ways of exploiting software. In addition,
new software and development environments will introduce new types of vulnerabilities that presently
may be unknown. To ensure that the software development community continues to implement effective
countermeasures against the latest known attacks, it is important to analyze the latest exploits to see
whether they represent any new types of attacks. Only after the attacks are characterized can effective
countermeasures against those types of attacks be designed and implemented.

In addition, analyzing the latest exploits and generating new attack patterns is an essential prerequisite to
the creation of effective security policies. Policy developers should be aware of all known attacks that a
system may face before they attempt to develop relevant and complete security policies.

While attack patterns fundamentally represent common approaches to exploits, they do not necessarily
need to be generated only from actual exploits discovered in the wild. In cases where organizations are
performing security-related research, they may discover a new way to attack a system. This knowledge can
be used internally by the organization (or provided to vendors) to mitigate the issues before attackers dis-
cover them. The example presented at the end of this section was actually discovered in this manner.

Inputs

The process of attack pattern generation begins when a new exploit is discovered that does not match one
of the known attack patterns. The inputs to the process include the actual exploits (if available), any exist-
ing vendor patches for the exploits, forensic information, and the existing knowledge base of attack pat-
terns. The exploits may be discovered in the wild, or they may be generated by security researchers in an
attempt to discover exploits before attackers do.

Analysis

The exploit analysis process typically consists of the following steps:

1. Analyze the exploit through reverse engineering, forensic analysis, and analyzing any available
patches by vendors of the target software. This step is not specific to attack pattern analysis and is
generally performed to understand exploits and develop countermeasures such as antivirus definitions
and spyware removal tools. Once the inner workings of the exploit are revealed, actual attack pattern
analysis can begin.

2. Determine whether the exploit is an instantiation of any existing attack patterns. This is often not a
clear and unambiguous decision. A careful analysis and comparison must be performed. In most
cases where the exploit is discovered in the wild, it will be an existing attack pattern and the analysis
will stop here. Otherwise, a new attack pattern will have been discovered, which should be analyzed
and documented as described below.

3. Determine the functionality in the software that contained the vulnerability. The functionality could
be a file parser, format converter, cookie handler, or anything else. Determine whether the exploit at-
tacks a vulnerability or weakness in the particular functionality or whether the same issue could exist
in the software even if the targeted functional component were removed. If the exploit targets specific
functionality, then attempt to generalize the attack. For example, if an attack targets an MP3 player,

COPYRIGHT 2007 CIGITAL, INC. 12

then could similar attacks also be used against WMV players, JPEG viewers, ZIP file extractors, etc?
The vulnerability could lie in any binary file processor, or it could exist only in MP3 playing soft-
ware.

4. Determine how the software vulnerability was exploited. Examples include providing a maliciously
crafted file to the software, leveraging a race condition, providing separator characters in the input, or
bypassing client-side input filtering. This step helps to identify how the targeted functionality deter-
mined in the previous step was exploited.

5. Determine what skill level or knowledge the attacker would need to execute such an attack. Note that
there may be different skill levels and knowledge required to generate certain results. For example,
exploiting a buffer overflow to crash a system may require very little skill, but actually executing ma-
licious code on the target host to gain control of it may require a highly skilled attacker.

6. Determine the resources required to execute the attack. Does the attack simply require an attacker
manually entering commands at a terminal, or does it involve compromising thousands of hosts be-
fore using them to attack the main target? Would execution of the attack require a well-funded or-
ganization’s support? It is important to determine the resources required to execute an attack, as it
helps determine the likelihood of an attack and helps to prioritize mitigations during actual software
development.

7. Determine the motivation of the attacker that generates this type of exploit. Why would an attacker
choose this type of attack in particular? Given a choice between various technical (e.g., executing a
buffer overflow) and non-technical (e.g., social engineering) means of achieving a goal, attackers
tend to select the easiest ones. Keeping that in mind, determine what makes the particular attack at-
tractive. What does the attacker have to begin with, and what does the attacker want to accomplish?
This discussion should be mostly technical, because business consequences will obviously depend on
the particular software and a deployed environment. The consequences may include execution of ar-
bitrary code on target host, denial of service, obtaining privileged access to target host, etc.

Evaluation

Once a new attack pattern is generated, it should be evaluated to ensure that it models the applicable ex-
ploits well. It is essential that the evaluation be performed by a different person than the one who gener-
ated the attack pattern. Otherwise, the attack pattern author could potentially gloss over issues due to im-
plicit assumptions made during the analysis. The first step is to ensure that a pre-existing attack pattern
does not model the exploits. If a pre-existing attack pattern that models the exploit is found, determine
why the new attack pattern was created and whether it would be more beneficial to amend the existing
attack pattern than to create a new one.

Assuming that the attack pattern is new, ensure that the exploits from which it was generated are actually
instantiations of the attack pattern. If not, determine what modifications to the attack pattern are required
to correct the problem. If this is done, then examine the unmodified attack pattern as well to determine
whether it is a valid attack pattern that may be applicable in other scenarios.

The next step is to ensure that the attack pattern is not overly generic. Questions that may help to deter-
mine this include:

COPYRIGHT 2007 CIGITAL, INC. 13

« Does the attack pattern describe what part of the software is attacked?
« Does the attack pattern describe how malicious input is provided to the target software?

« Will knowledge of the attack pattern help a software designer or developer avoid the problem?

If the answer to any of the above questions is “no,” then the attack pattern is likely too generic. For in-
stance, an overly generic attack pattern may state “providing an unexpectedly large input to the application
causes it to crash.” This “attack pattern” does not describe what part of the software is attacked or how
malicious input is provided to the target software. Developers do not learn what input they need to validate
(e.g., input from text fields in a Windows GUI application, input from a web form, input from a binary
resource file). It provides no indication as to what particular source of input is untrusted, and hence must
be validated. A potential attacker also would be unable to use this attack pattern because it tells them abso-
lutely nothing about how malicious input could be provided to the application. This may be considered
positive, but the fact is that many attackers are likely already familiar with the attack, along with specific
exploit instances. At the same time, if the attack pattern is completely useless to an unskilled attacker, it
likely does not represent a valuable capture of the attacker’s perspective. More details can be provided to
make the attack pattern helpful to software developers, while keeping particular attack details private.

