
Software Assurance Pocket Guide Series:
Development, Volume II
Version 2.3, November 1, 2012

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 1

Software Assurance (SwA) Pocket Guide Resources

This is a resource for ‘getting started’ in selecting and adopting relevant practices for engineering, developing, and
delivering secure software. As part of the Software Assurance (SwA) Pocket Guide series, this resource is offered
for informative use only; it is not intended as directive or presented as being comprehensive since it references and
summarizes material in the source documents and on-line resources that provide detailed information. When referencing
any part of this document, please provide proper attribution and reference the source documents, when applicable.

This volume of the SwA Pocket Guide series focuses on key practices for mitigating the most egregious exploitable
software weaknesses. It identifies mission/business risks attributable to the respective weaknesses, it identifies
common attacks that exploit those weaknesses, and provides recommended practices for preventing the
weaknesses. It provides insight for how software weaknesses are prioritized to guide training, development and
procurement efforts.

At the back of this pocket guide are references, limitation statements, and a listing of topics addressed in the SwA
Pocket Guide series. All SwA Pocket Guides and SwA-related documents are freely available for download via the SwA
Community Resources and Information Clearinghouse at http://buildsecurityin.us-cert.gov/swa .

Acknowledgements

The SwA Forum and Working Groups function as a stakeholder mega-community that welcomes additional participation
in advancing software security and refining SwA-related information resources that are offered free for public use. Input
to all SwA resources is encouraged. Please contact Software.Assurance@dhs.gov for comments and inquiries.

The SwA Forum is composed of government, industry, and academic members. The SwA Forum focuses on
incorporating SwA considerations in educatoin, acquisition, and development processes relative to potential risk
exposures that could be introduced by software and the software supply chain.

Participants in the SwA Forum’s Processes & Practices Working Group collaborated with the Technology, Tools and
Product Evaluation Working Group in developing the material used in this pocket guide as a step in raising awareness on
how to incorporate SwA throughout the Software Development Life Cycle (SDLC).

Lacking common characterization of exploitable software constructs and how they could be attacked, along with
associated mitigation practices, previously presented one of the major challenges to realizing software assurance

http://buildsecurityin.us-cert.gov/swa
mailto:Software.Assurance@dhs.gov

2 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

objectives. As part of the Software Assurance public-private collaboration efforts, the Department of Homeland Security
(DHS) Office of Cyber Security and Communications, together with other Federal partners, has provided sponsorship of
Common Weakness Enumeration (CWE) and the Common Attack Pattern Enumeration and Classification (CAPEC) that
continue to mature through more widespread use. If not mitigated, these software weaknesses could be sources for future
exploitation in the form of new vulnerabilities and vectors for zero-day attacks.

Information contained in this pocket guide is primarily derived from “2011 CWE/SANS Top 25 Most Dangerous
Software Errors” published in the Common Weakness Enumeration (CWE) and SANS websites https://cwe.mitre.org/
top25/ and http://www.sans.org/top25errors/ . Material was also contributed from the CERT Secure Coding Practices at
http://www.securecoding.cert.org .

Special thanks to the Software Assurance team of the Department of Homeland Security (DHS) Office of Cyber Security
and Communications, the MITRE CWE and CAPEC teams, and the SEI Secure Coding team who provided much of the
support to enable the successful completion of this guide and related SwA documents.

Overview

International in scope and free for public use, the Common Weakness Enumeration (CWE) is a community-developed
dictionary of software weaknesses. The CWE is a publicly available resource that is collaboratively evolving through
public-private contributions. The CWE provides the requisite characterization of exploitable software constructs;
improving the education and training of programmers on how to eliminate all-too-common errors before software
is delivered and put into operation. This aligns with the “Build Security In” approach to software assurance that
emphasizes the need for software to be developed more securely; avoiding security issues in the longer term. The CWE
provides a standard means for understanding residual risks; enabling more informed decision-making by suppliers and
consumers about the security of software. The attack patterns that can be used to exploit a particular CWE are listed in
terms of the Common Attack Pattern Enumeration and Classification (CAPEC) Identifiers in the CAPEC initiative’s
collection.

The 2011 CWE/SANS Top 25 Most Dangerous Programming Errors is a list of the most egregious programming errors
that can lead to serious exploitable software vulnerabilities. These programming errors occur frequently, are often easy
to find, and easy to exploit. They are dangerous because they frequently allow attackers to completely take over the
software, steal data, or prevent the software from working as intended. Addressing these CWEs will go a long way in
securing software, both in development and in operation.

The Top 25 list is the result of collaboration between the SANS Institute, MITRE, and many top software security
experts in the US and Europe. It leverages experiences in the development of the SANS Top 20 attack vectors (http://
www.sans.org/top20/) and MITRE’s Common Weakness Enumeration (CWE) (http://cwe.mitre.org/). MITRE
maintains the CWE and CAPEC websites, with support and sponsorship from the US Department of Homeland
Security’s Office of Cyber Security and Communications, presenting detailed descriptions of the top 25 programming
errors along with authoritative guidance for mitigating and avoiding them. The CWE site also contains data on more than
800 additional programming errors, design errors, and architecture errors that can lead to exploitable vulnerabilities.

A goal for the CWE Top 25 list is to stop vulnerabilities at the source of exploitable weaknesses by educating
programmers on how to eliminate the most egregious programming errors before software is shipped. The list could
be used as a tool for education and awareness that helps programmers prevent the kinds of vulnerabilities that plague
the software industry. Software consumers could use the same list to help them to ask for more secure software, and
software managers and CIOs could use the CWE Top 25 list as a measuring stick of progress in their efforts to secure
their software.

While some have shared skepticism about the use of “Top-N” lists, many acknowledge that such lists raise attention and
enable change. Focusing only on the list could result in missing the underlying messages. Sound engineering principles
are the foundation required to build a strong and reliable infrastructure. Lists, if used to only look at a few issues
and flaws, could be misused. Secure software and systems engineering and development hygiene are more than just
preventing a few bad practices. What has been missing until now has been a collaboratively developed list of the most
egregious programming security defects and appreciation of how software is attacked. There has been no counterpart
to the lists that specifically address the programming mistakes and not just the vulnerabilities. This CWE Top 25 list

https://cwe.mitre.org/top25/
https://cwe.mitre.org/top25/
http://www.sans.org/top25errors/
http://www.securecoding.cert.org
http://www.sans.org/top20/
http://www.sans.org/top20/
http://cwe.mitre.org/

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 3

draws attention to the programmatic problems that lead to exploitable vulnerabilities; enabling discussion to move from
talking about the symptoms to addressing the problems. Similar to other Top-N lists, this CWE Top 25 list is not a
comprehensive compilation of programming errors. There are many other programming mistakes that can be made, but
this provides an effective focus for starting more security-focused risk mitigation efforts. A more comprehensive list
of programming errors, specific to the C, C++, and Java programming languages can be found in The CERT C Secure
Coding Standard [Seacord 09] and on the CERT Secure Coding Wiki.

Some lists have been adopted by organizations as mere checklists, contributing to negative validation, which happens
when someone evaluates something against a set of known bad things and assumes it to be safe if those faults are
not found. Positive validation, on the other hand, evaluates something against a set of accepted good attributes and
presumes it to be dangerous if it doesn’t conform. The danger of negative validation is that people should not focus
solely on these 25 bad things; yet raising awareness to these most egregious errors in development is positive and
valuable. Some software developers have already mapped the CWE Top 25 mitigation and prevention practices with
their software development lifecycle, enabling them to better understand that their development practices mitigate
the introduction of exploitable vulnerabilities. Some have already sought to use the CWE Top 25 as key criteria in
procurement requirements for software developers. Incorporating measurable security criteria and an appreciation of how
software can be attacked as a component of any application security procurement language can help focus developers
of custom software; providing more accountability for development work because suppliers would be expected to
demonstrate that security is a core element of their application development lifecycle, from design and coding through
test.

This pocket guide focuses on key practices for preventing and mitigating the most egregious exploitable software
weaknesses. The practices are not represented as being complete or comprehensive; yet they do provide a focus for
getting started in SwA efforts.

On-line Resources

More practices and details about mitigating exploitable weaknesses are available via on-line resources.

» "2011 CWE/SANS Top 25 Most Dangerous Software Errors" at http://cwe.mitre.org/top25/index.html

» SwA Community Resources and Information Clearinghouse (CRIC) at https://buildsecurityin.us-cert.gov/swa

» Build Security In (BSI) at https://buildsecurityin.us-cert.gov/

» Common Weakness Enumeration (CWE) at http://cwe.mitre.org

» SANS Top 20 2007 Security Risks at http://sans.org/top20/

» Common Attack Patterns Enumeration and Classification. at http://capec.mitre.org

» CERT Secure Coding Wiki at https://www.securecoding.cert.org/

» Microsoft Security Development Lifecycle (SDL) at http://msdn.microsoft.com/en-us/security/cc448177.aspx

» The Microsoft SDL and the CWE/SANS Top 25 at http://blogs.msdn.com/sdl/archive/2009/01/27/sdl-and-the-
cwe-sans-top-25.aspx

» New York State "Application Security Procurement Language" at http://www.sans.org/appseccontract

» "Enhancing the Development Life Cycle to Produce Secure Software" at https://www.thedacs.com/techs/
enhanced_life_cycles

» "Software Assurance: A Curriculum Guide to the Common Body of Knowledge to Produce, Acquire, and
Sustain Secure Software" and "Towards an Organization for Software System Security Principles and
Guidelines" at https://buildsecurityin.us-cert.gov/daisy/bsi/dhs/927-BSI.html

» Common Weakness Risk Analysis Framework (CWRAF) at http://cwe.mitre.org/cwraf/

» Common Weakness Scoring System (CWSS) at http://cwe.mitre.org/cwss/

http://cwe.mitre.org/top25/index.html
https://buildsecurityin.us-cert.gov/swa
https://buildsecurityin.us-cert.gov/
http://cwe.mitre.org
http://sans.org/top20/
http://capec.mitre.org
https://www.securecoding.cert.org/
http://msdn.microsoft.com/en-us/security/cc448177.aspx
http://blogs.msdn.com/sdl/archive/2009/01/27/sdl-and-the-cwe-sans-top-25.aspx
http://blogs.msdn.com/sdl/archive/2009/01/27/sdl-and-the-cwe-sans-top-25.aspx
http://www.sans.org/appseccontract
https://www.thedacs.com/techs/enhanced_life_cycles
https://www.thedacs.com/techs/enhanced_life_cycles
https://buildsecurityin.us-cert.gov/daisy/bsi/dhs/927-BSI.html
http://cwe.mitre.org/cwraf/
http://cwe.mitre.org/cwss/

4 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

» "Fundamental Practices for Secure Software Development, 2ND EDITION, A Guide to the Most Effective
Secure Development Practices in Use Today", SAFECode, February 8, 2011 at http://www.safecode.org/
publications/SAFECode_Dev_Practices0211.pdf

Background

The 2011 CWE/SANS Top 25 Most Dangerous Programming Errors is a consensus list of the most significant
programming errors that can lead to serious software vulnerabilities. They occur frequently, are often easy to find, and
easy to exploit. They are dangerous because they will frequently allow attackers to completely take over the software,
steal data, or prevent the software from working at all.

The list is the result of collaboration between the MITRE CWE team, many top software security experts in the US
and Europe, and the SANS Institute. It leverages experiences in the development of the SANS Top 20 attack vectors (
http://www.sans.org/top20/), MITRE’s Common Weakness Enumeration (CWE) (http://cwe.mitre.org/), and MITRE’s
Common Attack Pattern Enumeration and Classification (CAPEC) (https://capec.mitre.org/). With the sponsorship
and support of the US Department of Homeland Security’s Office of Cyber Security and Communications Software
Assurance Program, MITRE maintains the CWE and CAPEC websites, presenting detailed descriptions of the top 25
programming errors along with authoritative guidance for mitigating and avoiding them. The CWE site also contains
data on more than 800 additional programming errors, design errors, and architecture errors that can lead to exploitable
vulnerabilities. See CWE Frequently Asked Questions at http://cwe.mitre.org/about/faq.html .

A goal for the CWE Top 25 list is to stop vulnerabilities at the source by educating programmers on how to eliminate
all-too-common mistakes before software is even shipped. The list serves as a tool for education and awareness to help
programmers prevent the kinds of vulnerabilities that plague the software industry. Software consumers can use the same
list to help them to ask for more secure software. Finally, software managers, testers, and CIOs can use the CWE Top 25
list as a means for selecting the best tools and services for their needs and as a measuring stick of progress in their efforts
to secure their software.

Top 25 Common Weaknesses

Table 1 provides the Top 25 CWEs organized into three high-level categories that contain multiple CWE entries:

1. Insecure Interaction Between Components

2. Risky Resource Management

3. Porous Defenses

Table 1 - Top 25 Common Weakness Enumeration (CWE)
Insecure Interaction Between Components

These weaknesses are related to insecure ways in which data is sent and received between separate components, modules, programs,
processes, threads, or systems.

CWE Description

CWE-78 Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

CWE-79 Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

CWE-89 Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

CWE-352 Cross-Site Request Forgery (CSRF)

CWE-434 Unrestricted Upload of File with Dangerous Type

CWE-601 URL Redirection to Untrusted Site ('Open Redirect')

http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.safecode.org/publications/SAFECode_Dev_Practices0211.pdf
http://www.sans.org/top20/
http://www.sans.org/top20/
http://cwe.mitre.org/
https://capec.mitre.org/
http://cwe.mitre.org/about/faq.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/434.html
http://cwe.mitre.org/data/definitions/601.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 5

Risky Resource Management

These weaknesses are related to ways in which software does not properly manage the creation, usage, transfer, or destruction of
important system resources.

CWE Description

CWE-22 Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

CWE-120 Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

CWE-131 Incorrect Calculation of Buffer Size

CWE-134 Uncontrolled Format String

CWE-190 Integer Overflow or Wraparound

CWE-494 Download of Code Without Integrity Check

CWE-676 Use of Potentially Dangerous Function

CWE-829 Inclusion of Functionality from Untrusted Control Sphere

Porous Defenses

These weaknesses are related to defensive techniques that are often misused, abused, or just plain ignored.

CWE Description

CWE-250 Execution with Unnecessary Privileges

CWE-306 Missing Authentication for Critical Function

CWE-307 Improper Restriction of Excessive Authentication Attempts

CWE-311 Missing Encryption of Sensitive Data

CWE-327 Use of a Broken or Risky Cryptographic Algorithm

CWE-732 Incorrect Permission Assignment for Critical Resource

CWE-759 Use of a One-Way Hash without a Salt

CWE-798 Use of Hard-coded Credentials

CWE-807 Reliance on Untrusted Inputs in a Security Decision

CWE-862 Missing Authorization

CWE-863 Incorrect Authorization

Selection of the Top 25 CWEs

The Top 25 CWE list was first developed at the end of 2008 and is updated on a yearly basis. Approximately 40
software security experts provided feedback, including software developers, scanning tool vendors, security consultants,
government representatives, and university professors. Representation was international. Intermediate versions were
created and resubmitted to the reviewers before the list was finalized. More details are provided in the Top 25 Process
page at http://cwe.mitre.org/top25/process.html .

To help characterize and prioritize entries in the Top 25 CWE list, a threat model was developed that identified
an attacker with solid technical skills and determined enough to invest some time into attacking an organization.
Weaknesses in the Top 25 were selected using two primary criteria:

» Weakness Prevalence: how often the weakness appears in software that was not developed with security
integrated into the software development life cycle (SDLC).

» Consequences: the typical consequences of exploiting a weakness if it is present, such as unexpected code
execution, data loss, or denial of service.

Prevalence was determined based on estimates from multiple contributors to the Top 25 list, since appropriate statistics
were not readily available.