The next step is to ensure that the attack pattern is not overly specific. Questions that may help to deter-
mine this include:

« Can the attack pattern be used to find previously undiscovered vulnerabilities in software?

« Can the attack pattern be used by relatively unskilled attackers to exploit software?

If the answer to the first question is “no,” then the attack pattern is likely too specific. If the answer to the
second question is “yes,” then either the attack is extremely simple (such as a command line delimiter at-
tack) or the attack pattern is too specific and detailed. If the attack pattern is found to be too specific or
detailed, this problem should be mitigated. An overly specific attack pattern is likely to benefit only at-
tackers and provide little ongoing value to developers.

The accessibility of the attack pattern also should be evaluated; one of the target audiences is software de-
signers and developers that may have little or no training in security issues. It would be easy for security
researchers to develop attack patterns that are completely inaccessible to designers and developers. It is
important to keep the goal of creating attack patterns in mind: attack patterns are designed to help software
designers and developers with little security experience to understand security issues so that they can de-
velop secure software.

Outputs

The typical schematic structure and content for an attack pattern that comes out of this process is described
in the Introduction section above. In addition to the information described there, the attack pattern should
clearly indicate the author(s) and reviewer(s) of the attack pattern. Depending on the environment in which
the attack pattern was developed, it should be published either to a private company repository or to a pub-
lic attack patterns repository. This will ensure that the attack pattern will be easily accessible and will not
get lost.

COPYRIGHT 2007 CIGITAL, INC. 14

Example

We will illustrate the attack pattern generation process using an example. The example used here was cho-
sen for its simplicity of explanation and understanding and was, in reality, discovered through other
means.

Suppose that there have recently been many reports of gzip-compressed files that have been causing most

virus scanners to crash. In addition, receiving gzip-compressed HTML data is causing popular web brows-
ers to crash. A security researcher, Alice, has been given the task of investigating the issues and determin-
ing whether they are related.

Alice is already familiar with existing attack patterns that are public knowledge (assume that this particular
attack is not public knowledge). She begins by obtaining some problematic gzip-compressed files. She
tries to decompress one and notes that the decompression utility takes an unusually long time. She obtains
a file listing of the directory in which the file is being decompressed and notes that the file being output by
the decompression utility is currently over 1 gigabyte in size. Realizing that this is unusual, she stops the
decompression utility and opens the partially decompressed file in a hex editor. The decompressed file
seems only to contain the letter ”A,” repeated over and over. Knowing how run-length encoding works,
Alice realizes that the decompressed file must simply contain the same byte repeated billions of times, so
that the compression is extremely efficient. The compressed file more or less need only contain the letter
”A,” along with the number of times it is repeated in the original file. Thus, the compressed file can be
extremely small (several kilobytes to several megabytes), but the decompressed file can be several hun-
dred gigabytes in size. When a virus scanner attempts to scan the contents of the compressed file, it must
decompress it in memory first. Most computers do not have several hundred gigabytes of memory and
eventually run out of memory and crash. Alice discovers the same problem at malicious websites that send
a small amount of gzip-encoded HTML data to the clients, causing the browsers that attempt to decom-
press and display the data to crash.

Now that Alice has discovered the cause of the attack and knows that the attack pattern does not currently
exist, she decides to generate an attack pattern that describes the attack. She determines that the functional-
ity under attack is decompression of gzip-encoded data. However, she also realizes that gzip is not the only
type of encoding that may be susceptible to such attacks. Other encoding formats, including ZIP, bzip2,
PNG, and GIF, also use run-length encoding to compress data and could be vulnerable to such attacks. In
fact, any type of compression where the efficiency of compression is not bounded by a reasonable value
may be vulnerable to such attacks. Thus, Alice determines that any software that performs decompression
may be vulnerable to such attacks.

Next, Alice must determine how the vulnerability is exploited. She determines that this problem could oc-
cur any time a target host attempts to decompress malicious data. All an attacker must do is activate soft-
ware on the target host to attempt to decompress the data in memory. Software that may do this includes
virus scanners, image viewers, and web browsers. Thus, the attacker must somehow place the malicious
data on the target host. In most cases, a utility such as a virus scanner would automatically do the rest. In
fact, this can be used to cause a fairly large-scale denial-of-service attack. The malicious file can be e-
mailed to an address in a target corporation, and the virus scanner on the e-mail server will cause the
server to crash. Even if backup servers exist, they will also crash when attempting to pick up where the

COPYRIGHT 2007 CIGITAL, INC. 15

other server left off (i.e., when they attempt to scan the malicious file). This will effectively cause a denial
of service and will halt all e-mail communication within that organization.This issue is now public knowl-
edge and has been mitigated in all popular antivirus software. Public release of this information in this
paper no longer poses a significant threat.

Now, Alice must determine the skill level of the attacker that may be able to execute such an attack. She
notes that crafting a malicious file is not an simple task, as the attacker cannot just create a file that is sev-
eral hundred gigabytes in size and then compress it (due to memory limitations of the attacker’s com-
puter). The attacker must know details of the compressed file format so that he/she can craft a valid but
malicious compressed file without having to create the original decompressed file. However, if such a ma-
licious file is ever obtained by an unskilled attacker, he/she can easily leverage it to attack other systems.
Thus, creating a malicious file requires a skilled attacker, but even an unskilled attacker can use the file to
execute an attack.

Alice next must determine the resources required to execute the attack. This particular attack requires
minimal resources--simply that the attacker be able to send data to the target, which could be done via e-
mail, HTTP, FTP, etc.

Now that Alice knows the attack details, she needs to determine why an attacker would execute such an
attack. Identifying the motivation helps to determine the relevance of this attack pattern to future situa-
tions. This attack is focused on achieving a denial of service. An attacker wanting to disrupt all e-mail
communication in an organization, either for simple mischief or to cause losses, may try to execute this
attack. The attack is extremely simple, and a single e-mail can halt all e-mail communication within an
organization regardless of the number of backup mail servers. The attacker may also want to deny all users
access to a message board by posting a malicious picture on the message board that causes users’ browsers
to crash when they attempt to view it. A professional attacker wishing to monetize such an attack could
even leverage this attack in combination with other business actions, such as bringing down a T-bill auc-
tion at an opportune time to manipulate monetary results. There are several such attacks where an attacker
can deny the target access to some resource for a limited period of time.

The following describes the attack pattern:
1. Pattern name and classification: Denial of Service — Decompression Bomb

- Attack Prerequisites: The application must decompress compressed data. For the attack to be
maximally effective, the decompression should happen automatically without any user interven-
tion.

- Description: The attacker generates a small amount of compressed data that will decompress to
an extremely large amount of data. The compressed data may only be a few kilobytes in size,
whereas the decompressed data may be several hundred gigabytes in size. The target is running
software that automatically attempts to decompress the data in memory to analyze it (such as
with antivirus software) or to display it (such as with web browsers). When the target software
attempts to decompress the malicious data in memory, it runs out of memory and causes the tar-
get software and/or target host to crash.

- Related Vulnerabilities or Weaknesses: CWE-Data Amplification, CVE-2005-1260

COPYRIGHT 2007 CIGITAL, INC. 16

- Method of Attack: By maliciously crafting compressed data and sending it to the target over any
protocol (e.g., e-mail, HTTP, FTP).

- Attack Motivation-Consequences: The attacker wants to deny the target access to certain re-
sources.

- Attacker Skill or Knowledge Required: Creating the exploit requires a considerable amount of
skill. However, once such a file is available, an unskilled attacker can find vulnerable software
and attack it.

- Resources Required: No special or extensive resources are required for this attack.

- Solutions and Mitigations: Restrict the size of output files when decompressing to a reasonable
value. Especially, handle decompression of files with a large compression ratio with care. Build-
ers of decompressors could specify a maximum size for decompressed content and then cease
decompression and throw an exception if this limit is ever reached.

- Context Description: Any application that performs decompression of compressed data in any
format (e.g., image, archive, sound, gzip-ed HTML)
- References: Decompression bomb vulnerabilities

1.3 Attack Pattern Usage

Unlike many other concepts and tools with a narrowly focused area of impact, attack patterns provide po-
tential value during all phases of software development regardless of the SDLC chosen, including re-
quirements, architecture, design, coding, testing, and even deploying the system. However, because attack
patterns describe how an attacker may break software, some readers may not immediately understand how
attack patterns can be used to actually build secure software. Once the reader grasps the importance of
understanding the attacker’s perspective to software security, the value of attack patterns becomes intui-
tively clear. Without knowing how software may be attacked, it is difficult to know how to defend against
the attacks.

The sections below describe how attack patterns can be leveraged during each stage of the SDLC. To
make the information more concrete, each section provides an example. All examples will use as their ba-
sis one application that needs to be developed. The application will be web based and designed to let con-
sumers purchase books online.

Requirement Gathering

This paper assumes that the reader is familiar with the basic activities and results of typical software re-
quirements definition efforts. Many other resources explain the various methodologies and challenges for
requirements gathering. The Build Security In site offers a good Requirements Engineering Annotated
Bibliography. Discussion here will focus on the role attack patterns play in defining more appropriate and
comprehensive requirements regarding the security of the software under development.

Functional Requirements

COPYRIGHT 2007 CIGITAL, INC. 17

Most requirements gathering starts with relatively high-level functional requirements such as “users shall
be able to access the site using at least the latest versions of Internet Explorer and Mozilla Firefox” and
“users shall be able to purchase books in any currency”. These high-level requirements generally lead to
more detailed functional requirements and can potentially drive out security requirements. These security
requirements can be functional, whether visible to the end user or not, or not functional in nature, but
equally important. Very often, detailed functional and non-functional requirements including security re-
quirements are overlooked and neglected because the general focus is basic functionality.

Deriving Security Requirements From Functional Requirements

The above two requirements should lead to questions that could help identify security requirements. If a
user attempts to view the website with anything but the latest versions of Internet Explorer and Mozilla
Firefox, what should happen? Is it acceptable if the browser crashes? Is it acceptable if absolutely nothing
is displayed? Is there anything that the server needs to do to differentiate between browsers? What should
happen if the self-identification data sent by the client is spoofed (e.g., if Mozilla Firefox is set to report
itself as being Internet Explorer)? Also, if users can purchase books in other currencies, then should they
be able to browse the website in other languages or encoding schemes (e.g., Unicode)? If so, how many
languages and encoding schemes should the website support? What should happen if a client sends charac-
ters from a language or encoding scheme that the server does not accept?

As shown above, the process of making functional requirements more specific often is also an effective
mechanism for identifying security requirements. For instance, indicating that “if a client sends characters
from a language that the server does not recognize, then the server will return a HTTP 415 status code” is
a good security requirement. This informs the developers how to handle the issue. Otherwise, the problem
may be overlooked, causing issues such as attackers being able to bypass input filters.

Positive and Negative Security Requirements: The Role of Attack Patterns

Security-focused requirements are typically further split between positive requirements, which specify
functional behaviors the software must exhibit (often security features), and negative requirements (typi-
cally in the form of misuse/abuse cases), which describe behaviors that the software must not exhibit to be
operating securely [McGraw 06].

Attack patterns can be an invaluable resource for helping to identify both positive and negative security
requirements. They have obvious direct benefit in defining the software’s expected reaction to the attacks
they describe. When put into the context of the other functional requirements for the software and when
considering the underlying weaknesses targeted by the attack, they can help identify both negative re-
quirements describing potential undesired behaviors and positive functional requirements for avoiding, or
at least mitigating, the potential attack. For instance, if a customer provides the requirement “the applica-
tion must accept ASCII characters,” then the attack pattern “Unicode Encoding” can be used to ask the
question “What should the application do if Unicode characters or another unacceptable character set is
encountered?” From this question, misuse/abuse cases can be defined such as “Malicious user provides
Unicode characters to the data entry field.” By having a specific definition for this negative requirement,
the designers, implementers, and testers will have a clear idea of the type of hostile environment with
which the software must deal and will build the software accordingly. This information can also help de-
fine positive requirements such as “The system shall filter all input for Unicode characters.” If these sorts

COPYRIGHT 2007 CIGITAL, INC. 18

of requirements are overlooked, the developed application may have instances in which it may unknow-
ingly accept Unicode characters, and an attacker could use that fact to bypass input filters for ASCII char-
acters.