With these criteria, future versions of the Top 25 CWEs will evolve to cover different weaknesses. Other CWEs that
represent significant risks were listed as being on the cusp, and they can be viewed at http://cwe.mitre.org/ .

http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/134.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/676.html
http://cwe.mitre.org/data/definitions/829.html
http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/307.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/732.html
http://cwe.mitre.org/data/definitions/759.html
http://cwe.mitre.org/data/definitions/798.html
http://cwe.mitre.org/data/definitions/807.html
http://cwe.mitre.org/data/definitions/862.html
http://cwe.mitre.org/data/definitions/863.html
http://cwe.mitre.org/top25/process.html
http://cwe.mitre.org/

6 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Information about the Weaknesses

The primary audience for CWE information is intended to be software programmers and designers. For each individual
CWE entry, additional information is provided.

» CWE ID and name.

» Supporting data fields: supplementary information about the weakness that may be useful for decision-makers to
further prioritize the entries.

» Discussion: Short, informal discussion of the nature of the weakness and its consequences.

» Prevention and Mitigations: steps that developers can take to mitigate or eliminate the weakness. Developers
may choose one or more of these mitigations to fit their own needs. Note that the effectiveness of these
techniques vary, and multiple techniques may be combined for greater defense-in-depth.

» Related CWEs: other CWE entries that are related to the Top 25 weakness. Note: This list is illustrative, not
comprehensive.

» Related Attack Patterns: CAPEC entries for attacks that may be successfully conducted against the weakness.
Note: the list is not necessarily complete.

See http://cwe.mitre.org for the additional supporting information on each CWE.

Other Supporting Data Fields in CWEs

Each Top 25 entry includes supporting data fields for weakness prevalence and consequences. Each entry also includes
the following data fields.

» Attack Frequency: how often the weakness occurs in vulnerabilities that are exploited by an attacker.

» Ease of Detection: how easy it is for an attacker to find this weakness.

» Remediation Cost: the amount of effort required to fix the weakness.

» Attacker Awareness: the likelihood that an attacker is going to be aware of this particular weakness, methods
for detection, and methods for exploitation.

Associated Mission/Business Risks and Related Attack Patterns

For each common weakness in software, there are associated risks to the mission or business enabled by the software.
Moreover, there are common attack patterns that exploit those weaknesses.

Attack patterns are powerful mechanisms that capture and communicate the attacker’s perspective. They are descriptions
of common methods for exploiting software. They derive from the concept of design patterns applied in a destructive
rather than constructive context and are generated from in-depth analysis of specific real-world exploit examples. To
assist in enhancing security throughout the software development lifecycle, and to support the needs of developers,
testers and educators, the CWE and Common Attack Pattern Enumeration and Classification (CAPEC) are co-
sponsored by the Department of Homeland Security (DHS) Office of Cyber Security and Communications as part of the
Software Assurance strategic initiative, and the efforts are managed by MITRE. The CAPEC website provides a publicly
available catalog of attack patterns along with a comprehensive schema and classification taxonomy. CAPEC will
continue to evolve with public participation and contributions to form a standard mechanism for identifying, collecting,
refining, and sharing attack patterns among the software community.

http://cwe.mitre.org

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 7

Development teams should use attack patterns to understand the resilience of their software relative to common attacks
and misuse. Table 2 lists the Mission/Business risks associated with each CWE, and it lists some of the possible attacks
and misuses associated with the relevant CWEs which enable exploitation of the software.

For a full listing and description of all the attacks related to a particular CWE visit the websites for CWE and CAPEC at
http://cwe.mitre.org and http://capec.mitre.org .

Table 2 - CWEs and Their Related Attack Patterns and Mission/Business Risks
CWE Related Attack Pattern Mission/Business Risks

CWE-22 : Improper
Limitation of a
Pathname to a Restricted
Directory ('Path
Traversal')

» CAPEC-23: File System Function Injection, Content Based

» CAPEC-64: Using Slashes and URL Encoding Combined to Bypass
Validation Logic

» CAPEC-76: Manipulating Input to File System Calls

» CAPEC-78: Using Escaped Slashes in Alternate Encoding

» CAPEC-79: Using Slashes in Alternate Encoding

» CAPEC-139: Relative Path Traversal

» DoS: crash / exit /
restart

» Execute
unauthorized code
or commands

» Modify files or
directories

» Read files or
directories

CWE-78 : Improper
Neutralization of Special
Elements used in an
OS Command ('OS
Command Injection')

» CAPEC-6: TCP Header

» CAPEC-15: Command Delimiters

» CAPEC-43: Exploiting Multiple Input Interpretation Layers

» CAPEC-88: OS Command Injection

» CAPEC-108: Command Line Execution through SQL Injection

» DoS: crash / exit /
restart

» Execute
unauthorized code
or commands

» Hide activities

» Modify application
data

» Modify files or
directories

» Read application
data

» Read files or
directories

CWE-79 : Improper
Neutralization of Input
During Web Page
Generation ('Cross-site
Scripting')

» CAPEC-18: Embedding Scripts in Nonscript Elements

» CAPEC-19: Embedding Scripts within Scripts

» CAPEC-32: Embedding Scripts in HTTP Query Strings

» CAPEC-63: Simple Script Injection

» CAPEC-85: Client Network Footprinting (using AJAX/XSS)

» CAPEC-86: Embedding Script (XSS) in HTTP Headers

» CAPEC-91: XSS in IMG Tags

» CAPEC-106: Cross Site Scripting through Log Files

» CAPEC-198: Cross-Site Scripting in Error Pages

» CAPEC-199: Cross-Site Scripting Using Alternate Syntax

» CAPEC-209: Cross-Site Scripting Using MIME Type Mismatch

» CAPEC-232: Exploitation of Privilege/Trust

» CAPEC-243: Cross-Site Scripting in Attributes

» CAPEC-244: Cross-Site Scripting via Encoded URI Schemes

» CAPEC-245: Cross-Site Scripting Using Doubled Characters, e.g. %3C
%3Cscript

» CAPEC-246: Cross-Site Scripting Using Flash

» CAPEC-247: Cross-Site Scripting with Masking through Invalid
Characters in Identifiers

» Bypass protection
mechanism

» Execute
unauthorized code
or commands

» Read application
data

CWE-89 : Improper
Neutralization of Special
Elements used in an
SQL Command ('SQL
Injection')

» CAPEC-7: Blind SQL Injection

» CAPEC-66: SQL Injection

» CAPEC-108: Command Line Execution through SQL Injection

» CAPEC-109: Object Relational Mapping Injection

» CAPEC-110: SQL Injection through SOAP Parameter Tampering

» Bypass protection
mechanism

» Modify application
data

» Read application
data

http://cwe.mitre.org
http://cwe.mitre.org
http://capec.mitre.org
http://cwe.mitre.org/data/definitions/22.html
http://capec.mitre.org/data/definitions/23.html
http://capec.mitre.org/data/definitions/64.html
http://capec.mitre.org/data/definitions/76.html
http://capec.mitre.org/data/definitions/78.html
http://capec.mitre.org/data/definitions/79.html
http://capec.mitre.org/data/definitions/139.html
http://cwe.mitre.org/data/definitions/78.html
http://capec.mitre.org/data/definitions/6.html
http://capec.mitre.org/data/definitions/15.html
http://capec.mitre.org/data/definitions/43.html
http://capec.mitre.org/data/definitions/88.html
http://capec.mitre.org/data/definitions/108.html
http://cwe.mitre.org/data/definitions/79.html
http://capec.mitre.org/data/definitions/18.html
http://capec.mitre.org/data/definitions/19.html
http://capec.mitre.org/data/definitions/32.html
http://capec.mitre.org/data/definitions/63.html
http://capec.mitre.org/data/definitions/85.html
http://capec.mitre.org/data/definitions/86.html
http://capec.mitre.org/data/definitions/91.html
http://capec.mitre.org/data/definitions/106.html
http://capec.mitre.org/data/definitions/198.html
http://capec.mitre.org/data/definitions/199.html
http://capec.mitre.org/data/definitions/209.html
http://capec.mitre.org/data/definitions/232.html
http://capec.mitre.org/data/definitions/243.html
http://capec.mitre.org/data/definitions/244.html
http://capec.mitre.org/data/definitions/245.html
http://capec.mitre.org/data/definitions/246.html
http://capec.mitre.org/data/definitions/247.html
http://cwe.mitre.org/data/definitions/89.html
http://capec.mitre.org/data/definitions/7.html
http://capec.mitre.org/data/definitions/66.html
http://capec.mitre.org/data/definitions/108.html
http://capec.mitre.org/data/definitions/109.html
http://capec.mitre.org/data/definitions/110.html

8 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 2 - CWEs and Their Related Attack Patterns and Mission/Business Risks
CWE Related Attack Pattern Mission/Business Risks

» CAPEC-470: Expanding Control over the Operating System from the
Database

CWE-120 : Buffer Copy
without Checking Size
of Input ('Classic Buffer
Overflow')

» CAPEC-8: Buffer Overflow in an API Call

» CAPEC-9: Buffer Overflow in Local Command-Line Utilities

» CAPEC-10: Buffer Overflow via Environment Variables

» CAPEC-14: Client-side Injection-induced Buffer Overflow

» CAPEC-24: Filter Failure through Buffer Overflow

» CAPEC-42: MIME Conversion

» CAPEC-44: Overflow Binary Resource File

» CAPEC-45: Buffer Overflow via Symbolic Links

» CAPEC-46: Overflow Variables and Tags

» CAPEC-47: Buffer Overflow via Parameter Expansion

» CAPEC-67: String Format Overflow in syslog()

» CAPEC-92: Forced Integer Overflow

» CAPEC-100: Overflow Buffers

» DoS: crash / exit /
restart

» DoS: resource
consumption
(CPU)

» Execute
unauthorized code
or commands

CWE-131 : Incorrect
Calculation of Buffer
Size

» CAPEC-47: Buffer Overflow via Parameter Expansion

» CAPEC-100: Overflow Buffers
» DoS: crash / exit /

restart

» Execute
unauthorized code
or commands

» Modify memory

» Read memory

CWE-134 :
Uncontrolled Format
String

» CAPEC-67: String Format Overflow in syslog()

» CAPEC-135: Format String Injection
» Execute

unauthorized code
or commands

» Read memory

CWE-190 : Integer
Overflow or
Wraparound

» CAPEC-92: Forced Integer Overflow » Bypass protection
mechanism

» DoS: crash / exit /
restart

» DoS: instability

» DoS: resource
consumption
(CPU)

» DoS: resource
consumption
(memory)

» Execute
unauthorized code
or commands

» Modify memory

CWE-250 : Execution
with Unnecessary
Privileges

» CAPEC-69: Target Programs with Elevated Privileges

» CAPEC-104: Cross Zone Scripting

» CAPEC-470: Expanding Control over the Operating System from the
Database

» DoS: crash / exit /
restart

» Execute
unauthorized code
or commands

» Gain privileges /
assume identity

» Read application
data

CWE-306 : Missing
Authentication for
Critical Function

» CAPEC-12: Choosing a Message/Channel Identifier on a Public/
Multicast Channel

» CAPEC-36: Using Unpublished Web Service APIs

» Gain privileges /
assume identity

» Other

http://capec.mitre.org/data/definitions/470.html
http://cwe.mitre.org/data/definitions/120.html
http://capec.mitre.org/data/definitions/8.html
http://capec.mitre.org/data/definitions/9.html
http://capec.mitre.org/data/definitions/10.html
http://capec.mitre.org/data/definitions/14.html
http://capec.mitre.org/data/definitions/24.html
http://capec.mitre.org/data/definitions/42.html
http://capec.mitre.org/data/definitions/44.html
http://capec.mitre.org/data/definitions/45.html
http://capec.mitre.org/data/definitions/46.html
http://capec.mitre.org/data/definitions/47.html
http://capec.mitre.org/data/definitions/67.html
http://capec.mitre.org/data/definitions/92.html
http://capec.mitre.org/data/definitions/100.html
http://cwe.mitre.org/data/definitions/131.html
http://capec.mitre.org/data/definitions/47.html
http://capec.mitre.org/data/definitions/100.html
http://cwe.mitre.org/data/definitions/134.html
http://capec.mitre.org/data/definitions/67.html
http://capec.mitre.org/data/definitions/135.html
http://cwe.mitre.org/data/definitions/190.html
http://capec.mitre.org/data/definitions/92.html
http://cwe.mitre.org/data/definitions/250.html
http://capec.mitre.org/data/definitions/69.html
http://capec.mitre.org/data/definitions/104.html
http://capec.mitre.org/data/definitions/470.html
http://cwe.mitre.org/data/definitions/306.html
http://capec.mitre.org/data/definitions/12.html
http://capec.mitre.org/data/definitions/36.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 9

Table 2 - CWEs and Their Related Attack Patterns and Mission/Business Risks
CWE Related Attack Pattern Mission/Business Risks

» CAPEC-40: Manipulating Writeable Terminal Devices

» CAPEC-62: Cross Site Request Forgery (aka Session Riding)

» CAPEC-225: Exploitation of Authentication

CWE-307 : Improper
Restriction of Excessive
Authentication Attempts

» CAPEC-16: Dictionary-based Password Attack

» CAPEC-49: Password Brute Forcing

» CAPEC-55: Rainbow Table Password Cracking

» CAPEC-70: Try Common(default) Usernames and Passwords

» CAPEC-112: Brute Force

» Bypass protection
mechanism

CWE-311 : Missing
Encryption of Sensitive
Data

» CAPEC-31: Accessing/Intercepting/Modifying HTTP Cookies

» CAPEC-37: Lifting Data Embedded in Client Distributions

» CAPEC-65: Passively Sniff and Capture Application Code Bound for
Authorized Client

» CAPEC-117: Data Interception Attacks

» CAPEC-155: Screen Temporary Files for Sensitive Information

» CAPEC-157: Sniffing Attacks

» CAPEC-167: Lifting Sensitive Data from the Client

» CAPEC-204: Lifting cached, sensitive data embedded in client
distributions (thick or thin)

» CAPEC-205: Lifting credential(s)/key material embedded in client
distributions (thick or thin)

» CAPEC-258: Passively Sniffing and Capturing Application Code Bound
for an Authorized Client During Dynamic Update

» CAPEC-259: Passively Sniffing and Capturing Application Code Bound
for an Authorized Client During Patching

» CAPEC-260: Passively Sniffing and Capturing Application Code Bound
for an Authorized Client During Initial Distribution

» CAPEC-383: Harvesting Usernames or UserIDs via Application API
Event Monitoring

» CAPEC-384: Application API Message Manipulation via Man-in-the-
Middle

» CAPEC-385: Transaction or Event Tampering via Application API
Manipulation

» CAPEC-386: Application API Navigation Remapping

» CAPEC-387: Navigation Remapping To Propagate Malicoius Content

» CAPEC-388: Application API Button Hijacking

» CAPEC-389: Content Spoofing Via Application API Manipulation

» Modify application
data

» Read application
data

CWE-327 : Use of
a Broken or Risky
Cryptographic
Algorithm

» CAPEC-20: Encryption Brute Forcing

» CAPEC-97: Cryptanalysis

» CAPEC-459: Creating a Rogue Certificate Authority Certificate

» Hide activities

» Modify application
data

» Read application
data

CWE-352 : Cross-Site
Request Forgery (CSRF)

» CAPEC-62: Cross Site Request Forgery (aka Session Riding)

» CAPEC-111: JSON Hijacking (aka JavaScript Hijacking)