Many vulnerabilities result from vague specifications and requirements. This includes ambiguities outside
the immediate scope of the application, including "unspecified behavior" in certain specifications (e.g., C
language and how compilers must deal with certain situations) or RFCs (e.g., IP fragmentation and how
end nodes interpret the specification in varying fashions). Requirements should specifically address these
ambiguities to avoid opening up multiple security holes. In general, attack patterns allow the requirements
gatherer to ask “what if” questions to make the requirements more specific. If an attack pattern states
“Condition X can be leveraged by an attacker to cause Y,” then a valid question may be “What should the
application do if it encounters condition X?”

Varying Levels of Attack Pattern Detail and Specificity

Attack patterns can exist at varying levels of detail and specificity; they often may start out more ab-
stract with less known instances of exploit and then mature in level of detail over time as more
exploit instances are discovered. These differing levels of detail also can influence the re-
quirements they identify at different levels. More abstract attack patterns typically lead to
less specific nonfunctional requirements, while more detailed attack patterns typically lead to
more specific functional requirements.

Architecture and Design

Once requirements have been defined, all software must go through some level of architecture and design.
Regardless of the formality of the process followed, the results of this activity will form the foundation for
the software and drive all remaining development activities. During architecture and design, decisions
must be made about how the software will be structured, how the various components will integrate and
interact, which technologies will be leveraged, and how the requirements defining how the software will
function will be interpreted. Careful consideration is necessary during this activity, as up to 50% of soft-
ware defects leading to security problems are design flaws [McGraw 06]. In the example in Figure 1, a
potential architecture could consist of a three-tier system with the client (a web browser leveraging
Javascript HTML)), a web server (leveraging Java™ Servlets), and a database server (leveraging Oracle
10i). Decisions made at this level can have a significant impact on the overall security profile of the soft-
ware.

Figure 0-1: Example architecture

COPYRIGHT 2007 CIGITAL, INC. 19

CLIENT

Wab Broweses
HTML
Javascrpt

APPLICATION LOGIC

Witk Sanor
Java Servlels

DATABASE

Oracle 100

Attack patterns can be valuable during architecture and design in two ways. First, some attack patterns
describe attacks that directly exploit architecture and design flaws in software. For instance, the “Make the
Client Invisible” attack pattern described in the Introduction section above exploits client-side trust issues
that are apparent in the software architecture. Second, attack patterns at all levels can provide a useful con-
text for the threats that the software is likely to face and thereby determine which architectural and design
features to avoid or to specifically incorporate. The Make the Client Invisible attack pattern tells us that
absolutely nothing sent back by the client can be trusted, regardless of what network security mechanisms
(e.g., SSL) are used. The client is untrusted, and an attacker can send back literally any information that
he/she desires. All input validation, authorization checks, etc. must be performed on the server side. In
addition, any data sent to the client should be considered visible by the client regardless of its intended
presentation (i.e., data that the client should not see should never be sent to the client). Performing authori-
zation checks on the client side to determine what data to display is unacceptable.

The Make the Client Invisible attack pattern instructs the architects and designers to ensure that absolutely
no business logic is performed on the client side. In fact, depending on the system requirements, and the
threats and risks the system faces, the architects and designers may even want to define an input validator
through which all input to the server must pass before being sent to the other classes. Such decisions must
be made at the architecture and design phase, and attack patterns provide some guidance regarding what
issues should be considered.

It is essential to document any attack patterns used in the architecture/design phase so that the application
can be tested using those attack patterns. Tests must be created in the later testing phase to validate that
mitigations for the attack patterns considered during this phase were implemented properly.

COPYRIGHT 2007 CIGITAL, INC. 20

Implementation and Coding

If architecture and design have been performed properly, each developer implementing the design should
be writing well-defined components with well-defined interfaces.

Attack patterns can be useful during implementation because they identify the specific weaknesses tar-
geted by relevant attacks and allow the developer to ensure that these weaknesses do not occur in their
code. These weaknesses could take the form of implementation bugs or simply valid coding constructs that
bear with them security implications. Implementation bugs are not always easy to avoid or to catch and
fix. Even after applying basic review techniques, they can still remain abundant and can make software
vulnerable to extremely dangerous exploits. It is important to extend basic review techniques with more
focused security relevant concerns. Failure to properly check an array bound, for example, can lead to an
attacker being able to execute arbitrary code on the target host. Failure to perform proper input validation
can lead to an attacker being able to destroy an entire database. Underlying security issues in non-buggy
valid code are typically more difficult to identify. They cannot be tested for with a functional behavioral
model the way bugs can. They require specialized knowledge of what these weaknesses look like. This
paper focuses on how attack patterns can be used to identify specific weaknesses for targeting and mitiga-
tion through informing the developer ahead of time of the issues to avoid and through providing a list of
issues (Security Coding Rules) to look for in code reviews, often performed with security scanning tools.

Prevention requires that the developers understand applicable attack patterns and ensure that their code
does not allow the attack patterns to succeed. The first step is to determine which attack patterns are appli-
cable for the application being developed. Only a subset of attack patterns will be applicable for a particu-
lar piece of software, depending on its architecture, environment, and the technologies used to implement
it. For instance, buffer overflow vulnerabilities are not typically applicable if all coding is done in Java.
Input validation vulnerabilities may be less of a concern if all untrusted input is passed through a vetted,
central, server-side filter before it is delivered to their code, rather than relying on all entry points (often
implemented by different individuals) to perform their own validation. It is important to determine the
attack patterns that will be applicable for a particular project. In some instances, different attack patterns
may be applicable for different components of a product.

Once the applicable attack patterns are determined, they can be used to guide developers as to what not to
allow in their code. In our example, a developer could leverage an attack pattern such as “simple script
injection” and avoid XSS vulnerabilities. One relatively easy way to do this is to identify all places from
which output is being sent to the user from an untrusted source and convert potentially dangerous charac-
ters into their HTML equivalents. For instance, convert "< to "&It;”, ”>" to ">”, etc. Third-party li-
braries for Java can perform such conversions automatically. JavaScript’s escape() function performs a
similar task. This will prevent untrusted input containing potentially malicious data from being displayed
to the user. Malicious data could include artifacts such as <script> tags inserted by an attacker. This con-
version should be carefully managed to avoid potential unintended buffer overflow issues. Of course, this
problem could also be handled in other ways, such as use of a white list or at an architectural level by de-
fining an input validator and an output sanitizer. The architectural approach would be more suitable for
large projects, whereas dealing with the problem at the implementation level may be acceptable for
smaller projects.