» CAPEC-462: Cross-Domain Search Timing

» CAPEC-467: Cross Site Identification

» Bypass protection
mechanism

» DoS: crash / exit /
restart

» Gain privileges /
assume identity

» Modify application
data

» Read application
data

http://capec.mitre.org/data/definitions/40.html
http://capec.mitre.org/data/definitions/62.html
http://capec.mitre.org/data/definitions/225.html
http://cwe.mitre.org/data/definitions/307.html
http://capec.mitre.org/data/definitions/16.html
http://capec.mitre.org/data/definitions/49.html
http://capec.mitre.org/data/definitions/55.html
http://capec.mitre.org/data/definitions/70.html
http://capec.mitre.org/data/definitions/112.html
http://cwe.mitre.org/data/definitions/311.html
http://capec.mitre.org/data/definitions/31.html
http://capec.mitre.org/data/definitions/37.html
http://capec.mitre.org/data/definitions/65.html
http://capec.mitre.org/data/definitions/117.html
http://capec.mitre.org/data/definitions/155.html
http://capec.mitre.org/data/definitions/157.html
http://capec.mitre.org/data/definitions/167.html
http://capec.mitre.org/data/definitions/204.html
http://capec.mitre.org/data/definitions/205.html
http://capec.mitre.org/data/definitions/258.html
http://capec.mitre.org/data/definitions/259.html
http://capec.mitre.org/data/definitions/260.html
http://capec.mitre.org/data/definitions/383.html
http://capec.mitre.org/data/definitions/384.html
http://capec.mitre.org/data/definitions/385.html
http://capec.mitre.org/data/definitions/386.html
http://capec.mitre.org/data/definitions/387.html
http://capec.mitre.org/data/definitions/388.html
http://capec.mitre.org/data/definitions/389.html
http://cwe.mitre.org/data/definitions/327.html
http://capec.mitre.org/data/definitions/20.html
http://capec.mitre.org/data/definitions/97.html
http://capec.mitre.org/data/definitions/459.html
http://cwe.mitre.org/data/definitions/352.html
http://capec.mitre.org/data/definitions/62.html
http://capec.mitre.org/data/definitions/111.html
http://capec.mitre.org/data/definitions/462.html
http://capec.mitre.org/data/definitions/467.html

10 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 2 - CWEs and Their Related Attack Patterns and Mission/Business Risks
CWE Related Attack Pattern Mission/Business Risks

CWE-434 : Unrestricted
Upload of File with
Dangerous Type

» CAPEC-1: Accessing Functionality Not Properly Constrained by ACLs

» CAPEC-122: Exploitation of Authorization
» Execute

unauthorized code
or commands

CWE-494 : Download
of Code Without
Integrity Check

» CAPEC-184: Software Integrity Attacks

» CAPEC-185: Malicious Software Download

» CAPEC-186: Malicious Software Update

» CAPEC-187: Malicious Automated Software Update

» Alter execution
logic

» Execute
unauthorized code
or commands

» Other

CWE-601 : URL
Redirection to Untrusted
Site ('Open Redirect')

» CAPEC-194: Fake the Source of Data » Bypass protection
mechanism

» Gain privileges /
assume identity

» Other

CWE-676 : Use of
Potentially Dangerous
Function

» CAPEC-113: API Abuse/Misuse » Quality degradation

» Unexpected state

» Varies by context

CWE-732 : Incorrect
Permission Assignment
for Critical Resource

» CAPEC-1: Accessing Functionality Not Properly Constrained by ACLs

» CAPEC-17: Accessing, Modifying or Executing Executable Files

» CAPEC-60: Reusing Session IDs (aka Session Replay)

» CAPEC-61: Session Fixation

» CAPEC-62: Cross Site Request Forgery (aka Session Riding)

» CAPEC-122: Exploitation of Authorization

» CAPEC-127: Directory Indexing

» CAPEC-180: Exploiting Incorrectly Configured Access Control
Security Levels

» CAPEC-232: Exploitation of Privilege/Trust

» CAPEC-234: Hijacking a privileged process

» Gain privileges /
assume identity

» Modify application
data

» Other

» Read application
data

» Read files or
directories

CWE-759 : Use of a
One-Way Hash without
a Salt

» CAPEC-20: Encryption Brute Forcing

» CAPEC-55: Rainbow Table Password Cracking

» CAPEC-97: Cryptanalysis

» Bypass protection
mechanism

» Gain privileges /
assume identity

CWE-798 : Use of
Hard-coded Credentials

» CAPEC-70: Try Common(default) Usernames and Passwords

» CAPEC-188: Reverse Engineering

» CAPEC-189: Software Reverse Engineering

» CAPEC-190: Reverse Engineer an Executable to Expose Assumed
Hidden Functionality or Content

» CAPEC-191: Read Sensitive Strings Within an Executable

» CAPEC-205: Lifting credential(s)/key material embedded in client
distributions (thick or thin)

» Bypass protection
mechanism

» Execute
unauthorized code
or commands

» Gain privileges /
assume identity

» Other

» Read application
data

CWE-807 : Reliance on
Untrusted Inputs in a
Security Decision

» CAPEC-232: Exploitation of Privilege/Trust » Bypass protection
mechanism

» Gain privileges /
assume identity

» Varies by context

CWE-829 : Inclusion
of Functionality from
Untrusted Control
Sphere

» CAPEC-38: Leveraging/Manipulating Configuration File Search Paths

» CAPEC-101: Server Side Include (SSI) Injection

» CAPEC-103: Clickjacking

» CAPEC-111: JSON Hijacking (aka JavaScript Hijacking)

» CAPEC-175: Code Inclusion

» Execute
unauthorized code
or commands

http://cwe.mitre.org/data/definitions/434.html
http://capec.mitre.org/data/definitions/1.html
http://capec.mitre.org/data/definitions/122.html
http://cwe.mitre.org/data/definitions/494.html
http://capec.mitre.org/data/definitions/184.html
http://capec.mitre.org/data/definitions/185.html
http://capec.mitre.org/data/definitions/186.html
http://capec.mitre.org/data/definitions/187.html
http://cwe.mitre.org/data/definitions/601.html
http://capec.mitre.org/data/definitions/194.html
http://cwe.mitre.org/data/definitions/676.html
http://capec.mitre.org/data/definitions/113.html
http://cwe.mitre.org/data/definitions/732.html
http://capec.mitre.org/data/definitions/1.html
http://capec.mitre.org/data/definitions/17.html
http://capec.mitre.org/data/definitions/60.html
http://capec.mitre.org/data/definitions/61.html
http://capec.mitre.org/data/definitions/62.html
http://capec.mitre.org/data/definitions/122.html
http://capec.mitre.org/data/definitions/127.html
http://capec.mitre.org/data/definitions/180.html
http://capec.mitre.org/data/definitions/232.html
http://capec.mitre.org/data/definitions/234.html
http://cwe.mitre.org/data/definitions/759.html
http://capec.mitre.org/data/definitions/20.html
http://capec.mitre.org/data/definitions/55.html
http://capec.mitre.org/data/definitions/97.html
http://cwe.mitre.org/data/definitions/798.html
http://capec.mitre.org/data/definitions/70.html
http://capec.mitre.org/data/definitions/188.html
http://capec.mitre.org/data/definitions/189.html
http://capec.mitre.org/data/definitions/190.html
http://capec.mitre.org/data/definitions/191.html
http://capec.mitre.org/data/definitions/205.html
http://cwe.mitre.org/data/definitions/807.html
http://capec.mitre.org/data/definitions/232.html
http://cwe.mitre.org/data/definitions/829.html
http://capec.mitre.org/data/definitions/38.html
http://capec.mitre.org/data/definitions/101.html
http://capec.mitre.org/data/definitions/103.html
http://capec.mitre.org/data/definitions/111.html
http://capec.mitre.org/data/definitions/175.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 11

Table 2 - CWEs and Their Related Attack Patterns and Mission/Business Risks
CWE Related Attack Pattern Mission/Business Risks

» CAPEC-181: Flash File Overlay

» CAPEC-184: Software Integrity Attacks

» CAPEC-185: Malicious Software Download

» CAPEC-193: PHP Remote File Inclusion

» CAPEC-222: iFrame Overlay

» CAPEC-251: Local Code Inclusion

» CAPEC-252: PHP Local File Inclusion

» CAPEC-253: Remote Code Inclusion

CWE-862 : Missing
Authorization

» CAPEC-1: Accessing Functionality Not Properly Constrained by ACLs

» CAPEC-17: Accessing, Modifying or Executing Executable Files

» CAPEC-58: Restful Privilege Elevation

» CAPEC-122: Exploitation of Authorization

» CAPEC-180: Exploiting Incorrectly Configured Access Control
Security Levels

» Bypass protection
mechanism

» Gain privileges /
assume identity

» Modify application
data

» Modify files or
directories

» Read application
data

» Read files or
directories

CWE-863 : Incorrect
Authorization

» CAPEC-1: Accessing Functionality Not Properly Constrained by ACLs

» CAPEC-17: Accessing, Modifying or Executing Executable Files

» CAPEC-58: Restful Privilege Elevation

» CAPEC-122: Exploitation of Authorization

» CAPEC-180: Exploiting Incorrectly Configured Access Control
Security Levels

» Bypass protection
mechanism

» Gain privileges /
assume identity

» Modify application
data

» Modify files or
directories

» Read application
data

» Read files or
directories

Key Practices

The key practices documented in “2011 CWE/SANS Top 25 Most Dangerous Programming Errors” focus on preventing
and mitigating dangerous programming errors. Some of the Key Practices specified in the pocket guide are derived from
mitigation recommendations that were common across many of the CWEs in the CWE Top 25, and others came from
approaches described on the CERT Secure Coding Wiki. Additional information on preventing the various weaknesses
is available in the CERT Secure Coding Wiki at https://www.securecoding.cert.org/ and other websites listed under On-
Line Resources of this SwA Pocket Guide. Development teams are also encouraged to use the CAPEC attack patterns to
gain understanding of how their software can be attacked, as well as considering how they can engineer their software
to better handle such attacks. They are also encouraged to use the CAPEC attack patterns to develop tests that can
determine the resilience of their code relative to the common attacks used to exploit software weaknesses. In this SwA
Pocket Guide the key practices are grouped in tables according to Software Development Life Cycle (SDLC) phases:

1. Requirements, Architecture, and Design (Table 3) ;

2. Build, Compilation, Implementation, Testing, and Documentation (Table 4) ;

3. Installation, Operation and System Configuration (Table 5) , and

4. Associated CERT Coding Rules (Table 6) .

http://capec.mitre.org/data/definitions/181.html
http://capec.mitre.org/data/definitions/184.html
http://capec.mitre.org/data/definitions/185.html
http://capec.mitre.org/data/definitions/193.html
http://capec.mitre.org/data/definitions/222.html
http://capec.mitre.org/data/definitions/251.html
http://capec.mitre.org/data/definitions/252.html
http://capec.mitre.org/data/definitions/253.html
http://cwe.mitre.org/data/definitions/862.html
http://capec.mitre.org/data/definitions/1.html
http://capec.mitre.org/data/definitions/17.html
http://capec.mitre.org/data/definitions/58.html
http://capec.mitre.org/data/definitions/122.html
http://capec.mitre.org/data/definitions/180.html
http://cwe.mitre.org/data/definitions/863.html
http://capec.mitre.org/data/definitions/1.html
http://capec.mitre.org/data/definitions/17.html
http://capec.mitre.org/data/definitions/58.html
http://capec.mitre.org/data/definitions/122.html
http://capec.mitre.org/data/definitions/180.html
https://www.securecoding.cert.org/

12 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 3 – Requirements, Architecture, and Design
Prevention and Mitigation Practices CWE

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

When the set of acceptable objects, such as filenames or URLs, is limited or known,
create a mapping from a set of fixed input values (such as numeric IDs) to the actual
filenames or URLs, and reject all other inputs.

For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features
such as the ESAPI AccessReferenceMap [R.22.3] provide this capability.

CWE-22 : Improper Limitation
of a Pathname to a Restricted
Directory ('Path Traversal')

If at all possible, use library calls rather than external processes to recreate the desired
functionality.

For any data that will be used to generate a command to be executed, keep as much of
that data out of external control as possible. For example, in web applications, this may
require storing the data locally in the session's state instead of sending it out to the client
in a hidden form field.

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

For example, consider using the ESAPI Encoding control [R.78.8] or a similar tool,
library, or framework. These will help the programmer encode outputs in a manner less
prone to error.

If available, use structured mechanisms that automatically enforce the separation
between data and code. These mechanisms may be able to provide the relevant quoting,
encoding, and validation automatically, instead of relying on the developer to provide
this capability at every point where output is generated.

Some languages offer multiple functions that can be used to invoke commands. Where
possible, identify any function that invokes a command shell using a single string, and
replace it with a function that requires individual arguments. These functions typically
perform appropriate quoting and filtering of arguments. For example, in C, the system()
function accepts a string that contains the entire command to be executed, whereas
execl(), execve(), and others require an array of strings, one for each argument. In
Windows, CreateProcess() only accepts one command at a time. In Perl, if system() is
provided with an array of arguments, then it will quote each of the arguments.

When the set of acceptable objects, such as filenames or URLs, is limited or known,
create a mapping from a set of fixed input values (such as numeric IDs) to the actual
filenames or URLs, and reject all other inputs.

CWE-78 : Improper
Neutralization of Special
Elements used in an OS
Command ('OS Command
Injection')

http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/78.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 13

Table 3 – Requirements, Architecture, and Design
Prevention and Mitigation Practices CWE

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Examples of libraries and frameworks that make it easier to generate properly encoded
output include Microsoft's Anti-XSS library, the OWASP ESAPI Encoding module, and
Apache Wicket.

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

If available, use structured mechanisms that automatically enforce the separation
between data and code. These mechanisms may be able to provide the relevant quoting,
encoding, and validation automatically, instead of relying on the developer to provide
this capability at every point where output is generated.

When the set of acceptable objects, such as filenames or URLs, is limited or known,
create a mapping from a set of fixed input values (such as numeric IDs) to the actual
filenames or URLs, and reject all other inputs.

CWE-79 : Improper
Neutralization of Input During
Web Page Generation ('Cross-
site Scripting')

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

For example, consider using persistence layers such as Hibernate or Enterprise Java
Beans, which can provide significant protection against SQL injection if used properly.

If available, use structured mechanisms that automatically enforce the separation
between data and code. These mechanisms may be able to provide the relevant quoting,
encoding, and validation automatically, instead of relying on the developer to provide
this capability at every point where output is generated.

Process SQL queries using prepared statements, parameterized queries, or stored
procedures. These features should accept parameters or variables and support strong
typing. Do not dynamically construct and execute query strings within these features
using "exec" or similar functionality, since this may re-introduce the possibility of SQL
injection. [R.89.3]

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

When the set of acceptable objects, such as filenames or URLs, is limited or known,
create a mapping from a set of fixed input values (such as numeric IDs) to the actual
filenames or URLs, and reject all other inputs.

CWE-89 : Improper
Neutralization of Special
Elements used in an SQL
Command ('SQL Injection')

Use a language that does not allow this weakness to occur or provides constructs that
make this weakness easier to avoid.

For example, many languages that perform their own memory management, such as
Java and Perl, are not subject to buffer overflows. Other languages, such as Ada and
C#, typically provide overflow protection, but the protection can be disabled by the
programmer.

CWE-120 : Buffer Copy
without Checking Size of Input
('Classic Buffer Overflow')

http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/120.html

14 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 3 – Requirements, Architecture, and Design
Prevention and Mitigation Practices CWE

Be wary that a language's interface to native code may still be subject to overflows, even
if the language itself is theoretically safe.

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Examples include the Safe C String Library (SafeStr) by Messier and Viega [R.120.4],
and the Strsafe.h library from Microsoft [R.120.3]. These libraries provide safer versions
of overflow-prone string-handling functions.

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

When the set of acceptable objects, such as filenames or URLs, is limited or known,
create a mapping from a set of fixed input values (such as numeric IDs) to the actual
filenames or URLs, and reject all other inputs.

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Use libraries or frameworks that make it easier to handle numbers without unexpected
consequences, or buffer allocation routines that automatically track buffer size.

Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C
or C++). [R.131.1]

CWE-131 : Incorrect
Calculation of Buffer Size

Choose a language that is not subject to this flaw. CWE-134 : Uncontrolled
Format String

Ensure that all protocols are strictly defined, such that all out-of-bounds behavior can be
identified simply, and require strict conformance to the protocol.