COPYRIGHT 2007 CIGITAL, INC. 21

Good architecture/design as well as developer awareness, enhanced with attack patterns, can potentially
help to minimize many security weaknesses. However, it is also essential to ensure that all source code,
once written, is reviewed to validate the absence of targeted weaknesses. Due to the size and monotony of
this task, it is typically performed using an automated analysis tool (e.g., those from Fortify, Klocwork,
Coverity). Even though analysis tools cannot find all security weaknesses, they can help weed out many
potential issues. Using attack patterns as guidance, specific subsets of the tools” search rules can be tar-
geted and custom rules can be created for organizations to help find security weaknesses or instances of
failure to follow security standards. For example, revisiting the potential “Simple Script Injection” attack
pattern, an organization may have a security standard in which all untrusted input is passed through an
input filter, and all output of data obtained from an untrusted source is passed through an encoder. An or-
ganization can develop such filters and encoders, and static source code analysis tools can help find occur-
rences in code where developers may have neglected to adhere to standards and opted to use Java’s in-
put/output features directly.

Software Testing and Quality Assurance

Testing and quality assurance is a critical phase in the software development lifecycle. Software must un-
dergo several levels and types of testing before it is released into a production environment. Different lev-
els of testing include unit testing, integration testing, system testing, regression testing, and deployment
testing. Different types of testing include functional testing, security testing (including penetration testing),
performance testing, data integrity testing, and stress testing. A detailed discussion about all of the various
levels and types of testing is out of scope for this paper. However, it is important to note that attack pat-
terns can be leveraged during many different levels and types of testing to help design test cases.

The testing phase is different than the previous ones in the SDLC in that its goal is not necessarily con-
structive; the goal of risk-based security testing is typically to attempt to break software so that the discov-
ered issues can be fixed before an attacker can find them [Whittaker 03]. The purpose of using attack pat-
terns in this phase is to have the individuals performing the various levels and types of testing act as
attackers attempting to break the software.

Leveraging Attack Patterns in Unit Testing

Unit testing involves testing the components or pieces of software independently to ensure that they meet
their functional and non-functional specifications. Applicable attack patterns should be used to identify
relevant targeted weaknesses and to generate test cases for each component to ensure that they avoid or
resist these weaknesses. For example, to test for shell command injection using command delimiters, mali-
cious input strings containing delimiter separated shell commands should be crafted and input to the appli-
cable component(s) to ensure proper behavior when provided with this type of malicious data.

Leveraging Attack Patterns in Integration Testing

Integration testing involves ensuring that software components integrate and interact together properly.
This requires not only ensuring that all components compile together and that their interfaces match but
also that the actual functionality of the components does not conflict If a good architecture and design are
created and proper unit testing is performed, integration testing should reveal less major issues than other-
wise. A primary security issue to consider during integration testing is whether the individual components

COPYRIGHT 2007 CIGITAL, INC. 22

make differing assumptions based on security such that the integrated whole may contain conflicts or am-
biguities. Attack patterns can be leveraged to create some test cases for integration testing. At a minimum,
the attack patterns documented in the architecture/design phase should be used to create integration tests.
Other attack patterns may be applicable as well. For instance, the Make the Client Invisible attack pattern
can be used to create test cases that simulate an attacker bypassing the client and communicating directly
with the server or an attacker modifying the client to send malicious data to the server.

Leveraging Attack Patterns in System Testing

System testing is used to test the entire system to ensure that it meets all of its functional and non-
functional requirements. Hopefully, attack patterns were used in the requirement gathering phase to gener-
ate security requirements. These security requirements should be tested during system testing. For exam-
ple, the Unicode Encoding attack pattern can be used to generate test cases that ensure that the application
behaves properly when provided with unexpected characters. Testers should provide characters that the
application is not supposed to accept to the application to see how it behaves. The application’s actual be-
havior when under attack should be compared with the desired behavior defined in the security require-
ments.

Leveraging Attack Patterns in Regression Testing

Regression testing is the running of existing tests on the software any time that the code is changed to en-
sure that the change not only caused the intended behavior but also that it did not inadvertently cause any
unintended changes. Attack patterns do not bring any new and unique value to regression testing itself.
Effective regression testing should include security test cases developed during the other testing levels that
were guided by use of attack patterns.

Leveraging Attack Patterns for Testing in the Operational Environment

Even after application of typical testing levels, software brings with it security concerns applicable to test-
ing. Even if security was considered throughout the SDLC when building software, and even if extensive
testing has been performed, vulnerabilities will likely still exist in the software. This is because no useful
piece of software is 100 percent secure [Viega 01]. For software to be useful, there must be ways to use it.
Revisiting the analogy of a bank vault, a vault could be made extremely secure if it were constructed a few
miles underground, was surrounded by several hundred feet of steel-reinforced concrete, had no access
doors, and could withstand attacks from nuclear bombs. It might even be 100 percent secure, but it would
of course be completely useless. For it to be useful, there must be a way to access it, and an attacker is
likely to exploit the access point(s) if the access point(s) are the easiest ways of gaining access. Designers
and builders can only ensure that they disallow “side-channel” attacks, so that the only way the attacker
can access the vault is through the door built into it. The designers can do absolutely nothing to prevent an
authorized employee from giving away the combination to the vault to their friends, from leaving the door
ajar, etc. The vault itself can be made extremely secure, but the actual operational environment may be
completely insecure. Software also faces similar issues. Software can be designed and developed to be
extremely secure, but if it is deployed and operated in an insecure fashion many vulnerabilities can be in-
troduced. For example, a piece of software could provide strong encryption and proper authentication be-
fore allowing access to encrypted data, but if an attacker can obtain valid authentication credentials he/she

COPYRIGHT 2007 CIGITAL, INC. 23

can subvert the software’s security. Nothing is 100 percent secure, and the environment must be secured
and monitored to thwart attacks.

Newer object-oriented programming models involving principles such as inversion of control further com-
plicate the problem. For instance, the Spring framework for Java allows components to be “wired” to-
gether declaratively, similar to components being assembled together in a car. The entire car does not need
to be rebuilt if a manufacturer decides to use a different brand of tires; the Spring framework enables simi-
lar swapping of software components during deployment without requiring rebuilding of large pieces.
However, the problem is that the system designers and developers may have made assumptions regarding
certain components that may not be satisfied by the components that are actually deployed. Such issues
cannot be considered the manufacturer’s fault unless they provide insufficient documentation.

Therefore, it is extremely important to perform security testing of the software in its actual operational
environment. Vulnerabilities present in software can sometimes be masked by environmental protections
such as network firewalls and application firewalls, and environmental conditions can sometimes create
new vulnerabilities. Such issues can often be discovered using a mix of white-box and black-box analysis
of the deployed environment. White-box analysis of deployed software involves performing security
analysis of the software, including its deployed environment, with knowledge of the architecture, design,
and implementation of the software. Black-box analysis (typically in the form of penetration testing) in-
volves treating the deployed software as a “black box,” and attempting to attack it without any knowledge
of its inner workings. While black-box analysis is relatively inexpensive and can find many of the more
obvious and small problems, it is not as effective at finding many of the often more significant issues.
These issues are typically found only through in-depth white-box analysis. Black-box is good for finding
the specific implementation issues you know to look for, while detailed and structured white-box can un-
cover unexpected architecture/design and implementation issues that you may not have known to look for.
Both types of testing are important, and attack patterns can be leveraged for both.

Leveraging Attack Patterns for Black-Box Testing

Black-box testing of web applications is generally performed using tools such as application security test-
ers like those from companies such as SPI Dynamics that automatically run predefined tests. Attack pat-
terns can be used as models to create the tests these tools perform, thereby giving them more significant
relevance and effectiveness. Such tools, though, cannot find many types of architectural flaws, or even all
implementation errors. These tools generally test for a large variety of attacks, but they generally cannot
find subtle architectural vulnerabilities. They effectively find issues that script kiddies and other relatively
unskilled attackers would likely exploit. However, a skilled attacker would be able to find many issues that
a vulnerability scanning tool simply could not detect. For instance, a lack of encryption for transmitting
social security numbers would not be detected using an automated tool, as the fact that social security
numbers are unencrypted is not a purely technical flaw. The black-box testing tool cannot determine what
information is a social security number and cannot apply business logic. Attack patterns that are useful for
creating black-box tests include those that can be executed remotely without requiring many steps. Some
examples of vulnerabilities that black-box testing can detect include cross-site scripting using injection of
JavaScript in a HTTP parameter and SQL injection using separator characters. Automated tools can be
used to create tests, such as where a separator character is inserted into a HTML form field, to observe

COPYRIGHT 2007 CIGITAL, INC. 24

whether a database error occurs. Black-box testing of non-web applications can be performed similarly
using different tools.

Leveraging Attack Patterns for White-Box Testing

White-box testing is slower but more thorough than black-box. It involves extensive analysis performed by
security experts that have access to the software’s requirements, architecture, design, and code. The pri-
mary goal of white-box security testing is to find the more obscure implementation bugs not found in
black-box testing as well as architecture and design flaws and related security issues. The advantage of
white-box testing lies in its thoroughness; security experts may analyze a system for several weeks or
months while knowing all of its internal details. If the flaws they find are mitigated, it is unlikely that an
attacker with limited knowledge of an application’s internal workings will easily find a significant vulner-
ability. Attack patterns can be leveraged to determine areas of system risk and thereby on which areas of
the system white-box analysis should focus. The attack patterns most effective for white-box analysis in-
clude those that target architecture and design weaknesses. Attack patterns that target specific implementa-
tion weaknesses should not be completely disregarded because, in many cases, implementation weak-
nesses can only be easily found using manual code reviews (a type of white-box analysis). An attack
pattern that could be leveraged in white-box testing of a deployed system is sniffing sensitive data on an
insecure channel. Those with knowledge of data sensitivity classifications and an understanding of the
business context around various types of data can determine if some information that should always be
communicated over an encrypted channel is actually sent over an insecure channel. Such issues are often
specific to a deployed environment; thus, analysis of the actual deployed software is required.

Leveraging Attack Patterns in the Broader Spectrum of Testing

The testing phase of the SDLC is vital to ensuring the security of the software under development, and, as

outlined here, attack patterns can play a valuable and broad role across the various testing activities. There
are other more specific types of testing where attack patterns could be leveraged explicitly or implicitly to

test the security of the system, but that level of detail exceeds the scope of this paper. Providing such detail
is an excellent opportunity for further research and contribution.

Systems Operation

System operation and attack patterns are related in two ways. First, attack patterns can guide design of
secure operational configurations and procedures. Second, operational knowledge of security issues ob-
served in the fielded system can be used to feed back into the attack pattern generation process.

In many cases, software with known vulnerabilities may be deployed because it may be too expensive to
fix the problems, no other alternatives may be available, or it may be less expensive to design operational
configurations and procedures to react to attacks instead of actually mitigating the issues in the software
itself. Having proper operational configurations and procedures in place also is essential, even if software
is highly secure. As described in the Leveraging Attack Patterns for Testing in the Operational Environ-
ment section above, environmental conditions can dictate whether certain vulnerabilities are present in
deployed software, and a large part of environmental conditions consist of operational configurations and
procedures. Hence, proper operational configurations and procedures are essential to creating a secure en-
vironment [Graff 03].

COPYRIGHT 2007 CIGITAL, INC. 25

Attack patterns describe how an attacker may actually exploit software. Given an attack pattern, there may
be ways in which certain operational procedures or environmental configurations can thwart the type of
attack. For instance, procedures could be put in place to deal with the decompression bomb attack de-
scribed in the Attack Pattern Generation section until a vendor patch becomes available. Such procedures
may include manually deleting or quarantining suspicious e-mails or temporarily blocking all external e-
mail access to an organization.

Operations people, with their knowledge of security issues and familiarity with the methods of attackers in
an operational environment, can also be a great source for generating new attack patterns. When indica-
tions that a system was successfully exploited are present, an investigation that identifies how the attack
was carried out is generally conducted. The process described in the Attack Pattern Generation section
above can be used during the investigation to potentially generate new attack patterns. These new attack
patterns can then be leveraged to modify existing software and/or environmental configurations or to cre-
ate additional operational procedures for added security.