Use a language that does not allow this weakness to occur or provides constructs that
make this weakness easier to avoid.

If possible, choose a language or compiler that performs automatic bounds checking.

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Use libraries or frameworks that make it easier to handle numbers without unexpected
consequences.

Examples include safe integer handling packages such as SafeInt (C++) or IntegerLib (C
or C++). [R.190.5]

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or

CWE-190 : Integer Overflow
or Wraparound

http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/134.html
http://cwe.mitre.org/data/definitions/190.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 15

Table 3 – Requirements, Architecture, and Design
Prevention and Mitigation Practices CWE

by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

Identify the functionality that requires additional privileges, such as access to privileged
operating system resources. Wrap and centralize this functionality if possible, and isolate
the privileged code as much as possible from other code [R.250.2]. Raise privileges
as late as possible, and drop them as soon as possible to avoid CWE-271. Avoid
weaknesses such as CWE-288 and CWE-420 by protecting all possible communication
channels that could interact with the privileged code, such as a secondary socket that is
only intended to be accessed by administrators.

CWE-250 : Execution with
Unnecessary Privileges

Divide the software into anonymous, normal, privileged, and administrative areas.
Identify which of these areas require a proven user identity, and use a centralized
authentication capability.

Identify all potential communication channels, or other means of interaction with the
software, to ensure that all channels are appropriately protected. Developers sometimes
perform authentication at the primary channel, but open up a secondary channel that is
assumed to be private. For example, a login mechanism may be listening on one network
port, but after successful authentication, it may open up a second port where it waits for
the connection, but avoids authentication because it assumes that only the authenticated
party will connect to the port.

In general, if the software or protocol allows a single session or user state to persist
across multiple connections or channels, authentication and appropriate credential
management need to be used throughout.

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

Where possible, avoid implementing custom authentication routines and consider
using authentication capabilities as provided by the surrounding framework, operating
system, or environment. These may make it easier to provide a clear separation between
authentication tasks and authorization tasks.

In environments such as the World Wide Web, the line between authentication and
authorization is sometimes blurred. If custom authentication routines are required instead
of those provided by the server, then these routines must be applied to every single page,
since these pages could be requested directly.

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

For example, consider using libraries with authentication capabilities such as OpenSSL
or the ESAPI Authenticator [R.306.3].

CWE-306 : Missing
Authentication for Critical
Function

Common protection mechanisms include:

Disconnecting the user after a small number of failed attempts

Implementing a timeout

Locking out a targeted account

Requiring a computational task on the user's part.

CWE-307 : Improper
Restriction of Excessive
Authentication Attempts

http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/307.html

16 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 3 – Requirements, Architecture, and Design
Prevention and Mitigation Practices CWE

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Consider using libraries with authentication capabilities such as OpenSSL or the ESAPI
Authenticator. [R.307.1]

Clearly specify which data or resources are valuable enough that they should be
protected by encryption. Require that any transmission or storage of this data/resource
should use well-vetted encryption algorithms.

Using threat modeling or other techniques, assume that the data can be compromised
through a separate vulnerability or weakness, and determine where encryption will be
most effective. Ensure that data that should be private is not being inadvertently exposed
using weaknesses such as insecure permissions (CWE-732). [R.311.1]

Ensure that encryption is properly integrated into the system design, including but not
necessarily limited to:

Encryption that is needed to store or transmit private data of the users of the system

Encryption that is needed to protect the system itself from unauthorized disclosure or
tampering

Identify the separate needs and contexts for encryption:

One-way (i.e., only the user or recipient needs to have the key). This can be achieved
using public key cryptography, or other techniques in which the encrypting party (i.e.,
the software) does not need to have access to a private key.

Two-way (i.e., the encryption can be automatically performed on behalf of a user, but
the key must be available so that the plaintext can be automatically recoverable by that
user). This requires storage of the private key in a format that is recoverable only by the
user (or perhaps by the operating system) in a way that cannot be recovered by others.

When there is a need to store or transmit sensitive data, use strong, up-to-date
cryptographic algorithms to encrypt that data. Select a well-vetted algorithm that
is currently considered to be strong by experts in the field, and use well-tested
implementations. As with all cryptographic mechanisms, the source code should be
available for analysis.

For example, US government systems require FIPS 140-2 certification.

Do not develop custom or private cryptographic algorithms. They will likely be exposed
to attacks that are well-understood by cryptographers. Reverse engineering techniques
are mature. If the algorithm can be compromised if attackers find out how it works, then
it is especially weak.

Periodically ensure that the cryptography has not become obsolete. Some older
algorithms, once thought to require a billion years of computing time, can now be broken
in days or hours. This includes MD4, MD5, SHA1, DES, and other algorithms that were
once regarded as strong. [R.311.5]

Compartmentalize the system to have "safe" areas where trust boundaries can be
unambiguously drawn. Do not allow sensitive data to go outside of the trust boundary
and always be careful when interfacing with a compartment outside of the safe area.

Ensure that appropriate compartmentalization is built into the system design and that
the compartmentalization serves to allow for and further reinforce privilege separation

CWE-311 : Missing
Encryption of Sensitive Data

http://cwe.mitre.org/data/definitions/311.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 17

Table 3 – Requirements, Architecture, and Design
Prevention and Mitigation Practices CWE

functionality. Architects and designers should rely on the principle of least privilege to
decide when it is appropriate to use and to drop system privileges.

When there is a need to store or transmit sensitive data, use strong, up-to-date
cryptographic algorithms to encrypt that data. Select a well-vetted algorithm that
is currently considered to be strong by experts in the field, and use well-tested
implementations. As with all cryptographic mechanisms, the source code should be
available for analysis.

For example, US government systems require FIPS 140-2 certification.

Do not develop custom or private cryptographic algorithms. They will likely be exposed
to attacks that are well-understood by cryptographers. Reverse engineering techniques
are mature. If the algorithm can be compromised if attackers find out how it works, then
it is especially weak.

Periodically ensure that the cryptography has not become obsolete. Some older
algorithms, once thought to require a billion years of computing time, can now be broken
in days or hours. This includes MD4, MD5, SHA1, DES, and other algorithms that were
once regarded as strong. [R.327.4]

Design the software so that one cryptographic algorithm can be replaced with another.
This will make it easier to upgrade to stronger algorithms.

Carefully manage and protect cryptographic keys (see CWE-320). If the keys can be
guessed or stolen, then the strength of the cryptography itself is irrelevant.

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Industry-standard implementations will save development time and may be more likely
to avoid errors that can occur during implementation of cryptographic algorithms.
Consider the ESAPI Encryption feature.

CWE-327 : Use of a Broken
or Risky Cryptographic
Algorithm

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

For example, use anti-CSRF packages such as the OWASP CSRFGuard. [R.352.3]

Another example is the ESAPI Session Management control, which includes a
component for CSRF. [R.352.9]

Generate a unique nonce for each form, place the nonce into the form, and verify the
nonce upon receipt of the form. Be sure that the nonce is not predictable (CWE-330).
[R.352.5]

Identify especially dangerous operations. When the user performs a dangerous operation,
send a separate confirmation request to ensure that the user intended to perform that
operation.

Use the "double-submitted cookie" method as described by Felten and Zeller:

When a user visits a site, the site should generate a pseudorandom value and set it as a
cookie on the user's machine. The site should require every form submission to include
this value as a form value and also as a cookie value. When a POST request is sent to the
site, the request should only be considered valid if the form value and the cookie value
are the same.

CWE-352 : Cross-Site Request
Forgery (CSRF)

http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/352.html

18 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 3 – Requirements, Architecture, and Design
Prevention and Mitigation Practices CWE

Because of the same-origin policy, an attacker cannot read or modify the value
stored in the cookie. To successfully submit a form on behalf of the user, the attacker
would have to correctly guess the pseudorandom value. If the pseudorandom value is
cryptographically strong, this will be prohibitively difficult.

This technique requires Javascript, so it may not work for browsers that have Javascript
disabled. [R.352.4]

Do not use the GET method for any request that triggers a state change.

Generate a new, unique filename for an uploaded file instead of using the user-supplied
filename, so that no external input is used at all.[R.434.1] [R.434.2]

When the set of acceptable objects, such as filenames or URLs, is limited or known,
create a mapping from a set of fixed input values (such as numeric IDs) to the actual
filenames or URLs, and reject all other inputs.

Consider storing the uploaded files outside of the web document root entirely. Then, use
other mechanisms to deliver the files dynamically. [R.434.2]

Define a very limited set of allowable extensions and only generate filenames that end
in these extensions. Consider the possibility of XSS (CWE-79) before allowing .html
or .htm file types.

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

CWE-434 : Unrestricted
Upload of File with Dangerous
Type

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

Speficially, it may be helpful to use tools or frameworks to perform integrity checking
on the transmitted code.

When providing the code that is to be downloaded, such as for automatic updates of the
software, then use cryptographic signatures for the code and modify the download clients
to verify the signatures. Ensure that the implementation does not contain CWE-295,
CWE-320, CWE-347, and related weaknesses.

Use code signing technologies such as Authenticode. See references [R.494.1] [R.494.2]
[R.494.3].

CWE-494 : Download of Code
Without Integrity Check

Use an intermediate disclaimer page that provides the user with a clear warning that
they are leaving the current site. Implement a long timeout before the redirect occurs, or
force the user to click on the link. Be careful to avoid XSS problems (CWE-79) when
generating the disclaimer page.

When the set of acceptable objects, such as filenames or URLs, is limited or known,
create a mapping from a set of fixed input values (such as numeric IDs) to the actual
filenames or URLs, and reject all other inputs.

For example, ID 1 could map to "/login.asp" and ID 2 could map to "http://
www.example.com/". Features such as the ESAPI AccessReferenceMap [R.601.4]
provide this capability.

CWE-601 : URL Redirection
to Untrusted Site ('Open
Redirect')

http://cwe.mitre.org/data/definitions/434.html
http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/601.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 19

Table 3 – Requirements, Architecture, and Design
Prevention and Mitigation Practices CWE

Ensure that no externally-supplied requests are honored by requiring that all redirect
requests include a unique nonce generated by the application [R.601.1]. Be sure that the
nonce is not predictable (CWE-330).

Divide the software into anonymous, normal, privileged, and administrative areas.
Reduce the attack surface by carefully defining distinct user groups, privileges, and/
or roles. Map these against data, functionality, and the related resources. Then set the
permissions accordingly. This will allow you to maintain more fine-grained control over
your resources. [R.732.2]

CWE-732 : Incorrect
Permission Assignment for
Critical Resource

Use a cryptographic hash function that can be configured to change the amount of
computational effort needed to compute the hash, such as the number of iterations
("stretching") or the amount of memory required. Some hash functions perform salting
automatically. These functions can significantly increase the overhead for a brute
force attack, far more than standards such as MD5, which are intentionally designed
to be fast. For example, rainbow table attacks can become infeasible due to the high
computing overhead. Finally, since computing power gets faster and cheaper over time,
the technique can be reconfigured to increase the workload without forcing an entire
replacement of the algorithm in use.

Some hash functions that have one or more of these desired properties include bcrypt,
scrypt, and PBKDF2. While there is active debate about which of these is the most
effective, they are all stronger than using salts with hash functions with very little
computing overhead.

Note that using these functions can have an impact on performance, so they require
special consideration to avoid denial-of-service attacks. However, their configurability
provides finer control over how much CPU and memory is used, so it could be adjusted
to suit the environment's needs.

If a technique that uses stretching cannot be implemented, then generate a random salt
each time a new password is processed. Add the salt to the plaintext password before
hashing it. When storing the hash, also store the salt. Do not use the same salt for every
password (CWE-760). [R.759.3]

CWE-759 : Use of a One-Way
Hash without a Salt

For outbound authentication: store passwords, keys, and other credentials outside of the
code in a strongly-protected, encrypted configuration file or database that is protected
from access by all outsiders, including other local users on the same system. Properly
protect the key (CWE-320). If you cannot use encryption to protect the file, then make
sure that the permissions are as restrictive as possible [R.798.1].

In Windows environments, the Encrypted File System (EFS) may provide some
protection.

For inbound authentication: Rather than hard-code a default username and password,
key, or other authentication credentials for first time logins, utilize a "first login" mode
that requires the user to enter a unique strong password or key.

If the software must contain hard-coded credentials or they cannot be removed, perform
access control checks and limit which entities can access the feature that requires the
hard-coded credentials. For example, a feature might only be enabled through the system
console instead of through a network connection.

For inbound authentication using passwords: apply strong one-way hashes to passwords
and store those hashes in a configuration file or database with appropriate access control.

CWE-798 : Use of Hard-coded
Credentials

http://cwe.mitre.org/data/definitions/732.html
http://cwe.mitre.org/data/definitions/759.html
http://cwe.mitre.org/data/definitions/798.html

20 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 3 – Requirements, Architecture, and Design
Prevention and Mitigation Practices CWE

That way, theft of the file/database still requires the attacker to try to crack the password.
When handling an incoming password during authentication, take the hash of the
password and compare it to the saved hash.

Use randomly assigned salts for each separate hash that is generated. This increases the
amount of computation that an attacker needs to conduct a brute-force attack, possibly
limiting the effectiveness of the rainbow table method.

For front-end to back-end connections: Three solutions are possible, although none are
complete.

The first suggestion involves the use of generated passwords or keys that are changed
automatically and must be entered at given time intervals by a system administrator.
These passwords will be held in memory and only be valid for the time intervals.

Next, the passwords or keys should be limited at the back end to only performing actions
valid for the front end, as opposed to having full access.

Finally, the messages sent should be tagged and checksummed with time sensitive values
so as to prevent replay-style attacks.

Store state information and sensitive data on the server side only.

Ensure that the system definitively and unambiguously keeps track of its own state
and user state and has rules defined for legitimate state transitions. Do not allow any
application user to affect state directly in any way other than through legitimate actions
leading to state transitions.

If information must be stored on the client, do not do so without encryption and integrity
checking, or otherwise having a mechanism on the server side to catch tampering. Use
a message authentication code (MAC) algorithm, such as Hash Message Authentication
Code (HMAC) [R.807.2]. Apply this against the state or sensitive data that you have
to expose, which can guarantee the integrity of the data - i.e., that the data has not been
modified. Ensure that you use an algorithm with a strong hash function (CWE-328).

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

With a stateless protocol such as HTTP, use a framework that maintains the state for
you.

Examples include ASP.NET View State [R.807.3] and the OWASP ESAPI Session
Management feature [R.807.4].

Be careful of language features that provide state support, since these might be provided
as a convenience to the programmer and may not be considering security.

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

CWE-807 : Reliance on
Untrusted Inputs in a Security
Decision

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

When the set of acceptable objects, such as filenames or URLs, is limited or known,
create a mapping from a set of fixed input values (such as numeric IDs) to the actual
filenames or URLs, and reject all other inputs.

CWE-829 : Inclusion of
Functionality from Untrusted
Control Sphere

http://cwe.mitre.org/data/definitions/807.html
http://cwe.mitre.org/data/definitions/829.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 21

Table 3 – Requirements, Architecture, and Design
Prevention and Mitigation Practices CWE

For example, ID 1 could map to "inbox.txt" and ID 2 could map to "profile.txt". Features
such as the ESAPI AccessReferenceMap [R.829.1] provide this capability.

For any security checks that are performed on the client side, ensure that these checks
are duplicated on the server side, in order to avoid CWE-602. Attackers can bypass
the client-side checks by modifying values after the checks have been performed, or
by changing the client to remove the client-side checks entirely. Then, these modified
values would be submitted to the server.

Divide the software into anonymous, normal, privileged, and administrative areas.
Reduce the attack surface by carefully mapping roles with data and functionality. Use
role-based access control (RBAC) [R.862.1] to enforce the roles at the appropriate
boundaries.