Policy and Standard Generation

While, as described in the above sections, attack patterns can certainly be used directly by designers and
developers, it is also helpful in many organizations to use attack patterns indirectly during the SDLC by
using them to generate policies and standards that are in turn used to develop secure software. These poli-
cies and standards can include those generated by third parties, such as with the Payment Card Industry
(PCI) standards or those generated for internal use within an organization. Using attack patterns to gener-
ate policies is mostly helpful for organizations that need to dictate security standards for other organiza-
tions (e.g., credit card consortia, government agencies) and for large software development organizations.

Using policies and standards during the SDLC is not a substitute for the knowledge of attack patterns, and
organizations should not rely solely on their software development staff using policies to develop secure
software for several reasons. First, it is much easier to concisely describe how software can be abused than
to describe how secure software should be built. Mitigations for attack patterns also vary by the technol-
ogy used. Second, waiting until policies and standards are updated using information from the latest attack
patterns adds another layer of indirection that increases the amount of time it takes for software developers
to implement countermeasures against the latest attack patterns.

Even though appropriate policies and standards are not substitutes for attack patterns, they are extremely
helpful for day-to-day software design and development activities. Policies describe high-level rules that
are applicable across all software deployed in an organization. For instance, a policy may state “all data
obtained from a network must be sanitized before they are processed by any business logic.” This policy
may be designed to address attack patterns such as “command delimiters” and “XSS in HTTP headers.”

Standards are refinements, often seeded with useful examles, of policies that apply to specific software
and/or technologies. For example, addressing the attack pattern of “XSS in HTTP headers” in Java Serv-
lets may require use of standards such as “all data obtained from the network that contain characters must
have the following characters removed as soon they are seen by a server: ‘<’, *>*, “(%, *)’, *;” . However, it
is important to note that standards should always be developed and deployed in a balanced and compre-
hensive fashion and not in isolation. For instance, the example in the previous sentence applied in isolation

COPYRIGHT 2007 CIGITAL, INC. 26

could leave a system susceptible to alternate encoding issues and thus should be coordinated and but-
tressed with other relevant standards as an effective package.

Policies and standards are useful in large organizations because they ensure that mitigations for attack pat-
terns are applied uniformly across all code. Like attack patterns, policies and standards can be used in all
phases of the SDLC. Policies and standards also help organizations specify minimal security controls that
must be in place for other organizations that handle certain types of data.

1.4 Further Information on Attack Patterns

Attack patterns are a rather new concept and, as of yet, relatively little content is available for further read-
ing. The References section below lists some resources that may prove valuable. Specifically, the follow-
ing resources are directly relevant and should be considered:

The Common Attack Pattern Enumeration and Classification (CAPEC) initiative sponsored by the De-
partment of Homeland Security. The objective of this effort is to develop and deploy to the public an ini-
tial baseline catalog of attack patterns along with a comprehensive schema and classification taxonomy. It
is hoped that, after its launch (Q2 2007), this catalog will continue to form the standard mechanism for
identifying, collecting, refining, and sharing attack patterns among the software community.

« Exploiting Software: How to Break Code [Hoglund 04]
« Attack Modeling for Information Security and Survivability [Moore 01]

« Matching Attack Patterns to Security Vulnerabilities in Software-Intensive System Designs [Gegick
05]

1.5 Glossary

attack An attack is the act of carrying out an exploit.

attack path An attack path is a path in an attack tree from a leaf node to the root node. An attack
path can be a simplistic representation of an attack pattern.

attack pattern An attack pattern is a general framework for carrying out a particular type of attack
such as a particular method for exploiting a buffer overflow or an interposition attack
that leverages architectural weaknesses. In this paper, an attack pattern describes the
approach used by attackers to generate an exploit against software.

attack tree Attack trees (known as “threat trees” by Microsoft) provide a formal, methodical

way of describing the security of systems based on various attacks [Schneier 99].
The root node of the tree is the attacker’s goal (known as “threat™ by Microsoft), and
the “children™ of each node describe a lower-level way of achieving the goal of the
parent node. In this manner, the leaf nodes generally contain relatively low-level
tasks such as “install a key logger on target machine™, and the root node contains a
goal such as “obtain administrator’s password.”

COPYRIGHT 2007 CIGITAL, INC. 27

attacker

bugs

design pattern

exploit

flaws

impact

misuse/abuse cases

risk

An attacker is the person that actually executes an attack. Attackers may range from

very unskilled individuals leveraging automated attacks developed by others (“script
kiddies™) to well-funded government agencies or even large international organized

crime syndicates with highly skilled software experts.

Bugs are software problems that exist only in code. A bug that exists in code may or
may not ever be executed or exploitable. Therefore, a bug may or may not represent
a vulnerability in the underlying software. Bugs are used to describe minor imple-
mentation errors that are typically easy to fix. Note that simply because bugs are mi-
nor implementation errors does not mean that the impact of an attacker exploiting the
bug is small. For instance, a buffer overflow is a well-known type of bug that is gen-
erally easy to fix. However, exploiting a buffer overflow can give an attacker full
control over a system.

A design pattern is a general repeatable solution to a recurring software engineering
problem.

An exploit is a technique or software code (often in the form of scripts) that takes
advantage of a vulnerability or security weakness in a piece of target software.

Flaws are software problems that exist in the software’s design. A flaw may or may
not represent a vulnerability in the underlying software. Mitigating a flaw typically
involves significantly more effort than simply modifying a few lines of code. The
problem does not lie solely in the implementation; the underlying design is flawed,
and therefore, any implementation that follows the design would contain the flaw.
For instance, performing sensitive business logic in an untrusted client application is
a design flaw that cannot be mitigated by a simple measure such as modifying array
bounds.

Impact is the effect that the organization using vulnerable software faces if a vulner-
ability were to be exploited. Impact could range from specific tangible values such as
monetary fines from the breach of a law or regulation to intangible values such as
brand and reputation damage.

Misuse/Abuse cases can be viewed as use case requirements with an attacker as the
actor. They represent actions taken against the software that do not fall within the
normal, defined operating parameters of the system. They are typically identified and
modeled in an integrated fashion with positive functional use cases for a system.