Note that this approach may not protect against horizontal authorization, i.e., it will not
protect a user from attacking others with the same role.

Ensure that access control checks are performed related to the business logic. These
checks may be different than the access control checks that are applied to more generic
resources such as files, connections, processes, memory, and database records. For
example, a database may restrict access for medical records to a specific database user,
but each record might only be intended to be accessible to the patient and the patient's
doctor [R.862.2].

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

For example, consider using authorization frameworks such as the JAAS Authorization
Framework [R.862.5] and the OWASP ESAPI Access Control feature [R.862.4].

For web applications, make sure that the access control mechanism is enforced correctly
at the server side on every page. Users should not be able to access any unauthorized
functionality or information by simply requesting direct access to that page.

One way to do this is to ensure that all pages containing sensitive information are not
cached, and that all such pages restrict access to requests that are accompanied by an
active and authenticated session token associated with a user who has the required
permissions to access that page.

CWE-862 : Missing
Authorization

Divide the software into anonymous, normal, privileged, and administrative areas.
Reduce the attack surface by carefully mapping roles with data and functionality. Use
role-based access control (RBAC) [R.863.1] to enforce the roles at the appropriate
boundaries.

Note that this approach may not protect against horizontal authorization, i.e., it will not
protect a user from attacking others with the same role.

Ensure that access control checks are performed related to the business logic. These
checks may be different than the access control checks that are applied to more generic
resources such as files, connections, processes, memory, and database records. For
example, a database may restrict access for medical records to a specific database user,
but each record might only be intended to be accessible to the patient and the patient's
doctor [R.863.2].

Use a vetted library or framework that does not allow this weakness to occur or provides
constructs that make this weakness easier to avoid.

CWE-863 : Incorrect
Authorization

http://cwe.mitre.org/data/definitions/862.html
http://cwe.mitre.org/data/definitions/863.html

22 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 3 – Requirements, Architecture, and Design
Prevention and Mitigation Practices CWE

For example, consider using authorization frameworks such as the JAAS Authorization
Framework [R.863.4] and the OWASP ESAPI Access Control feature [R.863.5].

For web applications, make sure that the access control mechanism is enforced correctly
at the server side on every page. Users should not be able to access any unauthorized
functionality or information by simply requesting direct access to that page.

One way to do this is to ensure that all pages containing sensitive information are not
cached, and that all such pages restrict access to requests that are accompanied by an
active and authenticated session token associated with a user who has the required
permissions to access that page.

Table 4 – Build, Compilation, Implementation, Testing, and Documentation
Prevention and Mitigation Practices CWE

Assume all input is malicious. Use an "accept known good" input validation strategy,
i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any
input that does not strictly conform to specifications, or transform it into something that
does.

When performing input validation, consider all potentially relevant properties, including
length, type of input, the full range of acceptable values, missing or extra inputs, syntax,
consistency across related fields, and conformance to business rules. As an example
of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if the input is only expected to contain colors
such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely
on a blacklist). A blacklist is likely to miss at least one undesirable input, especially
if the code's environment changes. This can give attackers enough room to bypass the
intended validation. However, blacklists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright.

When validating filenames, use stringent whitelists that limit the character set to be used.
If feasible, only allow a single "." character in the filename to avoid weaknesses such as
CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist
of allowable file extensions, which will help to avoid CWE-434.

Do not rely exclusively on a filtering mechanism that removes potentially dangerous
characters. This is equivalent to a blacklist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use
of "\" as a directory separator. Another possible error could occur when the filtering is
applied in a way that still produces dangerous data (CWE-182). For example, if "../"
sequences are removed from the ".../...//" string in a sequential fashion, two instances of
"../" would be removed from the original string, but the remaining characters would still
form the "../" string.

Inputs should be decoded and canonicalized to the application's current internal
representation before being validated (CWE-180). Make sure that the application does
not decode the same input twice (CWE-174). Such errors could be used to bypass
whitelist validation schemes by introducing dangerous inputs after they have been
checked.

Use a built-in path canonicalization function (such as realpath() in C) that produces
the canonical version of the pathname, which effectively removes ".." sequences and
symbolic links (CWE-23, CWE-59). This includes:

CWE-22 : Improper Limitation
of a Pathname to a Restricted
Directory ('Path Traversal')

http://cwe.mitre.org/data/definitions/22.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 23

Table 4 – Build, Compilation, Implementation, Testing, and Documentation
Prevention and Mitigation Practices CWE

realpath() in C

getCanonicalPath() in Java

GetFullPath() in ASP.NET

realpath() or abs_path() in Perl

realpath() in PHP

Ensure that error messages only contain minimal details that are useful to the intended
audience, and nobody else. The messages need to strike the balance between being too
cryptic and not being cryptic enough. They should not necessarily reveal the methods
that were used to determine the error. Such detailed information can be used to refine the
original attack to increase the chances of success.

If errors must be tracked in some detail, capture them in log messages - but consider
what could occur if the log messages can be viewed by attackers. Avoid recording highly
sensitive information such as passwords in any form. Avoid inconsistent messaging that
might accidentally tip off an attacker about internal state, such as whether a username is
valid or not.

In the context of path traversal, error messages which disclose path information can help
attackers craft the appropriate attack strings to move through the file system hierarchy.

While it is risky to use dynamically-generated query strings, code, or commands that mix
control and data together, sometimes it may be unavoidable. Properly quote arguments
and escape any special characters within those arguments. The most conservative
approach is to escape or filter all characters that do not pass an extremely strict whitelist
(such as everything that is not alphanumeric or white space). If some special characters
are still needed, such as white space, wrap each argument in quotes after the escaping/
filtering step. Be careful of argument injection (CWE-88).

If the program to be executed allows arguments to be specified within an input file or
from standard input, then consider using that mode to pass arguments instead of the
command line.

Assume all input is malicious. Use an "accept known good" input validation strategy,
i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any
input that does not strictly conform to specifications, or transform it into something that
does.

When performing input validation, consider all potentially relevant properties, including
length, type of input, the full range of acceptable values, missing or extra inputs, syntax,
consistency across related fields, and conformance to business rules. As an example
of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if the input is only expected to contain colors
such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely
on a blacklist). A blacklist is likely to miss at least one undesirable input, especially
if the code's environment changes. This can give attackers enough room to bypass the
intended validation. However, blacklists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright.

When constructing OS command strings, use stringent whitelists that limit the character
set based on the expected value of the parameter in the request. This will indirectly limit
the scope of an attack, but this technique is less important than proper output encoding
and escaping.

CWE-78 : Improper
Neutralization of Special
Elements used in an OS
Command ('OS Command
Injection')

http://cwe.mitre.org/data/definitions/78.html

24 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 4 – Build, Compilation, Implementation, Testing, and Documentation
Prevention and Mitigation Practices CWE

Note that proper output encoding, escaping, and quoting is the most effective solution
for preventing OS command injection, although input validation may provide some
defense-in-depth. This is because it effectively limits what will appear in output.
Input validation will not always prevent OS command injection, especially if you are
required to support free-form text fields that could contain arbitrary characters. For
example, when invoking a mail program, you might need to allow the subject field
to contain otherwise-dangerous inputs like ";" and ">" characters, which would need
to be escaped or otherwise handled. In this case, stripping the character might reduce
the risk of OS command injection, but it would produce incorrect behavior because
the subject field would not be recorded as the user intended. This might seem to be a
minor inconvenience, but it could be more important when the program relies on well-
structured subject lines in order to pass messages to other components.

Even if you make a mistake in your validation (such as forgetting one out of 100 input
fields), appropriate encoding is still likely to protect you from injection-based attacks. As
long as it is not done in isolation, input validation is still a useful technique, since it may
significantly reduce your attack surface, allow you to detect some attacks, and provide
other security benefits that proper encoding does not address.

Ensure that error messages only contain minimal details that are useful to the intended
audience, and nobody else. The messages need to strike the balance between being too
cryptic and not being cryptic enough. They should not necessarily reveal the methods
that were used to determine the error. Such detailed information can be used to refine the
original attack to increase the chances of success.

If errors must be tracked in some detail, capture them in log messages - but consider
what could occur if the log messages can be viewed by attackers. Avoid recording highly
sensitive information such as passwords in any form. Avoid inconsistent messaging that
might accidentally tip off an attacker about internal state, such as whether a username is
valid or not.

In the context of OS Command Injection, error information passed back to the user
might reveal whether an OS command is being executed and possibly which command is
being used.

Use and specify an output encoding that can be handled by the downstream component
that is reading the output. Common encodings include ISO-8859-1, UTF-7, and UTF-8.
When an encoding is not specified, a downstream component may choose a different
encoding, either by assuming a default encoding or automatically inferring which
encoding is being used, which can be erroneous. When the encodings are inconsistent,
the downstream component might treat some character or byte sequences as special,
even if they are not special in the original encoding. Attackers might then be able to
exploit this discrepancy and conduct injection attacks; they even might be able to bypass
protection mechanisms that assume the original encoding is also being used by the
downstream component.

The problem of inconsistent output encodings often arises in web pages. If an encoding
is not specified in an HTTP header, web browsers often guess about which encoding is
being used. This can open up the browser to subtle XSS attacks.

With Struts, write all data from form beans with the bean's filter attribute set to true.

To help mitigate XSS attacks against the user's session cookie, set the session cookie
to be HttpOnly. In browsers that support the HttpOnly feature (such as more recent
versions of Internet Explorer and Firefox), this attribute can prevent the user's session
cookie from being accessible to malicious client-side scripts that use document.cookie.

CWE-79 : Improper
Neutralization of Input During
Web Page Generation ('Cross-
site Scripting')

http://cwe.mitre.org/data/definitions/79.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 25

Table 4 – Build, Compilation, Implementation, Testing, and Documentation
Prevention and Mitigation Practices CWE

This is not a complete solution, since HttpOnly is not supported by all browsers. More
importantly, XMLHTTPRequest and other powerful browser technologies provide read
access to HTTP headers, including the Set-Cookie header in which the HttpOnly flag is
set.

Assume all input is malicious. Use an "accept known good" input validation strategy,
i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any
input that does not strictly conform to specifications, or transform it into something that
does.

When performing input validation, consider all potentially relevant properties, including
length, type of input, the full range of acceptable values, missing or extra inputs, syntax,
consistency across related fields, and conformance to business rules. As an example
of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if the input is only expected to contain colors
such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely
on a blacklist). A blacklist is likely to miss at least one undesirable input, especially
if the code's environment changes. This can give attackers enough room to bypass the
intended validation. However, blacklists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright.

When dynamically constructing web pages, use stringent whitelists that limit the
character set based on the expected value of the parameter in the request. All input
should be validated and cleansed, not just parameters that the user is supposed to specify,
but all data in the request, including hidden fields, cookies, headers, the URL itself, and
so forth. A common mistake that leads to continuing XSS vulnerabilities is to validate
only fields that are expected to be redisplayed by the site. It is common to see data
from the request that is reflected by the application server or the application that the
development team did not anticipate. Also, a field that is not currently reflected may
be used by a future developer. Therefore, validating ALL parts of the HTTP request is
recommended.

Note that proper output encoding, escaping, and quoting is the most effective solution
for preventing XSS, although input validation may provide some defense-in-depth.
This is because it effectively limits what will appear in output. Input validation will not
always prevent XSS, especially if you are required to support free-form text fields that
could contain arbitrary characters. For example, in a chat application, the heart emoticon
("<3") would likely pass the validation step, since it is commonly used. However, it
cannot be directly inserted into the web page because it contains the "<" character, which
would need to be escaped or otherwise handled. In this case, stripping the "<" might
reduce the risk of XSS, but it would produce incorrect behavior because the emoticon
would not be recorded. This might seem to be a minor inconvenience, but it would be
more important in a mathematical forum that wants to represent inequalities.

Even if you make a mistake in your validation (such as forgetting one out of 100 input
fields), appropriate encoding is still likely to protect you from injection-based attacks. As
long as it is not done in isolation, input validation is still a useful technique, since it may
significantly reduce your attack surface, allow you to detect some attacks, and provide
other security benefits that proper encoding does not address.

Ensure that you perform input validation at well-defined interfaces within the
application. This will help protect the application even if a component is reused or
moved elsewhere.

26 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 4 – Build, Compilation, Implementation, Testing, and Documentation
Prevention and Mitigation Practices CWE

While it is risky to use dynamically-generated query strings, code, or commands that mix
control and data together, sometimes it may be unavoidable. Properly quote arguments
and escape any special characters within those arguments. The most conservative
approach is to escape or filter all characters that do not pass an extremely strict whitelist
(such as everything that is not alphanumeric or white space). If some special characters
are still needed, such as white space, wrap each argument in quotes after the escaping/
filtering step. Be careful of argument injection (CWE-88).

Instead of building a new implementation, such features may be available in the database
or programming language. For example, the Oracle DBMS_ASSERT package can check
or enforce that parameters have certain properties that make them less vulnerable to SQL
injection. For MySQL, the mysql_real_escape_string() API function is available in both
C and PHP.

Assume all input is malicious. Use an "accept known good" input validation strategy,
i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any
input that does not strictly conform to specifications, or transform it into something that
does.

When performing input validation, consider all potentially relevant properties, including
length, type of input, the full range of acceptable values, missing or extra inputs, syntax,
consistency across related fields, and conformance to business rules. As an example
of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if the input is only expected to contain colors
such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely
on a blacklist). A blacklist is likely to miss at least one undesirable input, especially
if the code's environment changes. This can give attackers enough room to bypass the
intended validation. However, blacklists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright.

When constructing SQL query strings, use stringent whitelists that limit the character set
based on the expected value of the parameter in the request. This will indirectly limit the
scope of an attack, but this technique is less important than proper output encoding and
escaping.

Note that proper output encoding, escaping, and quoting is the most effective solution
for preventing SQL injection, although input validation may provide some defense-in-
depth. This is because it effectively limits what will appear in output. Input validation
will not always prevent SQL injection, especially if you are required to support free-
form text fields that could contain arbitrary characters. For example, the name "O'Reilly"
would likely pass the validation step, since it is a common last name in the English
language. However, it cannot be directly inserted into the database because it contains
the "'" apostrophe character, which would need to be escaped or otherwise handled. In
this case, stripping the apostrophe might reduce the risk of SQL injection, but it would
produce incorrect behavior because the wrong name would be recorded.

When feasible, it may be safest to disallow meta-characters entirely, instead of escaping
them. This will provide some defense in depth. After the data is entered into the
database, later processes may neglect to escape meta-characters before use, and you may
not have control over those processes.

Ensure that error messages only contain minimal details that are useful to the intended
audience, and nobody else. The messages need to strike the balance between being too
cryptic and not being cryptic enough. They should not necessarily reveal the methods

CWE-89 : Improper
Neutralization of Special
Elements used in an SQL
Command ('SQL Injection')

http://cwe.mitre.org/data/definitions/89.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 27

Table 4 – Build, Compilation, Implementation, Testing, and Documentation
Prevention and Mitigation Practices CWE

that were used to determine the error. Such detailed information can be used to refine the
original attack to increase the chances of success.

If errors must be tracked in some detail, capture them in log messages - but consider
what could occur if the log messages can be viewed by attackers. Avoid recording highly
sensitive information such as passwords in any form. Avoid inconsistent messaging that
might accidentally tip off an attacker about internal state, such as whether a username is
valid or not.

In the context of SQL Injection, error messages revealing the structure of a SQL query
can help attackers tailor successful attack strings.

Run or compile the software using features or extensions that automatically provide a
protection mechanism that mitigates or eliminates buffer overflows.

For example, certain compilers and extensions provide automatic buffer overflow
detection mechanisms that are built into the compiled code. Examples include the
Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag,
StackGuard, and ProPolice.

Consider adhering to the following rules when allocating and managing an application's
memory:

Double check that your buffer is as large as you specify.