Risks capture the likelihood that a vulnerability will be exploited, as well as the po-
tential damage (impact) that will occur if it is. It is important to note that risks,
threats, and exploits are all separate things. Risks may be present in the target soft-
ware, on the target host, or in the broader operational environment of the software.

COPYRIGHT 2007 CIGITAL, INC. 28

risk analysis Risk analysis involves analyzing target software for vulnerabilities and characteriz-
ing their nature and potential impact. Microsoft calls this “threat modeling.” Risk
analysis attempts to identify, prioritize, and plan appropriate mitigation for the risks
facing a piece of software.

security pattern A security pattern is a design pattern that is intended to show software developers
how to design and implement solutions to common security problems. These solu-
tions typically represent software security features. A security pattern may be used to
mitigate multiple attack patterns, and an attack pattern may be mitigated using multi-
ple security patterns.

target host A target host is the computer or platform that is running the target software of an
attack. A host may be attacked through interfaces of the target software or through
purely network-based attack mechanisms.

target software Target software is software that is the target of an attack.

threat A threat is an actor or an agent that is a source of danger to the system under consid-
eration or the assets to which it has access. The threat can be a person that abuses the
software, a program running on a compromised system, or even a non-sentient event
such as a hardware failure. A threat exploits a vulnerability in software to attack it.

vulnerabilities A vulnerability is a software weakness that can be exploited by an attacker. Bugs and
flaws collectively form the basis of most software vulnerabilities.

weakness A weakness is an underlying condition or construct existing in a software system that
has the potential for negatively impacting the security of the system.

1.6 References

[Alexander 64]

Alexander, Christopher. Notes on the Synthesis of Form. Cambridge, MA: Harvard University Press, 1964.
[Alexander 77]

Alexander, Christopher; Ishikawa, Sara; & Silverstein, Murray. A Pattern Language. New York, NY: Ox-
ford University Press, 1977.

[Alexander 79]

Alexander, Christopher. A Timeless Way of Building. New York, NY: Oxford University Press, 1979.
[DOA 88]

Department of the Army. AR 380-5 Department of the Army Information Security Program, Classified

Document and Materiel Storage (1988).

COPYRIGHT 2007 CIGITAL, INC. 29

[Ellison 06]
Ellison, Robert. Attack Trees. (2006).
[Gamma 95]

Gamma, E.; Helm, R.; Johnson, R.; & Vlissides, J. Design Patterns: Elements of Reusable Object-
Oriented Software. Boston, MA: Addison-Wesley, 1995.

[Gegick 05]

Gegick, Michael & Williams, Laurie. “Matching Attack Patterns to Security Vulnerabilities in Software-
Intensive System Designs.” ACM SIGSOFT Software Engineering Notes, Proceedings of the 2005 work-
shop on Software engineering for secure systems—building trustworthy applications SESS '05, Volume 30,
Issue 4. New York, NY: ACM Press, 2005.

[Graff 03]:Graff, Mark & van Wyk, Kenneth. Secure Coding: Principles and Practices. Sebastopol, CA:
O’Reilly and Associates, 2003.

[Hoglund 04]

Hoglund, Greg & McGraw, Gary. Exploiting Software: How to Break Code. Boston, MA: Addison-
Wesley, 2004 (ISBN 0-2017-8695-8).

[Howard 02]
Howard, M.; & LeBlanc, D. Writing Secure Code. Redmond, WA: Microsoft Press, 2002.
[Kienzle 01]

Kienzle, Darrell & Elder, Matthew. Security Patterns (2001).

[Koizol 04]

Koizol, Jack; Litchfield, D.; Aitel, D.; Anley, C.; Eren, S.; Mehta, N.; & Riley. H. The Shellcoder's Hand-
book: Discovering and Exploiting Security Holes. Indianapolis, IN: Wiley, 2004 (ISBN 0764544683).

[Leveson 83]

Leveson, Nancy G. & Stolzy, Janice L. “Safety analysis of ada programs using fault trees.” IEEE Transac-
tions on Reliability R-32, 5 (December 1983): 479-484.

[Leveson 04]

Leveson, Nancy. “A Systems-Theoretic Approach to Safety in Software-Intensive Systems.” IEEE Trans-
actions on Dependable and Secure Computing 1, 1 (January-March 2004): 66-86.

[McGraw 06]

McGraw, Gary. Software Security: Building Security In. Boston, MA: Addison-Wesley, 2006.
http://ww.buildingsecurityin.com

COPYRIGHT 2007 CIGITAL, INC. 30

[Moore 01]

Moore, A. P.; Ellison, R. J.; & Linger, R. C. Attack Modeling for Information Security and Survivability
(CMU/SEI-2001-TN-001, ADA388771). Pittsburgh, PA: Software Engineering Institute, Carnegie Mellon
University, 2001.

[ReliaSoft 03]

ReliaSoft. Fault Tree Analysis, Reliability Block Diagrams and the BlockSim FTI Edition, 2003.

[Schneier 99]
Schneier, Bruce. “Attack Trees: Modeling Security Threats.” Dr. Dobb’s Journal, December, 1999.
[Schumacher 06a]

Schumacher, M.; Fernandez-Buglioni, E.; Hybertson, D.; Buschmann, F. & Sommerlad, P. Security Pat-
terns: Integrating Security and Systems Engineering. New York, NY: John Wiley & Sons, 2006.

[Schumacher 06b]

Schumacher, Markus. SecurityPatterns.Org. (2006).

[Swiderski 04]
Swiderski, F. & Snyder, W. Threat Modeling. Redmond, WA: Microsoft Press (2004).
[Vesely 81]

Vesely, W. E.; Goldberg, F. F.; Roberts, N. H.; & Haasl, D. H. Fault Tree Handbook (NUREG-0492).
Washington, DC: Systems and Reliability Research, Office of Nuclear Regulatory Research, U.S. Nuclear
Regulatory Commission, 1981.

[Viega 01]

Viega, John & McGraw, Gary. Building Secure Software: How to Avoid Security Problems the Right Way.
Boston, MA: Addison-Wesley, 2001.

[Whittaker 03]

Whittaker, James. How to Break Software Security: Effective Techniques for Security Testing. Boston,
MA: Addison-Wesley, 2003.

COPYRIGHT 2007 CIGITAL, INC. 31