When using functions that accept a number of bytes to copy, such as strncpy(), be aware
that if the destination buffer size is equal to the source buffer size, it may not NULL-
terminate the string.

Check buffer boundaries if accessing the buffer in a loop and make sure you are not in
danger of writing past the allocated space.

If necessary, truncate all input strings to a reasonable length before passing them to the
copy and concatenation functions.

Assume all input is malicious. Use an "accept known good" input validation strategy,
i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any
input that does not strictly conform to specifications, or transform it into something that
does.

When performing input validation, consider all potentially relevant properties, including
length, type of input, the full range of acceptable values, missing or extra inputs, syntax,
consistency across related fields, and conformance to business rules. As an example
of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if the input is only expected to contain colors
such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely
on a blacklist). A blacklist is likely to miss at least one undesirable input, especially
if the code's environment changes. This can give attackers enough room to bypass the
intended validation. However, blacklists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright.

Replace unbounded copy functions with analogous functions that support length
arguments, such as strcpy with strncpy. Create these if they are not available.

CWE-120 : Buffer Copy
without Checking Size of Input
('Classic Buffer Overflow')

When allocating a buffer for the purpose of transforming, converting, or encoding an
input, allocate enough memory to handle the largest possible encoding. For example, in

CWE-131 : Incorrect
Calculation of Buffer Size

http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/131.html

28 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 4 – Build, Compilation, Implementation, Testing, and Documentation
Prevention and Mitigation Practices CWE

a routine that converts "&" characters to "&" for HTML entity encoding, the output
buffer needs to be at least 5 times as large as the input buffer.

Understand the programming language's underlying representation and how it interacts
with numeric calculation (CWE-681). Pay close attention to byte size discrepancies,
precision, signed/unsigned distinctions, truncation, conversion and casting between
types, "not-a-number" calculations, and how the language handles numbers that are too
large or too small for its underlying representation. [R.131.7]

Also be careful to account for 32-bit, 64-bit, and other potential differences that may
affect the numeric representation.

Perform input validation on any numeric input by ensuring that it is within the expected
range. Enforce that the input meets both the minimum and maximum requirements for
the expected range.

When processing structured incoming data containing a size field followed by raw data,
identify and resolve any inconsistencies between the size field and the actual size of the
data (CWE-130).

When allocating memory that uses sentinels to mark the end of a data structure - such as
NUL bytes in strings - make sure you also include the sentinel in your calculation of the
total amount of memory that must be allocated.

Replace unbounded copy functions with analogous functions that support length
arguments, such as strcpy with strncpy. Create these if they are not available.

Use sizeof() on the appropriate data type to avoid CWE-467.

Use the appropriate type for the desired action. For example, in C/C++, only use
unsigned types for values that could never be negative, such as height, width, or other
numbers related to quantity. This will simplify sanity checks and will reduce surprises
related to unexpected casting.

Run or compile the software using features or extensions that automatically provide a
protection mechanism that mitigates or eliminates buffer overflows.

For example, certain compilers and extensions provide automatic buffer overflow
detection mechanisms that are built into the compiled code. Examples include the
Microsoft Visual Studio /GS flag, Fedora/Red Hat FORTIFY_SOURCE GCC flag,
StackGuard, and ProPolice.

Examine compiler warnings closely and eliminate problems with potential security
implications, such as signed / unsigned mismatch in memory operations, or use of
uninitialized variables. Even if the weakness is rarely exploitable, a single failure may
lead to the compromise of the entire system.

Ensure that all format string functions are passed a static string which cannot be
controlled by the user and that the proper number of arguments are always sent to that
function as well. If at all possible, use functions that do not support the %n operator in
format strings. [R.134.1] [R.134.2]

Heed the warnings of compilers and linkers, since they may alert you to improper usage.

CWE-134 : Uncontrolled
Format String

Perform input validation on any numeric input by ensuring that it is within the expected
range. Enforce that the input meets both the minimum and maximum requirements for
the expected range.

CWE-190 : Integer Overflow
or Wraparound

http://cwe.mitre.org/data/definitions/134.html
http://cwe.mitre.org/data/definitions/190.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 29

Table 4 – Build, Compilation, Implementation, Testing, and Documentation
Prevention and Mitigation Practices CWE

Use unsigned integers where possible. This makes it easier to perform sanity checks
for integer overflows. When signed integers are required, ensure that the range check
includes minimum values as well as maximum values.

Understand the programming language's underlying representation and how it interacts
with numeric calculation (CWE-681). Pay close attention to byte size discrepancies,
precision, signed/unsigned distinctions, truncation, conversion and casting between
types, "not-a-number" calculations, and how the language handles numbers that are too
large or too small for its underlying representation. [R.190.3]

Also be careful to account for 32-bit, 64-bit, and other potential differences that may
affect the numeric representation.

Examine compiler warnings closely and eliminate problems with potential security
implications, such as signed / unsigned mismatch in memory operations, or use of
uninitialized variables. Even if the weakness is rarely exploitable, a single failure may
lead to the compromise of the entire system.

Perform extensive input validation for any privileged code that must be exposed to the
user and reject anything that does not fit your strict requirements.

When dropping privileges, ensure that they have been dropped successfully to avoid
CWE-273. As protection mechanisms in the environment get stronger, privilege-
dropping calls may fail even if it seems like they would always succeed.

If circumstances force you to run with extra privileges, then determine the minimum
access level necessary. First identify the different permissions that the software and its
users will need to perform their actions, such as file read and write permissions, network
socket permissions, and so forth. Then explicitly allow those actions while denying all
else [R.250.2]. Perform extensive input validation and canonicalization to minimize the
chances of introducing a separate vulnerability. This mitigation is much more prone to
error than dropping the privileges in the first place.

CWE-250 : Execution with
Unnecessary Privileges

Use naming conventions and strong types to make it easier to spot when sensitive data
is being used. When creating structures, objects, or other complex entities, separate the
sensitive and non-sensitive data as much as possible.

CWE-311 : Missing
Encryption of Sensitive Data

Ensure that the application is free of cross-site scripting issues (CWE-79), because most
CSRF defenses can be bypassed using attacker-controlled script.

Check the HTTP Referer header to see if the request originated from an expected page.
This could break legitimate functionality, because users or proxies may have disabled
sending the Referer for privacy reasons.

CWE-352 : Cross-Site Request
Forgery (CSRF)

Assume all input is malicious. Use an "accept known good" input validation strategy,
i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any
input that does not strictly conform to specifications, or transform it into something that
does.

When performing input validation, consider all potentially relevant properties, including
length, type of input, the full range of acceptable values, missing or extra inputs, syntax,
consistency across related fields, and conformance to business rules. As an example
of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if the input is only expected to contain colors
such as "red" or "blue."

CWE-434 : Unrestricted
Upload of File with Dangerous
Type

http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/434.html

30 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 4 – Build, Compilation, Implementation, Testing, and Documentation
Prevention and Mitigation Practices CWE

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely
on a blacklist). A blacklist is likely to miss at least one undesirable input, especially
if the code's environment changes. This can give attackers enough room to bypass the
intended validation. However, blacklists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright.

For example, limiting filenames to alphanumeric characters can help to restrict the
introduction of unintended file extensions.

Ensure that only one extension is used in the filename. Some web servers, including
some versions of Apache, may process files based on inner extensions so that
"filename.php.gif" is fed to the PHP interpreter.[R.434.1] [R.434.2]

When running on a web server that supports case-insensitive filenames, perform case-
insensitive evaluations of the extensions that are provided.

Do not rely exclusively on sanity checks of file contents to ensure that the file is of
the expected type and size. It may be possible for an attacker to hide code in some file
segments that will still be executed by the server. For example, GIF images may contain
a free-form comments field.

Do not rely exclusively on the MIME content type or filename attribute when
determining how to render a file. Validating the MIME content type and ensuring that it
matches the extension is only a partial solution.

Perform proper forward and reverse DNS lookups to detect DNS spoofing. CWE-494 : Download of Code
Without Integrity Check

Assume all input is malicious. Use an "accept known good" input validation strategy,
i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any
input that does not strictly conform to specifications, or transform it into something that
does.

When performing input validation, consider all potentially relevant properties, including
length, type of input, the full range of acceptable values, missing or extra inputs, syntax,
consistency across related fields, and conformance to business rules. As an example
of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if the input is only expected to contain colors
such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely
on a blacklist). A blacklist is likely to miss at least one undesirable input, especially
if the code's environment changes. This can give attackers enough room to bypass the
intended validation. However, blacklists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright.

Use a whitelist of approved URLs or domains to be used for redirection.

CWE-601 : URL Redirection
to Untrusted Site ('Open
Redirect')

When using a critical resource such as a configuration file, check to see if the resource
has insecure permissions (such as being modifiable by any regular user) [R.732.1], and
generate an error or even exit the software if there is a possibility that the resource could
have been modified by an unauthorized party.

Do not suggest insecure configuration changes in documentation, especially if those
configurations can extend to resources and other programs that are outside the scope of
the application.

CWE-732 : Incorrect
Permission Assignment for
Critical Resource

http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/732.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 31

Table 4 – Build, Compilation, Implementation, Testing, and Documentation
Prevention and Mitigation Practices CWE

Assume all input is malicious. Use an "accept known good" input validation strategy,
i.e., use a whitelist of acceptable inputs that strictly conform to specifications. Reject any
input that does not strictly conform to specifications, or transform it into something that
does.

When performing input validation, consider all potentially relevant properties, including
length, type of input, the full range of acceptable values, missing or extra inputs, syntax,
consistency across related fields, and conformance to business rules. As an example
of business rule logic, "boat" may be syntactically valid because it only contains
alphanumeric characters, but it is not valid if the input is only expected to contain colors
such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely
on a blacklist). A blacklist is likely to miss at least one undesirable input, especially
if the code's environment changes. This can give attackers enough room to bypass the
intended validation. However, blacklists can be useful for detecting potential attacks or
determining which inputs are so malformed that they should be rejected outright.

When validating filenames, use stringent whitelists that limit the character set to be used.
If feasible, only allow a single "." character in the filename to avoid weaknesses such as
CWE-23, and exclude directory separators such as "/" to avoid CWE-36. Use a whitelist
of allowable file extensions, which will help to avoid CWE-434.

Do not rely exclusively on a filtering mechanism that removes potentially dangerous
characters. This is equivalent to a blacklist, which may be incomplete (CWE-184). For
example, filtering "/" is insufficient protection if the filesystem also supports the use
of "\" as a directory separator. Another possible error could occur when the filtering is
applied in a way that still produces dangerous data (CWE-182). For example, if "../"
sequences are removed from the ".../...//" string in a sequential fashion, two instances of
"../" would be removed from the original string, but the remaining characters would still
form the "../" string.

CWE-829 : Inclusion of
Functionality from Untrusted
Control Sphere

Table 5 – Installation, Operation and System Configuration
Prevention and Mitigation Practices CWE

Use an application firewall that can detect attacks against this weakness. It can be
beneficial in cases in which the code cannot be fixed (because it is controlled by a
third party), as an emergency prevention measure while more comprehensive software
assurance measures are applied, or to provide defense in depth.

CWE-22 : Improper Limitation
of a Pathname to a Restricted
Directory ('Path Traversal')

Run the code in an environment that performs automatic taint propagation and prevents
any command execution that uses tainted variables, such as Perl's "-T" switch. This
will force the program to perform validation steps that remove the taint, although you
must be careful to correctly validate your inputs so that you do not accidentally mark
dangerous inputs as untainted (see CWE-183 and CWE-184).

Use runtime policy enforcement to create a whitelist of allowable commands, then
prevent use of any command that does not appear in the whitelist. Technologies such as
AppArmor are available to do this.

Use an application firewall that can detect attacks against this weakness. It can be
beneficial in cases in which the code cannot be fixed (because it is controlled by a
third party), as an emergency prevention measure while more comprehensive software
assurance measures are applied, or to provide defense in depth.

CWE-78 : Improper
Neutralization of Special
Elements used in an OS
Command ('OS Command
Injection')

http://cwe.mitre.org/data/definitions/829.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/78.html

32 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 5 – Installation, Operation and System Configuration
Prevention and Mitigation Practices CWE

Use an application firewall that can detect attacks against this weakness. It can be
beneficial in cases in which the code cannot be fixed (because it is controlled by a
third party), as an emergency prevention measure while more comprehensive software
assurance measures are applied, or to provide defense in depth.

CWE-79 : Improper
Neutralization of Input During
Web Page Generation ('Cross-
site Scripting')

Use an application firewall that can detect attacks against this weakness. It can be
beneficial in cases in which the code cannot be fixed (because it is controlled by a
third party), as an emergency prevention measure while more comprehensive software
assurance measures are applied, or to provide defense in depth.

CWE-89 : Improper
Neutralization of Special
Elements used in an SQL
Command ('SQL Injection')

Use a feature like Address Space Layout Randomization (ASLR) [R.120.5] [R.120.7].

Use a CPU and operating system that offers Data Execution Protection (NX) or its
equivalent [R.120.7] [R.120.9].

CWE-120 : Buffer Copy
without Checking Size of Input
('Classic Buffer Overflow')

Use a feature like Address Space Layout Randomization (ASLR) [R.131.3] [R.131.5].

Use a CPU and operating system that offers Data Execution Protection (NX) or its
equivalent [R.131.4] [R.131.5].

CWE-131 : Incorrect
Calculation of Buffer Size

Use an application firewall that can detect attacks against this weakness. It can be
beneficial in cases in which the code cannot be fixed (because it is controlled by a
third party), as an emergency prevention measure while more comprehensive software
assurance measures are applied, or to provide defense in depth.

CWE-601 : URL Redirection
to Untrusted Site ('Open
Redirect')

For all configuration files, executables, and libraries, make sure that they are only
readable and writable by the software's administrator.

Do not assume that a system administrator will manually change the configuration to the
settings that are recommended in the software's manual.

CWE-732 : Incorrect
Permission Assignment for
Critical Resource

Use an application firewall that can detect attacks against this weakness. It can be
beneficial in cases in which the code cannot be fixed (because it is controlled by a
third party), as an emergency prevention measure while more comprehensive software
assurance measures are applied, or to provide defense in depth.

CWE-829 : Inclusion of
Functionality from Untrusted
Control Sphere

Table 6 – Associated CERT Coding Rules
Prevention and Mitigation Practices CWE

FIO02-C: Canonicalize path names originating from untrusted sources

FIO02-CPP: Canonicalize path names originating from untrusted sources

CWE-22 : Improper Limitation
of a Pathname to a Restricted
Directory ('Path Traversal')

ENV03-C: Sanitize the environment when invoking external programs

ENV04-C: Do not call system() if you do not need a command processor

STR02-C: Sanitize data passed to complex subsystems

IDS07-J: Do not pass untrusted, unsanitized data to the Runtime.exec() method

STR02-CPP: Sanitize data passed to complex subsystems

CWE-78 : Improper
Neutralization of Special
Elements used in an OS
Command ('OS Command
Injection')

http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/732.html
http://cwe.mitre.org/data/definitions/829.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/78.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 33

Table 6 – Associated CERT Coding Rules
Prevention and Mitigation Practices CWE

ENV03-CPP: Sanitize the environment when invoking external programs

ENV04-CPP: Do not call system() if you do not need a command processor

No CERT Coding Rules corresponding to this CWE entry. CWE-79 : Improper
Neutralization of Input During
Web Page Generation ('Cross-
site Scripting')

No CERT Coding Rules corresponding to this CWE entry. CWE-89 : Improper
Neutralization of Special
Elements used in an SQL
Command ('SQL Injection')

STR35-C: Do not copy data from an unbounded source to a fixed-length array

STR35-CPP: Do not copy data from an unbounded source to a fixed-length array

CWE-120 : Buffer Copy
without Checking Size of Input
('Classic Buffer Overflow')

MEM35-C: Allocate sufficient memory for an object

MEM35-CPP: Allocate sufficient memory for an object

CWE-131 : Incorrect
Calculation of Buffer Size

FIO30-C: Exclude user input from format strings

FIO30-C: Exclude user input from format strings

IDS06-J: Exclude user input from format strings

FIO30-CPP: Exclude user input from format strings

CWE-134 : Uncontrolled
Format String

INT03-C: Use a secure integer library

INT30-C: Ensure that unsigned integer operations do not wrap

INT32-C: Ensure that operations on signed integers do not result in overflow

INT35-C: Evaluate integer expressions in a larger size before comparing or assigning to
that size

MEM07-C: Ensure that the arguments to calloc(), when multiplied, can be represented as
a size_t

MEM35-C: Allocate sufficient memory for an object

INT03-CPP: Use a secure integer library

INT30-CPP: Ensure that unsigned integer operations do not wrap

INT32-CPP: Ensure that operations on signed integers do not result in overflow

INT35-CPP: Evaluate integer expressions in a larger size before comparing or assigning
to that size

MEM07-CPP: Ensure that the arguments to calloc(), when multiplied, can be represented
as a size_t

MEM35-CPP: Allocate sufficient memory for an object

CWE-190 : Integer Overflow
or Wraparound

SER09-J: Minimize privileges before deserializing from a privilege context CWE-250 : Execution with
Unnecessary Privileges

http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/134.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/250.html

34 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 6 – Associated CERT Coding Rules
Prevention and Mitigation Practices CWE

No CERT Coding Rules corresponding to this CWE entry. CWE-306 : Missing
Authentication for Critical
Function

No CERT Coding Rules corresponding to this CWE entry. CWE-307 : Improper
Restriction of Excessive
Authentication Attempts

MSC00-J: Use SSLSocket rather than Socket for secure data exchange CWE-311 : Missing
Encryption of Sensitive Data

MSC02-J: Generate strong random numbers

MSC30-CPP: Do not use the rand() function for generating pseudorandom numbers

MSC32-CPP: Ensure your random number generator is properly seeded

CWE-327 : Use of a Broken
or Risky Cryptographic
Algorithm

No CERT Coding Rules corresponding to this CWE entry. CWE-352 : Cross-Site Request
Forgery (CSRF)

No CERT Coding Rules corresponding to this CWE entry. CWE-434 : Unrestricted
Upload of File with Dangerous
Type

SEC06-J: Do not rely on the default automatic signature verification provided by
URLClassLoader and java.util.jar

CWE-494 : Download of Code
Without Integrity Check

No CERT Coding Rules corresponding to this CWE entry. CWE-601 : URL Redirection
to Untrusted Site ('Open
Redirect')

ERR07-C: Prefer functions that support error checking over equivalent functions that
don't

FIO01-C: Be careful using functions that use file names for identification

INT06-C: Use strtol() or a related function to convert a string token to an integer

INT06-CPP: Use strtol() or a related function to convert a string token to an integer

FIO01-CPP: Be careful using functions that use file names for identification

CWE-676 : Use of Potentially
Dangerous Function

FIO03-J: Create files with appropriate access permission

SEC01-J: Do not allow tainted variables in privileged blocks

ENV03-J: Do not grant dangerous combinations of permissions

FIO06-CPP: Create files with appropriate access permissions

FIO06-C: Create files with appropriate access permissions

CWE-732 : Incorrect
Permission Assignment for
Critical Resource

No CERT Coding Rules corresponding to this CWE entry. CWE-759 : Use of a One-Way
Hash without a Salt

MSC03-J: Never hard code sensitive information CWE-798 : Use of Hard-coded
Credentials

ENV03-CPP: Sanitize the environment when invoking external programs

SEC09-J: Do not base security checks on untrusted sources

CWE-807 : Reliance on
Untrusted Inputs in a Security
Decision

No CERT Coding Rules corresponding to this CWE entry. CWE-829 : Inclusion of
Functionality from Untrusted
Control Sphere

http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/307.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/434.html
http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/676.html
http://cwe.mitre.org/data/definitions/732.html
http://cwe.mitre.org/data/definitions/759.html
http://cwe.mitre.org/data/definitions/798.html
http://cwe.mitre.org/data/definitions/807.html
http://cwe.mitre.org/data/definitions/829.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 35

Table 6 – Associated CERT Coding Rules
Prevention and Mitigation Practices CWE

No CERT Coding Rules corresponding to this CWE entry. CWE-862 : Missing
Authorization

No CERT Coding Rules corresponding to this CWE entry. CWE-863 : Incorrect
Authorization

Table 7 - Shared Mitigations
Mitigation CWE Entries

MIT-10 Run or compile the software using features or extensions that automatically provide a protection
mechanism that mitigates or eliminates buffer overflows.

For example, certain compilers and extensions provide automatic buffer overflow detection mechanisms
that are built into the compiled code. Examples include the Microsoft Visual Studio /GS flag, Fedora/Red
Hat FORTIFY_SOURCE GCC flag, StackGuard, and ProPolice.

1. CWE-120 : Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

2. CWE-131 : Incorrect Calculation of Buffer Size

MIT-11 Use a feature like Address Space Layout Randomization (ASLR) [R.XX.A] [R.XX.B].

1. CWE-120 : Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

2. CWE-131 : Incorrect Calculation of Buffer Size

MIT-12 Use a CPU and operating system that offers Data Execution Protection (NX) or its equivalent [R.XX.A]
[R.XX.B].

1. CWE-120 : Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

2. CWE-131 : Incorrect Calculation of Buffer Size

MIT-13 Replace unbounded copy functions with analogous functions that support length arguments, such as strcpy
with strncpy. Create these if they are not available.

1. CWE-120 : Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

2. CWE-131 : Incorrect Calculation of Buffer Size

MIT-15 For any security checks that are performed on the client side, ensure that these checks are duplicated on the
server side, in order to avoid CWE-602. Attackers can bypass the client-side checks by modifying values
after the checks have been performed, or by changing the client to remove the client-side checks entirely.
Then, these modified values would be submitted to the server.

1. CWE-89 : Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

2. CWE-78 : Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

3. CWE-79 : Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

4. CWE-434 : Unrestricted Upload of File with Dangerous Type

5. CWE-120 : Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

6. CWE-22 : Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

7. CWE-829 : Inclusion of Functionality from Untrusted Control Sphere

8. CWE-131 : Incorrect Calculation of Buffer Size

9. CWE-190 : Integer Overflow or Wraparound

10. CWE-306 : Missing Authentication for Critical Function

11. CWE-807 : Reliance on Untrusted Inputs in a Security Decision

MIT-16 When using PHP, configure the application so that it does not use register_globals. During implementation,
develop the application so that it does not rely on this feature, but be wary of implementing a
register_globals emulation that is subject to weaknesses such as CWE-95, CWE-621, and similar issues.

1. CWE-89 : Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

http://cwe.mitre.org/data/definitions/862.html
http://cwe.mitre.org/data/definitions/863.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/434.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/829.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/807.html
http://cwe.mitre.org/data/definitions/89.html

36 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 7 - Shared Mitigations
Mitigation CWE Entries

2. CWE-78 : Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

3. CWE-79 : Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

4. CWE-22 : Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

5. CWE-807 : Reliance on Untrusted Inputs in a Security Decision

MIT-17 Run your code using the lowest privileges that are required to accomplish the necessary tasks [R.XX.A].
If possible, create isolated accounts with limited privileges that are only used for a single task. That
way, a successful attack will not immediately give the attacker access to the rest of the software or
its environment. For example, database applications rarely need to run as the database administrator,
especially in day-to-day operations.

1. CWE-89 : Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

2. CWE-78 : Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

3. CWE-434 : Unrestricted Upload of File with Dangerous Type

4. CWE-120 : Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

5. CWE-22 : Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

6. CWE-494 : Download of Code Without Integrity Check

7. CWE-829 : Inclusion of Functionality from Untrusted Control Sphere

8. CWE-131 : Incorrect Calculation of Buffer Size

9. CWE-250 : Execution with Unnecessary Privileges

MIT-21 When the set of acceptable objects, such as filenames or URLs, is limited or known, create a mapping
from a set of fixed input values (such as numeric IDs) to the actual filenames or URLs, and reject all other
inputs.

1. CWE-89 : Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

2. CWE-78 : Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

3. CWE-79 : Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

4. CWE-434 : Unrestricted Upload of File with Dangerous Type

5. CWE-601 : URL Redirection to Untrusted Site ('Open Redirect')

6. CWE-120 : Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

7. CWE-22 : Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

8. CWE-829 : Inclusion of Functionality from Untrusted Control Sphere

MIT-22 Run the code in a "jail" or similar sandbox environment that enforces strict boundaries between the process
and the operating system. This may effectively restrict which files can be accessed in a particular directory
or which commands can be executed by the software.

OS-level examples include the Unix chroot jail, AppArmor, and SELinux. In general, managed code may
provide some protection. For example, java.io.FilePermission in the Java SecurityManager allows the
software to specify restrictions on file operations.

This may not be a feasible solution, and it only limits the impact to the operating system; the rest of the
application may still be subject to compromise.

Be careful to avoid CWE-243 and other weaknesses related to jails.

1. CWE-78 : Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

2. CWE-434 : Unrestricted Upload of File with Dangerous Type

3. CWE-120 : Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

4. CWE-22 : Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

5. CWE-494 : Download of Code Without Integrity Check

6. CWE-829 : Inclusion of Functionality from Untrusted Control Sphere

7. CWE-131 : Incorrect Calculation of Buffer Size

8. CWE-732 : Incorrect Permission Assignment for Critical Resource

http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/807.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/434.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/829.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/434.html
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/829.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/434.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/829.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/732.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 37

Table 7 - Shared Mitigations
Mitigation CWE Entries

MIT-24 When there is a need to store or transmit sensitive data, use strong, up-to-date cryptographic algorithms to
encrypt that data. Select a well-vetted algorithm that is currently considered to be strong by experts in the
field, and use well-tested implementations. As with all cryptographic mechanisms, the source code should
be available for analysis.

For example, US government systems require FIPS 140-2 certification.

Do not develop custom or private cryptographic algorithms. They will likely be exposed to attacks that are
well-understood by cryptographers. Reverse engineering techniques are mature. If the algorithm can be
compromised if attackers find out how it works, then it is especially weak.

Periodically ensure that the cryptography has not become obsolete. Some older algorithms, once thought to
require a billion years of computing time, can now be broken in days or hours. This includes MD4, MD5,
SHA1, DES, and other algorithms that were once regarded as strong. [R.XX.A]

1. CWE-311 : Missing Encryption of Sensitive Data

2. CWE-327 : Use of a Broken or Risky Cryptographic Algorithm

MIT-25 When using industry-approved techniques, use them correctly. Don't cut corners by skipping resource-
intensive steps (CWE-325). These steps are often essential for preventing common attacks.

1. CWE-311 : Missing Encryption of Sensitive Data

2. CWE-327 : Use of a Broken or Risky Cryptographic Algorithm

3. CWE-759 : Use of a One-Way Hash without a Salt

MIT-26 Examine compiler warnings closely and eliminate problems with potential security implications, such as
signed / unsigned mismatch in memory operations, or use of uninitialized variables. Even if the weakness
is rarely exploitable, a single failure may lead to the compromise of the entire system.

1. CWE-131 : Incorrect Calculation of Buffer Size

2. CWE-190 : Integer Overflow or Wraparound

MIT-27 If available, use structured mechanisms that automatically enforce the separation between data and code.
These mechanisms may be able to provide the relevant quoting, encoding, and validation automatically,
instead of relying on the developer to provide this capability at every point where output is generated.

1. CWE-89 : Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

2. CWE-78 : Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

3. CWE-79 : Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

MIT-28 While it is risky to use dynamically-generated query strings, code, or commands that mix control and data
together, sometimes it may be unavoidable. Properly quote arguments and escape any special characters
within those arguments. The most conservative approach is to escape or filter all characters that do not pass
an extremely strict whitelist (such as everything that is not alphanumeric or white space). If some special
characters are still needed, such as white space, wrap each argument in quotes after the escaping/filtering
step. Be careful of argument injection (CWE-88).

1. CWE-89 : Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

2. CWE-78 : Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

MIT-29 Use an application firewall that can detect attacks against this weakness. It can be beneficial in cases in
which the code cannot be fixed (because it is controlled by a third party), as an emergency prevention
measure while more comprehensive software assurance measures are applied, or to provide defense in
depth.

1. CWE-89 : Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

2. CWE-78 : Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/311.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/759.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html

38 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 7 - Shared Mitigations
Mitigation CWE Entries

3. CWE-79 : Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

4. CWE-601 : URL Redirection to Untrusted Site ('Open Redirect')

5. CWE-22 : Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

6. CWE-829 : Inclusion of Functionality from Untrusted Control Sphere

MIT-3 Use a language that does not allow this weakness to occur or provides constructs that make this weakness
easier to avoid.

1. CWE-120 : Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

2. CWE-190 : Integer Overflow or Wraparound

MIT-34 Store library, include, and utility files outside of the web document root, if possible. Otherwise, store
them in a separate directory and use the web server's access control capabilities to prevent attackers from
directly requesting them. One common practice is to define a fixed constant in each calling program, then
check for the existence of the constant in the library/include file; if the constant does not exist, then the file
was directly requested, and it can exit immediately.

This significantly reduces the chance of an attacker being able to bypass any protection mechanisms that
are in the base program but not in the include files. It will also reduce the attack surface.

1. CWE-22 : Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

2. CWE-829 : Inclusion of Functionality from Untrusted Control Sphere

MIT-36 Understand the programming language's underlying representation and how it interacts with numeric
calculation (CWE-681). Pay close attention to byte size discrepancies, precision, signed/unsigned
distinctions, truncation, conversion and casting between types, "not-a-number" calculations, and how the
language handles numbers that are too large or too small for its underlying representation. [R.XX.A]

Also be careful to account for 32-bit, 64-bit, and other potential differences that may affect the numeric
representation.

1. CWE-131 : Incorrect Calculation of Buffer Size

2. CWE-190 : Integer Overflow or Wraparound

MIT-37 Ensure that the software runs properly under the Federal Desktop Core Configuration (FDCC) [R.XX.A]
or an equivalent hardening configuration guide, which many organizations use to limit the attack surface
and potential risk of deployed software.

1. CWE-250 : Execution with Unnecessary Privileges

2. CWE-732 : Incorrect Permission Assignment for Critical Resource

MIT-39 Ensure that error messages only contain minimal details that are useful to the intended audience, and
nobody else. The messages need to strike the balance between being too cryptic and not being cryptic
enough. They should not necessarily reveal the methods that were used to determine the error. Such
detailed information can be used to refine the original attack to increase the chances of success.

If errors must be tracked in some detail, capture them in log messages - but consider what could occur
if the log messages can be viewed by attackers. Avoid recording highly sensitive information such as
passwords in any form. Avoid inconsistent messaging that might accidentally tip off an attacker about
internal state, such as whether a username is valid or not.

1. CWE-89 : Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

2. CWE-78 : Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

3. CWE-22 : Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/829.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/829.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/250.html
http://cwe.mitre.org/data/definitions/732.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/22.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 39

Table 7 - Shared Mitigations
Mitigation CWE Entries

MIT-4 Use a vetted library or framework that does not allow this weakness to occur or provides constructs that
make this weakness easier to avoid.

1. CWE-89 : Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

2. CWE-78 : Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

3. CWE-79 : Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

4. CWE-352 : Cross-Site Request Forgery (CSRF)

5. CWE-120 : Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

6. CWE-22 : Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

7. CWE-494 : Download of Code Without Integrity Check

8. CWE-829 : Inclusion of Functionality from Untrusted Control Sphere

9. CWE-131 : Incorrect Calculation of Buffer Size

10. CWE-190 : Integer Overflow or Wraparound

11. CWE-306 : Missing Authentication for Critical Function

12. CWE-862 : Missing Authorization

13. CWE-807 : Reliance on Untrusted Inputs in a Security Decision

14. CWE-863 : Incorrect Authorization

15. CWE-327 : Use of a Broken or Risky Cryptographic Algorithm

16. CWE-307 : Improper Restriction of Excessive Authentication Attempts

MIT-5 Assume all input is malicious. Use an "accept known good" input validation strategy, i.e., use a whitelist of
acceptable inputs that strictly conform to specifications. Reject any input that does not strictly conform to
specifications, or transform it into something that does.

When performing input validation, consider all potentially relevant properties, including length, type of
input, the full range of acceptable values, missing or extra inputs, syntax, consistency across related fields,
and conformance to business rules. As an example of business rule logic, "boat" may be syntactically valid
because it only contains alphanumeric characters, but it is not valid if the input is only expected to contain
colors such as "red" or "blue."

Do not rely exclusively on looking for malicious or malformed inputs (i.e., do not rely on a blacklist).
A blacklist is likely to miss at least one undesirable input, especially if the code's environment changes.
This can give attackers enough room to bypass the intended validation. However, blacklists can be useful
for detecting potential attacks or determining which inputs are so malformed that they should be rejected
outright.

1. CWE-89 : Improper Neutralization of Special Elements used in an SQL Command ('SQL Injection')

2. CWE-78 : Improper Neutralization of Special Elements used in an OS Command ('OS Command Injection')

3. CWE-79 : Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

4. CWE-434 : Unrestricted Upload of File with Dangerous Type

5. CWE-601 : URL Redirection to Untrusted Site ('Open Redirect')

6. CWE-120 : Buffer Copy without Checking Size of Input ('Classic Buffer Overflow')

7. CWE-22 : Improper Limitation of a Pathname to a Restricted Directory ('Path Traversal')

8. CWE-829 : Inclusion of Functionality from Untrusted Control Sphere

MIT-6 Understand all the potential areas where untrusted inputs can enter your software: parameters or
arguments, cookies, anything read from the network, environment variables, reverse DNS lookups, query
results, request headers, URL components, e-mail, files, filenames, databases, and any external systems
that provide data to the application. Remember that such inputs may be obtained indirectly through API
calls.

1. CWE-79 : Improper Neutralization of Input During Web Page Generation ('Cross-site Scripting')

2. CWE-601 : URL Redirection to Untrusted Site ('Open Redirect')

3. CWE-829 : Inclusion of Functionality from Untrusted Control Sphere

http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/352.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/494.html
http://cwe.mitre.org/data/definitions/829.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/190.html
http://cwe.mitre.org/data/definitions/306.html
http://cwe.mitre.org/data/definitions/862.html
http://cwe.mitre.org/data/definitions/807.html
http://cwe.mitre.org/data/definitions/863.html
http://cwe.mitre.org/data/definitions/327.html
http://cwe.mitre.org/data/definitions/307.html
http://cwe.mitre.org/data/definitions/89.html
http://cwe.mitre.org/data/definitions/78.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/434.html
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/120.html
http://cwe.mitre.org/data/definitions/22.html
http://cwe.mitre.org/data/definitions/829.html
http://cwe.mitre.org/data/definitions/79.html
http://cwe.mitre.org/data/definitions/601.html
http://cwe.mitre.org/data/definitions/829.html

40 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

Table 7 - Shared Mitigations
Mitigation CWE Entries

4. CWE-807 : Reliance on Untrusted Inputs in a Security Decision

MIT-8 Perform input validation on any numeric input by ensuring that it is within the expected range. Enforce that
the input meets both the minimum and maximum requirements for the expected range.

1. CWE-131 : Incorrect Calculation of Buffer Size

2. CWE-190 : Integer Overflow or Wraparound

Creating Custom Top-N Lists using CWSS and CWRAF

The CWE/SANS Top 25 is a great starting point, but each organization has its own set of business priorities, threat
environment, and risk tolerance. For those who understand those issues, a more refined and custom Top-N for their
business, and what software is doing for their business, is possible through the Common Weakness Scoring System
(CWSS) (https://cwe.mitre.org/cwss/) and the Common Weakness Risk Analysis Framework (CWRAF) (https://
cwe.mitre.org/cwraf/). The mechanisms in CWSS and CWRAF minimize this difficulty by letting organizations model
their own business impact considerations into a risk-scoring mechanism.

CWSS provides the mechanism for scoring software’s weaknesses in a consistent, flexible, open manner while
considering the context and reflecting the weaknesses’ impacts against that context. It aims to provide a consistent
approach for tools and services prioritizing their static- and dynamic-analysis findings while addressing government,
academia, and industry stakeholder needs.

CWRAF uses the core scoring mechanisms from CWSS to let software developers and consumers prioritize their
own target list of software weaknesses across their unique portfolio of software applications and projects, focusing on
those with the greatest potential to harm their business. To reduce risk, organizations can select appropriate tools and
techniques, focus staff training, and define contracting details to ensure outsourced efforts also address the prioritized
issues.

CWRAF and CWSS let users create top-n lists for their particular software and business domains, missions, and
technology groups. In conjunction with other activities, CWSS and CWRAF help developers and consumers introduce
more robust and resilient software into their operational environments.

Key Discussion Points Between Developers and Consumers, Acquirers, and
Project Management

Improving software assurance requires a more explicit dialog between consumers, acquirers, project managers, and
developers on an ongoing basis. Here are some discussion points that will hopefully provide a better understanding of
what you and others are doing and need to do to help improve the security and resilience of your software.

1. Design/Development Practices

a. Which process model or standard is used that specifies the activities/practices that are followed (e.g.
BSIMM, OpenSAMM)?

b. Which security-related frameworks are used, such as ESAPI or built-in frameworks?

c. Which SDLC activities are used to directly prevent or mitigate vulnerabilities in the application
software? (e.g. threat modeling, automated code analysis (static or dynamic), etc).

d. Which security controls have been utilized to mitigate specific problems (e.g. authentication,
authorization, cryptography)

http://cwe.mitre.org/data/definitions/807.html
http://cwe.mitre.org/data/definitions/131.html
http://cwe.mitre.org/data/definitions/190.html

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 41

e. Which secure coding rules/practices are followed? (e.g. CERT, MISRA, ISO SC-22, custom). How is
conformance enforced (e.g. automated tools during checkin)?

f. What differences, if any, exist between the secure development practices for legacy code, versus newly
developed code?

g. Which "Top N" vulnerability/attack lists do your development practices actively attempt to address
(e.g. CWE Top 25, OWASP Top Ten, custom Top-N list)?

2. Third-Party Software Management

a. Which third-party libraries are used by the software?

b. How does the development team keep current with third-party libraries so that it does not use code with
known vulnerabilities?

c. How are third-party code changes and vulnerabilities tracked/monitored?

d. Which third-party libraries were independently examined for vulnerabilities before being included in
the software?

3. Detection and Analysis

a. Which standardized analysis/testing methodologies are used to evaluate the software? (e.g. OWASP
ASVS, OSSTMM)

b. Has an independent 3rd-party review been performed against the software? Did the review cover code
implementation, design, architecture, or installation settings?

d. What tools are used for automated code analysis? Static or dynamic? White box or black box?

e. Which manual analysis techniques were used?

f What specifications, data formats, and protocols are used? Were any test case suites or fuzzing tools
used to evaluate the implementation (e.g. PROTOS)?

g. What is the attack surface of the software (in privileged code and overall)? What metrics are used? Can
the attack surface or attack patterns be described in terms of CAPEC?

h. Which parts of the code have been most recently reviewed?

i. Which parts of the software contain legacy code whose analysis has been skipped?

4. Compiler/Environment

a. Which compiler settings are used to reduce or eliminate risk for key weaknesses (e.g. /GS switch)?

b. Were any compiler warnings disabled or ignored when compiling the code? If so, which ones and why?

c. Was the code compiled using safe libraries?

d. Which OS features are used to reduce or eliminate the risk of important weaknesses (e.g. DEP, ASLR)?

5. Configuration/Installation

a. Is the product installed "secure by default"?

b. Is the product installed so that critical executables, libraries, configuration files, registry keys, etc.
cannot be modified by untrusted parties?

c. Does the software run with limited privileges? If not, how is privilege separation performed?

d. How does the documentation cover security-relevant settings for administrators to use to lock down the
software?

e. Does the software work under FDCC/USGCB configurations, and/or other secure configurations?

f. How does the software restrict access to network ports?

6. Vulnerability Response

a. Is a security response center set up to handle incoming vulnerability reports from external parties?

42 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

b. How easy is it for independent researchers and non-customers to report exploitable weaknesses and
vulnerabilities relative to this software?

c. Are emergency procedures in place to quickly fix issues that are first discovered being exploited in the
wild?

d. Are procedures in place to handle when vulnerabilities are publicly disclosed without notifying the
developer or giving sufficient time to produce a patch)?

e. Is there a sufficiently comprehensive set of information sources that are monitored for reported
vulnerabilities in your own software, in third-party products, and competitor/analogous products?

f. When a new weakness is found by an outside party, how are the software and associated development
practices reviewed and modified to ensure that similar weaknesses are also detected and removed?

7. Vulnerability Disclosure

a. How are consumers of the software notified about new vulnerabilities found in the code?

b. For vulnerabilities that are publicly disclosed by other parties without a patch, is there a policy to
provide public commentary before a patch is available?

c. Which details are disclosed to customers? What is disclosed to the general public?

d. Are any credits or compensation provided to independent vulnerability researchers?

8. What kind of evidence or proof can be offered regarding these claims?

Using Tools and Other Capabilities to Identify the Top 25

Developers and third-party analysts can use CWE-compatible tools that can map to CWE items in the CWE Top 25.
With the advancing maturity and increasing adoption of CWE, most vendors of software analysis tools and services
express their findings of weaknesses in code, design, and architecture using CWE identifiers. This common language for
expressing weaknesses has eliminated much of the ambiguity and confusion surrounding exactly what the tool or service
has found. At the same time, different vendors take different approaches as to how they look for weaknesses and what
weaknesses they look for. The CWE Coverage Claims Representation (CCR) is a means for software analysis vendors
to convey to their customers exactly which CWE-identified weaknesses they claim to be able to locate in software. The
word claim is emphasized since neither the CCR itself nor the CWE Compatibility Program verify or otherwise vet these
statements of coverage. The CWE Effectiveness Program will eventually fulfill this role of verification.

The main goal of the CCR is to facilitate the communication of unambiguous statements of the intention of a tool or
service to discover specific, CWE-identified weaknesses in software. These statements of claim are intended to allow
the providers of software analysis tools and services and the consumers of those tools and services to share a single,
unambiguous understanding of the scope of software weakness analysis. CCR wants users of tools and services to be
aware and informed of the coverage of the tools and services they make use of in analyzing their software, and when
specific classes of weaknesses or individual weaknesses are of specific concern, they can make sure their tools and
services are at least trying to find them. Having a mis-match between an organization’s focus and the capabilities of
their tools and services is not something to be discovered after using and depending on them, but rather is something that
should be addressed in the initial discussions and exploration of bringing those capabilities to bear for the organization.

It is anticipated that the CCR will also foster innovation in the technology of software analysis tools and services by
allowing vendors to clearly state their intentions with respect to weakness discovery and understand more clearly when
there is a need for targeting additional weaknesses to address their customer’s concerns. Currently, a tool that does a very
deep analysis on a small subset of the entire set of CWE-defined weaknesses may be judged as inadequate by potential
customers since, by definition, it fails to discover a broad set of weaknesses. However, with the CCR, the tool provider
could supply a CCR document for that tool, clearly setting expectations as to the set of weaknesses that the tool attempts
to discover. Tool consumers could then evaluate tools based on what specific CWE-identified weaknesses those tools
claim to discover and how that coverage fits within their needs, rather than comparing it to the entire set of CWE-defined
weaknesses.

Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses 43

Conclusion

The Software Assurance Pocket Guide Series is developed in collaboration with the SwA Forum and Working Groups
and provides summary material in a more consumable format. The series provides informative material for SwA
initiatives that seek to reduce software vulnerabilities, minimize exploitation, and address ways to improve the routine
development, acquisition and deployment of trustworthy software products. Together, these activities will enable more
secure and reliable software that supports mission requirements across enterprises and the critical infrastructure.

For additional information or contribution to future material and/or enhancements of this pocket guide, please consider
joining any of the SwA Working Groups and/or send comments to Software.Assurance@dhs.gov . SwA Forums are
open to all participants and free of charge. Please visit https://buildsecurityin.us-cert.gov for further information.

No Warranty

This material is furnished on an “as-is” basis for information only. The authors, contributors, and participants of the
SwA Forum and Working Groups, their employers, the U.S. Government, other participating organizations, all other
entities associated with this information resource, and entities and products mentioned within this pocket guide make
no warranties of any kind, either expressed or implied, as to any matter including, but not limited to, warranty of fitness
for purpose, completeness or merchantability, exclusivity, or results obtained from use of the material. No warranty of
any kind is made with respect to freedom from patent, trademark, or copyright infringement. Reference or use of any
trademarks is not intended in any way to infringe on the rights of the trademark holder. No warranty is made that use of
the information in this pocket guide will result in software that is secure. Examples are for illustrative purposes and are
not intended to be used as is or without undergoing analysis.

Reprints

Any Software Assurance Pocket Guide may be reproduced and/or redistributed in its original configuration, within
normal distribution channels (including but not limited to on-demand Internet downloads or in various archived/
compressed formats).

Anyone making further distribution of these pocket guides via reprints may indicate on the pocket guide that their
organization made the reprints of the document, but the pocket guide should not be otherwise altered.

These resources have been developed for information purposes and should be available to all with interests in software
security.

For more information, including recommendations for modification of SwA pocket guides, please contact
Software.Assurance@dhs.gov or visit the Software Assurance Community Resources and Information Clearinghouse:
https://buildsecurityin.us-cert.gov/swa to download this document either format (4”x8” or 8.5”x11”).

Software Assurance (SwA) Pocket Guide Series

SwA is primarily focused on software security and mitigating risks attributable to software; better enabling resilience in
operations. SwA Pocket Guides are provided; with some yet to be published. All are offered as informative resources;
not comprehensive in coverage. All are intended as resources for ‘getting started’ with various aspects of software
assurance. The planned coverage of topics in the SwA Pocket Guide Series is listed:

SwA in Acquisition & Outsourcing

mailto:Software.Assurance@dhs.gov
https://buildsecurityin.us-cert.gov
mailto:Software.Assurance@dhs.gov
mailto:Software.Assurance@dhs.gov
https://buildsecurityin.us-cert.gov/swa
https://buildsecurityin.us-cert.gov/swa

44 Software Assurance Pocket Guide Series:
Development, Version 2.3, November 1, 2012

I. Contract Language for Integrating Software Security into the Acquisition Life Cycle

II. Software Supply Chain Risk Management & Due-Diligence

SwA in Development

I. Integrating Security into the Software Development Life Cycle

II. Key Practices for Mitigating the Most Egregious Exploitable Software Weaknesses

III. Risk-based Software Security Testing

IV. Requirements & Analysis for Secure Software

V. Architecture & Design Considerations for Secure Software

VI. Secure Coding & Software Construction

VII. Security Considerations for Technologies, Methodologies & Languages

SwA Life Cycle Support

I. SwA in Education, Training & Certification

II. Secure Software Distribution, Deployment, & Operations

III. Code Transparency & Software Labels

IV. Assurance Case Management

V. Assurance Process Improvement & Benchmarking

VI. Secure Software Environment & Assurance Ecosystem

SwA Measurement & Information Needs

I. Making Software Security Measurable

II. Practical Measurement Framework for SwA & InfoSec

III. SwA Business Case & Return on Investment

SwA Pocket Guides and related documents are freely available for download via the DHS NCSD Software Assurance
Community Resources and Information Clearinghouse at https://buildsecurityin.us-cert.gov/swa .

https://buildsecurityin.us-cert.gov/swa

